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Abstract: Kidney diseases are regarded as one of the major public health issues in the world. The
objectives of this study were: (i) to investigate the causative factors involved in kidney disease
and the therapeutic aspects of Moringa oleifera, as well as (ii) the effectiveness of M. oleifera in the
anti-inflammation and antioxidant processes of the kidney while minimizing all potential side effects.
In addition, we proposed a hypothesis to improve M. oleifera based drug development. This study
was updated by searching the key words M. oleifera on kidney diseases and M. oleifera on oxidative
stress, inflammation, and fibrosis in online research databases such as PubMed and Google Scholar.
The following validation checking and scrutiny analysis of the recently published articles were
used to explore this study. The recent existing research has found that M. oleifera has a plethora of
health benefits. Individual medicinal properties of M. oleifera leaf extract, seed powder, stem extract,
and the whole extract (ethanol/methanol) can up-increase the activity of antioxidant enzymes like
superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while decreasing the activity of
inflammatory cytokines such as TNF-α, IL-1β, IL-6, and COX-2. In our study, we have investigated
the properties of this plant against kidney diseases based on existing knowledge with an updated
review of literature. Considering the effectiveness of M. oleifera, this study would be useful for further
research into the pharmacological potential and therapeutic insights of M. oleifera, as well as prospects
of Moringa-based effective medicine development for human benefits.

Keywords: Moringa oleifera; antioxidant; anti-aging; fibrosis; inflammation; kidney disease

1. Introduction

Kidney diseases are considered among the major health problems worldwide. Acute
kidney injury (AKI) is closely connected with chronic kidney diseases (CKD). Since 1990,
CKD has been included in the list of non-communicable conditions investigated by the
global burden of disease study. As the disease’s growth rate accelerates, it has become a
global concern. The majority of incidents occur in low and lower-middle income coun-
tries [1–3]. The kidneys gradually lose their ability to function in CKD patients, and the
glomerular filtration rate (GFR) falls below 60 mL/min per 1.73 m2 [1,2]. Mainly people
who have been already suffering from diabetes, heart disease, or high blood pressure
are at a high risk of developing CKD. Few drugs, such as prolyl hydroxylase domain
inhibitors against anemia in CKD [3], can be used to treat CKD complications. The main
pathologies involved in kidney complications are inflammation, oxidative stress, apoptosis,
and fibrosis [4]. Unfortunately, no potential drug for treating kidney diseases exists at
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this time. Therefore, the search for a potential drug with fewer side effects to combat this
disease is becoming increasingly important. M. oleifera Lam., also known as drumstick
tree, is a Moringaceae family member that grows in the Indian subcontinent. This plant’s
various parts have medicinal applications, such as antifungal, antiviral, anti-inflammatory,
etc. [5–8]. Moringa leaves also have a low calorific value and can be included in the diet of
obese individuals [9]. Furthermore, it contains numerous bioactive phytochemicals such
as flavonoids, saponin, vanillin, omega fatty acids, carotenoids, ascorbates, tocopherols,
beta-sitosterol, moringine, kaempferol, and quercetin that have been reported in its flowers,
roots, fruits, and seeds, and can play a variety of roles in medicine [10–13]. In general,
the choice of the most suitable bioactive substance for therapeutic purposes necessarily
depends on the chemical formula of that specific compound, its structure giving its unique
properties, and implicitly its mode of action [14]. Kaempferol has been shown to promote
cancer cell apoptosis, such as MCF-7 and A549 cells [15]. Due to its anti-inflammatory
and antioxidant properties, quercetin has the potential to be hepatoprotective, hypocholes-
terolemic, hypolipidemic, and anti-atherosclerotic [16]. Moringa has an anti-hyperglycemic
effect, according to researchers who studied it in vivo on mice models [17].

