Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Soil Properties
2.3. Meteorological Conditions
2.4. Statistical Analyses
3. Results and Discussion
3.1. Plant Height
3.2. Grain Weight per Plant
3.3. Grain Yield
3.4. Harvest Index
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabaković, M.; Sečanski, M.; Stanisavljević, R.; Mladenović-Drinić, S.; Simić, M.; Knežević, J.; Oro, V. The impact of agroecological factors on morphological traits of maize. Genetika 2020, 52, 1203–1213. [Google Scholar] [CrossRef]
- Popović, V.; Jovović, Z.; Marjanović-Jeromela, A.; Sikora, V.; Mikić, S.; Šarčević-Todosijević, L. Climatic Change and Agricultural Production. In Proceedings of the GEA Conference 2021, GEA (Geo-Eco-Eco-Agro), Podgorica, Montenegro, 27–31 March 2020; pp. 160–166. [Google Scholar]
- Petrovic, S.; Dimitrijevic, M.; Belic, M.; Banjac, B.; Bosković, J.; Zecević, V.; Pejić, B. The variation of yield components in wheat (Triticum aestivum L.) in response to stressful growing conditions of alkaline soil. Genetika 2010, 42, 545–555. [Google Scholar] [CrossRef]
- Belić, M.; Nešić, L.; Ćirić, V. Agriculture Contribution Towards Clean Environment and Healthy Food. Handbook; Faculty of Agriculture, University of Novi Sad: Novi Sad, Serbia, 2014. [Google Scholar]
- Pessoa, L.G.M.; Freire, M.N.G.; Filho, J.; Santos, P.R.; Miranda, M.F.A.; Freire, F.J. Characteri-zation and classification of halomorphic soils in the semiarid region of Northeastern Brazil. JAS 2019, 11, 405–418. [Google Scholar] [CrossRef]
- Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.K.; Sharma, D.K.; Singh, S.K.; Sarkar, D. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. Soil Till. Res. 2014, 136, 76–83. [Google Scholar] [CrossRef]
- Bogunovic, I.; Vukadinovic, V.; Kisic, I.; Chiavalon, S.; Vucic, H.; Durdevic, B. Tillage and Soil Amendments Effect on Soil Physical Properties and Yield of Oats (Avena sativa L.) in Organic Farm in Mediterranean Croatia. Agric. Conspec. Sci. 2018, 83, 17–23. [Google Scholar]
- Ćirić, V.; Manojlović, M.; Belić, M.; Nešić, L.; Šeremešić, S. Aggregate Stability and Sealing Risk of Solonetz under Different Land Use Regimes. Ratar. Povrt. 2012, 49, 243–249. [Google Scholar]
- Bowser, W.E. Genesis and Characteristics of Solonezt Soils. In Soils in Canada; Legget, R., Ed.; University of Toronto Press: Toronto, ON, Canada, 2019; pp. 165–173. [Google Scholar] [CrossRef]
- Dimitrijević, M.; Petrović, S.; Belić, M.; Mladenov, N.; Belić, M.; Hristov, N.; Banjac, B.; Vukosavljev, M. Phenotypic reaction of wheat grown on different soil types. Genetika 2009, 41, 169–177. [Google Scholar] [CrossRef]
- Miller, J.J.; Brierley, J.A. Solonetzic soils of Canada: Genesis, distribution, and classification. Can. J. Soil Sci. 2011, 91, 889–916. [Google Scholar] [CrossRef]
- Banjac, B.; Mladenov, V.; Dimitrijevic, M.; Petrovic, S.; Boćanski, J. Genotype x environment interactions and phenotypic stability for wheat grown in stressful conditions. Genetika 2014, 46, 799–806. [Google Scholar] [CrossRef]
- Nayak, A.K.; Mishra, V.K.; Sharma, D.K.; Jha, S.K.; Singh, C.S.; Shahabuddin, M.; Shahid, M. Efficiency of Phosphogypsum and Mined Gypsum in Reclamation and Productivity of Rice–Wheat Cropping System in Sodic Soil. Commun. Soil Sci. Plant. Anal. 2013, 44, 909–921. [Google Scholar] [CrossRef]
- Nayak, S.; Mishra, C.S.; Guru, B.C.; Rath, M. Effect of phos-phogypsum amendment on soil physico-chemical proper-ties, microbial load and enzyme activities. J. Environ. Biol. 2011, 32, 613–617. [Google Scholar]
- Mesić, M.; Brezinščak, L.; Zgorelec, Ž.; Perčin, A.; Šestak, I.; Bilandžija, D.; Trdenić, M.; Lisac, H. The application of phosphogypsum in agriculture. Agric. Conspec. Sci. 2016, 81, 7–13. [Google Scholar]
- Al-Oudat, M.; Al-Rayyes, A.H.; Kanacri, S. Effects of Phosphogypsum on Chemical Properties of Soil, Wheat Growth and Accumulation of Radionuclides, Trace Elements and Fluoride in Soil and Plants (AECS-A/RSS--234); Department of Agriculture: Damascus, Syrian, 1998.
- Milošev, D.; Belić, M.; Nešić, L.; Dimitrijević, M.; Petrović, S.; Šeremešić, S. The Application of Phosphogypsum in the Winter Wheat Production on Solonetz Soil; Zbornik Radova Instituta za Ratarstvo i Povrtarstvo: Novi Sad, Serbia, 2007; Volume 43, pp. 47–53. [Google Scholar]
- Temel, S.; Keskin, B.; Simsek, U.; Yilmaz, I. Performance of some forage grass species in halomorphic soil. Turk. J. Field Crop. 2015, 20, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Cairns, R.R. Solonetzic Soils and Their Management; Minister of Supply and Servies, Canada Department of Agriculture: Ottawa, ON, Canada, 1978.
- Peters, T.W. Solonetzic Soils Technology. In Solonetzic Soils Technology and Management; Toogood, J.A., Cairns, R.R., Eds.; University of Alberta: Edmonton, AB, Canada, 1978; p. 821. [Google Scholar]
- Ljubičić, N.; Petrovic, S.; Dimitrijevic, M.; Sekulić, P.; Mladenov, N.; Belić, M.; Vukosavljev, M. Kernel number per spike stability of wheat genotypes grown on meliorated soil (solonetz). Contem. Agric. 2010, 59, 332–338. [Google Scholar]
- Mladenov, V.; Dimitrijević, M.; Petrović, S.; Boćanski, J.; Banjac, B.; Kondić-Špika, A.; Trkulja, D. Genetic analysis of spike length in wheat. Genetika 2019, 51, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Lantican, M.A.; Braun, H.J.; Payne, T.S.; Singh, R.P.; Sonder, K.; Baum, M.; van Ginkel, M.; Erenstein, O. Impacts of International Wheat Improvement Research, 1994–2014; CIMMYT: Mexico City, Mexico, 2016. [Google Scholar]
- Erkul, A.; Unay, A.; Konak, C