Previous studies indicate that the juice of the super food M. oleifera enhances an-
timicrobial defense [18] and regulates insulin level, as well as glucose uptake in mus-
cles [19,20]. Interestingly, M. oleifera showed a significant reduction of hyperglycemia,
low-density lipoprotein (LDL) cholesterol, total cholesterol, fatty substances, FPG, and
VLDL-cholesterol [21]. M. oleifera is also beneficial for skin, hair, liver, eye, blood pressure,
treating anemia, kidney disease, and diabetes [22]. Several recent studies have documented
the beneficial impacts of M. oleifera in alleviating renal diseases in animal model. Nafiu
et al. [23] marked that gentamicin-induced impairment and oxidative stress significantly
reduced by ethanolic extract of Moringa oleifera seeds in plasma, urine and kidney ho-
mogenate of rats. Akinrinde et al. [24] observed that M. oleifera extract attenuates the
deleterious effects of renal ischemia-reperfusion through alleviation of oxidative stress.
Soliman et al. [25] explored the ameliorative effects of M. oleifera against oxidative stress and
methotrexate-induced hepato–renal dysfunction. Recently, Abu-Zeid et al. [26] discovered
that the ecofriendly selenium nanoparticle using M. oleifera and/or M. oleifera ethanolic
leaf extract reduces melamine-induced nephrotoxicity by alleviating of renal function
impairments, oxidative stress, and apoptosis in rat kidney. Despite the great progress of
M. oleifera in this field in recent years, less attention has been given to the effectiveness
of M. oleifera, particularly against kidney related diseases. Therefore, there are still some
issues which need further exploration, such as the protective effects of M. oleifera in kidney
related disease difficulties and its prospects in drug development for human benefits.

This review updates the existing knowledge concerning the causative factors involved
in kidney disease, as well as the therapeutic aspects of M. oleifera. Furthermore, this study
provides a hypothesis on how M. oleifera would be effective in the anti-inflammation and
antioxidant processes of the kidney, with the least amount of side effects.

2. Methods

This systematic review was carried out following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [27]. Databases such as
Scopus, PubMed, and Google Scholar were accessed to retrieve information using the
keywords ‘MeSH terms’, on ‘kidney diseases’ and ‘oxidative stress’ and ‘inflammation’,
and ‘fibrosis’ and ‘Moringa oleifera’. The information was retrieved from 2011 to 15 June
2021. Automatic search tools were used to exclude some of the articles, while others were
screened manually. Articles published in languages other than English were excluded.
Reviews, book chapters, expert opinions, conference papers, and letters to editors were
also excluded from this review. A total of 151 research articles were retrieved from the
databases and discussed in this study (Figure 1). All information compiled in the table was
obtained from these research articles.



Plants 2021, 10, 2818 3 of 15

Plants 2021, 10, 2818 3 of 17 
 

 

databases and discussed in this study (Figure 1). All information compiled in the table 
was obtained from these research articles. 

 
Figure 1. PRISMA 2020 flow diagram for the systematic review. 

3. Phytochemical Content and Pharmacological Potential of M. oleifera on Kidney Dis-
eases 

M. oleifera contains several bioactive phytochemicals including flavonoids and isothi-
ocyanates [10]; polyphenols, carotenoids, alkaloids, and terpenoids [11]; and triterpe-
noids, moringyne, monopalmitic, di-oleic triglyceride, campesterol, stigmasterol, β-sitos-
terol, avenasterol, and vitamin A [12]. These bioactive phytochemicals are found in M. 
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chemicals specially in kidney diseases. 
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Figure 1. PRISMA 2020 flow diagram for the systematic review.

3. Phytochemical Content and Pharmacological Potential of M. oleifera on
Kidney Diseases

M. oleifera contains several bioactive phytochemicals including flavonoids and isothio-
cyanates [10]; polyphenols, carotenoids, alkaloids, and terpenoids [11]; and triterpenoids,
moringyne, monopalmitic, di-oleic triglyceride, campesterol, stigmasterol, β-sitosterol,
avenasterol, and vitamin A [12]. These bioactive phytochemicals are found in M. oleifera
roots, fruits, and seeds. These phytochemicals have medicinal properties which have
been shown to be effective antioxidant, antimicrobial, inflammatory, and anti-carcinogenic
agents [28]. More studies are required to explore the role of bioactive phytochemicals
specially in kidney diseases.

M. oleifera also possesses a variety of pharmacological properties, which are closely
associated with the presence of its bioactive compounds. Therefore, in the following section
we highlighted the pharmacological potential of M. oleifera. M. oleifera showed pharma-
cological potential against some plausible factors such as oxidative stress, inflammation,
fibrosis, and other pathologies responsible for kidney diseases. The potential effects of
M. oleifera against risk factors associated with kidney disease in the following sections as
shown in Figures 2 and 3.
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Figure 2. Renoprotective effects of M. oleifera against oxidative stress. Stress stimuli (streptozotocin, 
CoCl2, methotrexate, tilmicosin, TiO2NPs, acetaminophen (APAP), glycerol, and Salmonella) in-
creased malondialdehyde (MDA), lipid peroxidation products (LPP), total protein carbonyl content 
(TPCC), blood urea nitrogen (BUN), creatinine, and nitric oxide (NO) production via triggering re-
active oxygen species (ROS), H2O2, glutathione disulfide (GSSG), and lactoperoxidase (LPO). Oxi-
dative stress emerged as a result of these events. MO—induced models, on the other hand, increased 
the expression of catalase (CAT); superoxide dismutase (SOD); glutathione peroxidase (GPx); glu-
tathione (GSH), total antioxidant capacity (TAC); delta-amino levulinic acid dehydratase (ALAD), 
and G-6-Pase, which then activates glutathione (GSH). These stressors inhibit the expression of ox-
idative stress suppressive factors. ROS, H2O2, GSSG, and LPO, all related to oxidative stress, were 
decreased by GSH. GSH is also capable of reducing oxidative stress. 

Figure 2. Renoprotective effects of M. oleifera against oxidative stress. Stress stimuli (streptozotocin,
CoCl2, methotrexate, tilmicosin, TiO2NPs, acetaminophen (APAP), glycerol, and Salmonella) increased
malondialdehyde (MDA), lipid peroxidation products (LPP), total protein carbonyl content (TPCC),
blood urea nitrogen (BUN), creatinine, and nitric oxide (NO) production via triggering reactive
oxygen species (ROS), H2O2, glutathione disulfide (GSSG), and lactoperoxidase (LPO). Oxidative
stress emerged as a result of these events. MO—induced models, on the other hand, increased the
expression of catalase (CAT); superoxide dismutase (SOD); glutathione peroxidase (GPx); glutathione
(GSH), total antioxidant capacity (TAC); delta-amino levulinic acid dehydratase (ALAD), and G-6-
Pase, which then activates glutathione (GSH). These stressors inhibit the expression of oxidative
stress suppressive factors. ROS, H2O2, GSSG, and LPO, all related to oxidative stress, were decreased
by GSH. GSH is also capable of reducing oxidative stress.
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protein (CRP), which activates NF-kB in the cytosol, is linked to stress factors. TNF-, Il-6, Il-1B, iNOS, 
and COX-2 are all activated when NF-kB enters the nucleus and binds to DNA. All of these elements 
have been linked to the development of inflammation. NO is activated even more by iNOS. NO is 
thought to be a pro-inflammatory mediator that causes inflammation. In the cytosol, M. oleifera sup-
pressed the expression of CRP and NF-kB. It also boosted cortisol, adrenaline, NK, and Treg cells, 
which helped reduce inflammation. Anti-inflammatory hormones Cortisol and Adrenaline Both NK 
cells and Treg cells are anti-inflammatory regulators. 
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ation and insufficient antioxidant defense [29,30]. It is frequently observed in CKD [31–
33], and has become a diagnostic factor [34]. A number of studies documented that M. 
oleifera has antioxidative properties to protect and/or alleviate cellular damage (Table 1 
and Figure 2). M. oleifera extracts and compounds, particularly quercetin, kaempferol, 
isothiocyanates, rutin, myricetin, ascorbic acid, and β-carotene, showed antioxidant po-
tentials either via direct scavenging of free radicals [35]. 

  

Figure 3. Renoprotective effects of M. oleifera against inflammation. The expression of C-reactive protein (CRP), which
activates NF-kB in the cytosol, is linked to stress factors. TNF-, Il-6, Il-1B, iNOS, and COX-2 are all activated when NF-kB
enters the nucleus and binds to DNA. All of these elements have been linked to the development of inflammation. NO is
activated even more by iNOS. NO is thought to be a pro-inflammatory mediator that causes inflammation. In the cytosol,
M. oleifera suppressed the expression of CRP and NF-kB. It also boosted cortisol, adrenaline, NK, and Treg cells, which
helped reduce inflammation. Anti-inflammatory hormones Cortisol and Adrenaline Both NK cells and Treg cells are
anti-inflammatory regulators.

3.1. Oxidative Stress

Oxidative stress is caused by an imbalance between the excessive free radical genera-
tion and insufficient antioxidant defense [29,30]. It is frequently observed in CKD [31–33],
and has become a diagnostic factor [34]. A number of studies documented that M. oleifera
has antioxidative properties to protect and/or alleviate cellular damage (Table 1 and
Figure 2). M. oleifera extracts and compounds, particularly quercetin, kaempferol, isothio-
cyanates, rutin, myricetin, ascorbic acid, and β-carotene, showed antioxidant potentials
either via direct scavenging of free radicals [35].

Table 1. Summary on the protective effects of M. oleifera against kidney diseases.

Sl.
No. Experimental Model Treatment Dose of

Moringa Extract
Major Research

Outcomes Molecular Markers Ref.

1
STZ-induced

nephrotoxic male
Wister rats

250 mg/kg b wt for
6 weeks

Amelioration of
oxidative stress

and inflammation

↓MDA and ROS
↑CAT, SOD, GSH, and GPx

↓TNF-α and IL-6
[36]

2 db/db mice 150 mg/kg/day for
5 weeks

Oxidative stress
and inflammation

↓LDL
↓TNF-a, ↓IL-1b, ↓IL-6,
↓COX-2, and ↓iNOS

[20]
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Table 1. Cont.

Sl.
No. Experimental Model Treatment Dose of

Moringa Extract
Major Research

Outcomes Molecular Markers Ref.

3 Ischemia-reperfusion
induced Wistar rats

200 mg/kg for 7 days;
400 mg/kg, 7 days by

flank incision
Oxidative stress ↓MDA, ↑PC, ↓AOPP, ↓NO,

↓H2O2, ↓GPx and GST, ↑GSH [24]

4 CoCl2-induced rats
Orally received

400 mg/kg bw/day for
6 weeks

Oxidative stress
Inflammation
and Apoptosis

↓MDA, ↓H2O2, ↓8-OHdG,
↓CRP, ↓MPO, ↓TNF-α, and

↓NO
↓TNF-α, and NO↓

[37]

5 Gentamicin (GENT)
induced Wistar rats

Orally treated with 100,
200 and 400 mg/kg/day

for 28 days
Oxidative stress

↓K+ level, ↓plasma creatinine,
↑Creatinine clearance,

↓MDA, ↑SOD
[23]

6 Nickel-induced
Wistar rats

5% M. oleifera
10% M. oleifera
15% M. oleifera

Oxidative stress

↓plasma creatinine, ↓urea,
and

↑potassium, ↑plasma level of
sodium

[38]

7 Methotrexate
(MTX)-induced Mice

300 mg/kg body weight,
orally for 7 days

Oxidative stress
Inflammation

Apoptosis

↓urea and ↓creatinine, ↓total
protein, ↓MDA,

↑SOD and ↑GSH, ↑HO-1,
↑Nrf-2

↓NF-kB, ↓Caspase-9

[25]

8 Tilmicosin (Til) induced
Sprague Dawley rats

400 or 800 mg/kg bw, by
oral gavage for 7 days

Oxidative stress,
inflammation

↓H2O2, ↓MDA, ↑SOD, ↑GPx,
mRNA expression ↓TNF-α,

↓IL-1β
[39]

9 Hg-induced Male
Wistar rats

1.798 mg/kg p.o three
times per week for

21 days
Oxidative stress ↓MDA level, ↑SOD, and

↑CAT [40]

10 TiO2NPs induce male
albino rats

Daily oral dose of
400 mg/kg b w for

60 days

Oxidative stress
Inflammation

↓MDA, ↑SOD, ↑GSH,
↑GST,↑GPx, ↑Total thiol and

↑HO-1, ↑Nrf2
↓KIM-1, ↓NF-кB, ↓TNF-α,

and
↓HSP-70

[41]

11 NaF induced
Oreochromis niloticus 6.1 mg/L for 8 weeks Oxidative stress ↓MDA, ↑SOD, ↑CAT, ↑GSH,

↑GPx, ↑TAC [42]

12 Gentamicin-induced
(80 mg/kg) Rabbit

150 mg/kg body for
10 days, 300 mg/kg wt.

for 10 days
Oxidative stress

↓Serum urea and
creatinine levels,

↓LPO
[43]

13 Lead treated Male
Wistar rats 500 mg/kg for 7 days Oxidative stress ↓ROS, ↓LPP, ↓TPCC, ↓metal

content, [44]

15 Beryllium-induced rats 150 mg/kg daily for
5 weeks Oxidative stress

↓LPO, ↑GSH, ↑antioxidant
enzymes activities, ↑G-6-Pase

activity
[45]

16 Arsenic-induced toxicity
in rats

500 mg/kg, orally,
once daily Oxidative stress ↑ALAD, ↑GSH,↓ROS, ↑SOD,

↑Catalase, ↓GSSG [46]

17 Heat stress
(HS)-induced rabbits

100, 200, and 300 mg,
6 weeks Inflammation

↑cortisol, ↑adrenaline, ↑leptin,
↓IFN-γ, ↓TNF-α, ↓urea, and
↓creatinine, ↓IL-10, ↑NK, and

↑Treg

[47]

18 ML-induced male
Sprague Dawley rats

Orally 800 mg/kg bw
800 mg/kg bw

Oxidative stress,
Inflammation

Apoptosis

↓Total bilirubin, ↓direct
bilirubin, ↓indirect bilirubin,

↓urea, and
↓creatinine ↑serum levels of

protein, ↑albumin, ↑globulin,
↑GPx, and ↑CAT

↓KIM-1, and ↓TNF-α
and

↑Bcl-2, ↓TIMP-1

[48]
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Table 1. Cont.

Sl.
No. Experimental Model Treatment Dose of

Moringa Extract
Major Research

Outcomes Molecular Markers Ref.

20 Seabream (Sparus aurata) 10% M. oleifera 4 weeks Inflammation

↓TGF-β and ↓TNF-α
↑ACH50 and ↑lysozyme
activities and ↑IgM level
↑ (lyso and c3), ↑ (occludin

and zo-1)

[49]

21 APAP-treated mice 100 mg/kg of bw,
200 mg/kg bw

Oxidative stress,
inflammation

↑SOD, ↑CAT and ↑GPx,
↓MDA,

↓TNF-α, ↓IL-1β, ↓IL-6, ↓IL-10
[50]

22 Iodide injected Rabbit
50 mg/kg body weight,

orally once daily for
27 sequential days

Oxidative stress ↓MDA, ↑GSH, ↓NO, ↓lipid
peroxidation, ↓ROS [51]

23 Glycerol induced rat 50 mg/kg and
100 mg/kg for 7 days

Oxidative stress
Inflammation

↑SOD, ↑GST, ↑GPX, ↑GSH
↓MPO, ↓Creatinine, ↓BUN,

↓NO
↓H2O2, ↓AOPP, ↓MDA,

↓PC,↑PT,
↑NPT,↓KIM-1 and ↓NF-ҝB

[52]

24 Salmonella-induced
mice

14, 42 and
84 mg/kg/day for

28 days

Oxidative stress
inflammation

↑HO-1, ↑SOD-2
↑Nrf-2 [53]

25 STZ-induced rats 250 mg/kg and SRC.
42 days

Oxidative stress
inflammation

↓LDL, ↑HDL, ↓CHOL,
↑ORAC

↓IL-6, ↓TNF-α, and ↓MCP-1
[54]

26 TGF-β-treated rat
kidney fibroblast cells 10, 50, and 100 µg/mL Fibrosis

↓Type I collagen, fibronectin,
and PAI-1

↓TβRII and Smad4, and
phospho-ERK

[55]

27 Gentamicin-induced
Wistar rats

28 days at graded doses
of 100, 200 and

400 mg/kg
Nephrotoxicity ↓Creatinine and MDA

↑SOD [23]

MDA, Malondialdehyde; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6; STZ, streptozotocin (C8H15N3O7); GSH: glutathione;
CAT, catalase; SOD, superoxide dismutase; GPx, Glutathione peroxidase; IL-1β, Interleukin 1 beta; COX-2, cyclooxygenase-2; iNOS,
inducible nitric oxide synthase; AOPP, advanced oxidation protein products; PC, protein carbonyls; NO, nitricoxide; H2O2, hydrogen
peroxide; 8-OHdG, 8-hydroxy-2-deoxyguanosine; MPO, myeloperoxidase; CRP, C-reactive protein; MTX, methotrexate; HO-1, heme
oxygenase-1; Nrf2, nuclear factor erythroid 2-related factor 2; TAC, total antioxidant capacity; LPP, lipid perioxidation products; TPCC,
total protein carbonyl content; ALAD, delta-amino levulinic acid dehydratase; BUN, Blood urea nitrogen; KIM-1, transmembrane tubular
protein; Bcl-2, B-cell lymphoma 2; TGF-β, transforming growth factor beta; CHOL, Cholesterol; ORAC, oxygen radical absorbance capacity;
and APAP, acetaminophen. ↑, increased; ↓, decreased.

Methanol extract of M. oleifera reduced the oxidative stress in STZ induced male rats
by lowering the production of MDA, ROS, LDL, and CHOL, which increase the risk of
CKD [36,54]. Methanol extract also lowered the generation of MDA, AOPP, NO, H2O2, GPx,
and GST, all of which induce oxidative stress in ischemia-induced Wistar rats [29]. Another
study showed that metabolic extract reduced the levels of BUN and creatinine, and total
protein is increased in CKD patients [42]. Ethanolic extract of M. oleifera inhibits oxidative
stress and atherosclerosis in CKD by lowering LDL [20]. 8-OHdG causes oxidative stress
to DNA and promotes cancer [56], ameliorated by the ethanolic extract of M. oleifera [56].
Ethanol extracts decrease the plasma creatinine level by enhancing the process of creatinine
clearance [30]. Plasma sodium and potassium levels were raised after treating nickel-
induced Wistar rats with ethanolic extract of M. oleifera [34]. Ethanolic extract detoxified
plasma by reducing the bilirubin levels (indirect/direct), urea levels, etc., in ML-induced
male Sprague Dawley rats [48]. HO-1 and Nrf2 expression were stimulated by leaf extract of
M. oleifera at dosages of 300 and 400 mg/kg body weight, respectively [25,41]. Leaf extracts
up-regulated the level of total thiol TiO2NPs induced male albino rats, which play an
important role in antioxidant protection [41]. Leaf extract of M. oleifera also downregulated
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the oxidative stress generating mediators in sodium fluoride (NaF)-induced Oreochromis
niloticus, gentamicin-induced rabbit, and APAP-treated mice [23,42,57].

M. oleifera alcoholic extract reduced oxidative stress by lowering the lipid peroxidation,
and ROS in iodide injected rabbits [51]. Furthermore, fermented leaf extract of M. oleifera
boosts the antioxidant activity in bacteria-induced mice [53]. M. oleifera extract reduced the
manifestation of MDA, indicating that the free radicle overproduction was reduced in both
Tilmicosin and Hg induced rats. Abarikwu et al. showed that SOD level was increased after
treatment with M. oleifera in tilmicosin induced rats [40]. Hydroalcoholic root extract raised
blood sugar, antioxidant enzyme activities, and G-6-phase activities, which protect the
kidney from nephropathy in Beryllium-induced rats [45]. Seed powder reduced free radical
species, TPCC, metal content, and increased ALAD activity in lead-treated rats [57]. In
arsenic-treated rats, seed powder of M. oleifera considerably increased antioxidant function
including GSH, CAT, and ALAD [46].

3.2. Inflammation

The kidney is responsible for maintaining whole-body homeostasis. Kidney disease
is characterized by inflammation as a major pathology [58–60]. Acute or chronic disease
such as ischemia, toxins, or inflammation affects kidney tubules, causing kidney fibrosis
that is associated with reduction of GFR in kidneys [61]. Kidney injury is linked to the
production of cytokines levels, which prolongs the acute phase of kidney disease [62]. More-
over, chronic inflammation is regarded as a comorbid condition in CKD [63]. Many plants
have an anti-inflammatory action through active substances such as hesperidin, diosmin,
withaferin, fucoidan, thymoquinone, etc. [64–67]. Here, the anti-inflammatory effects of
M. oleifera has been discussed. M. oleifera has been reported to exhibit strong inflammatory
activity (Table 1 and Figure 3). Methanolic extract of M. oleifera reduced inflammation in
STZ induced male Wister rats by down-regulating the tumor necrosis factor (TNF-α), IL-6,
and MCP-1, an important chemokine [36,54]. Tang et al. investigated the effects of ethanolic
extract of M. oleifera in metformin-induced mice and observed that the M. oleifera declines the
production of inflammatory markers and the expression of cyclooxygenase-2 (COX-2) and
nitric oxide synthase (iNOS) by reducing the phosphorylation of mitogen-activated protein
kinase (MAPK) pathway [20]. Ethanolic extract of M. oleifera down-regulates the inflammatory
cytokines in CoCl2-induced rats, including NO, which is involved in the pathogenesis of
inflammation [37]. Leaf extract of M. oleifera inhibits inflammatory cytokines production and
regulates the inflammation by inhibiting NF-kB [25]. It was also observed that inflammation
in Tilmicosin (Til) induced rats was reduced by M. oleifera extracts [39]. M. oleifera leaf extract
protects against interstitial kidney inflammation with fibrosis by down-regulating KIM-1
in TiO2NPs induced male albino rats [41]. M. oleifera extract increases the secretion of
cortisol, adrenaline, Treg cells, NK, and leptin, promoting anti-inflammatory cytokines
and regulating the immune system [47]. M. oleifera treatment reduced the expression of
KIM-1, TIMP-1, and TNF-α in ML-induced male Sprague Dawley rats [48]. TNF-α, an
inflammatory cytokine that stimulates IL-1; IL-6, downregulated by M. oleifera in Seabream
(Sparus aurata); and activated TGF-β, elicits anti-inflammatory effects [49]. M. oleifera also
reduced the inflammatory cytokines in APAP-treated mice, where APAP induces AKI [50].
Fermented extract of leaves also reduces the Nrf2 in Salmonella-induced mice [53].

Moringa seed’s phytochemicals can reduce the production of nitric oxide (NO) and
the gene expression of LPS-inducible iNOS and interleukins 1β and 6 (IL-1β and IL-6)
compared to curcumin [68]. Flavonoids have been shown to be effective inhibitors of nitric
oxide synthase type 2 (NOS-2) actions, and it also inhibits protein tyrosine kinase action
that is involved in the NOS-2 expression at the molecular level [69–71]. Flower extract can
cause the activation of pro-inflammatory proteins such as toll-like receptors. In the flowers,
quercetin and kaempferol can inhibit the signal transducer and activator of transcription 1
(STAT-1) and the NF-κB pathways [72,73]. M. oleifera flowers contain 80% hydroethanolic,
a potent agent of anti-inflammation in the NF-κB signaling pathway [74]. Scientists dis-
covered that phenolic glycosides suppress inducible iNOS expression and NO production
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in mouse macrophage cells, as well as COX-2 and iNOS proteins [75,76]. Moringa ex-
tracts eventually down-regulate the inflammatory mediators because its seeds and flowers
contain many bioactive compounds. Each of these compounds has its individual effects.

3.3. Fibrosis

Kidney fibrosis is defined as a radical harmful connective tissue deposition on the kidney
parenchyma, which leads to renal dysfunction. Epithelial to mesenchymal transition (EMT)
is the main mechanism of kidney fibrosis, and the TGFβ-1-SMAD pathway and hypoxia
are known as the main modulator of EMT [32,77]. TGF-β-induced expression of fibronectin,
type I collagen, and PAI-1 rat kidney fibroblast cells is reduced by M. oleifera extract [55].
Furthermore, moringa root extract selectively inhibited TGF-β-induced phosphorylation of
SMAD4 and ERK expression. These results suggest that moringa root extract may reduce
renal fibrosis by a mechanism related to its antifibrotic activity in rat kidney fibroblast cells.
Oral administration of M. oleifera seed extract reduced CCl4-induced liver fibrosis in rats [78].

3.4. Other Pathologies Those Are Associated with Kidney Diseases

Autophagy has a critical role in kidney physiology and homeostasis [79], and, thus,
its regulation is an important determinant of kidney diseases [61]. AKI or CKD causes
mitochondrial damage, but damaged mitochondria begin to accumulate in response to these
types of stimuli. Autophagy protects the kidney through the removal of ROS-producing
mitochondria [80–82]. Apoptosis is a type of programmed cell death in which cells are killed by
a controlled system. It is an energy-dependent complex process [83]. It contributes to develop
AKI, even organ failure [84]. Ischemia/reperfusion (I/R) induces apoptosis or necrosis in the
kidney and loss of tubular cells, leading to decreased GFR [85,86]. Renal tubular cells express
cell surface ‘death receptors’ of TNF-α which is responsible for inducing apoptosis [87]. Also,
ROS production in kidney disease is responsible for promoting apoptosis [86].

TNF-α inducer of apoptosis, also increased the expression of apoptosis-related
molecules which was down-regulated by ethanol extract of M. oleifera in CoCl2-treated
rats [37,88]. Leaf extract at a dose of 300 mg/kg body weight reduced the expression of
caspase-9, the precursor of caspase-3, leading to apoptosis [25,89]. Bcl-2 inhibited apoptosis
by blocking cytochrome c release and preventing caspase activation [90] while it was
up-regulated by ethanol extract of M. oleifera in ML-induced rats. M. oleifera also reduced
the expression of TIMP-1, which is involved in renal fibrosis and apoptosis [48].

4. Prospects for M. oleifera in Drug Development

Researchers are targeting the development of drugs from natural sources instead of
the synthetic drug because natural sources have fewer side effects than synthetic sources.
Nigerian scientists proved that M. oleifera is a beneficial herb and causes no harm to the
body and kidneys [91]. Another study reported that higher doses of M. oleifera created
toxicity in rats, but a moderate level dose of M. oleifera is safe [92]. M. oleifera has been
shown to alleviate diabetic nephropathy in alloxan-induced rats [93]. Acetaminophen
causes hepato-renal toxicity, which can be cured by M. oleifera treatment at the dosage of
500 mg/kg [94]. M. oleifera reduced necrosis, dilatation of renal tubules in Cd-induced
rats, where Saleh et al. suggested that M. oleifera could be used as an herbal drug [95]. M.
oleifera leaf extracts reduced oxidative stress, kidney, and liver damage [96]. A randomized
placebo-controlled study suggested that M. oleifera leaf capsules can be used to control
blood sugar level and blood pressure level [97]. Moreover, aqueous extracts of M. oleifera
can reduce metal (As (III), Cd, Ni and Pb) toxicity and showed the protective effects in
Saccharomyces cerevisiae [98].

The rich phytochemical profile and advances in biotechnological techniques have made
this tree indispensable for opening a new era in medical science. An in vitro propagation
technique provides new insights into developing more effective, eco-friendly, and biodegrad-
able products using mass multiplication and production techniques. Though efficiency in
in vitro propagation techniques for M. oleifera has been established, there are still gaps in
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the production of metabolites and those specific metabolites in the human body. The use of
biotechnological approaches will help in the commercialization of important plant products.
There is no doubt that biotechnological protocols will allow great research to make M. oleifera
one of the essential solutions for various health issues including kidney diseases.

5. Conclusions

Kidney function declines with age, and aging-related kidney complications propor-
tionately increase. Their side effects limit the effectiveness of existing drugs for treating
kidney diseases and, therefore, natural compounds with fewer side effects are being eval-
uated. The literature discussed in this review suggests that M. oleifera alleviates several
pathological factors associated with kidney diseases, including inflammation and oxidative
stress. However, a mechanism associated with protective potential of M. oleifera against
kidney diseases has been provided in this study (Figure 4).
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Figure 4. Protective mechanisms of M. oleifera against kidney injury. M. oleifera increased the production of catalase
(CAT); superoxide dismutase (SOD); glutathione peroxidase (GPx); glutathione (GSH); total antioxidant capacity (TAC);
delta-amino levulinic acid dehydratase (ALAD); and G-6-Pase, which facilitated oxidative stress reduction by activating
glutathione (GSH), a non-protein thiol that suppresses free radicals. GSH suppresses the oxidative stress situation. M.
oleifera also suppressed oxidative stressors caused by ROS, H2O2, GSSG, and LPO by inhibiting MDA, LPP, TPCC, BUN,
Creatinine, and NO. Bcl-2 was similarly produced by stress stimuli and was linked to the suppression of necrosis, induced
by M. oleifera. M. oleifera inhibited the expression of Caspase-9, a protein involved in the formation of caspases. Following
NF-kB, stress stimuli also increased CRP expression. NF-kB then moved from the cytosol to the nucleus, bound to DNA, and
activated inflammation-related proteins. M. oleifera inhibited the mechanism by which inflammation factors were produced,
hence, reducing inflammation. M. oleifera has been linked to a reduction in the progression of kidney disease.
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This study discusses the insights of M. oleifera against kidney diseases including
AKI and CKD, which have not been reported previously. In addition, further studies
are needed to confirm the effects of the bioactive phytochemicals (vitamins, alkaloids,
polyphenols, isothiocyonates, glucosinolates, tannins, and saponins) of M. oleifera against
kidney diseases. We anticipate that the points raised in this review will provide a future
research direction for understanding how pharmacological interventions based on natural
products could modulate kidney disease. In contrast, it would shed light on how M. oleifera-
based drugs would potentially be a kidney protective agent in treating aging-associated
kidney abnormalities. Considering the harmful effects of synthetic resources and their
non-renewable nature, the use of natural resources as a source of medicine has received a
lot of attention in recent years. M. oleifera based medicine would be an excellent protective
agent against several risk factors associated with kidney diseases.
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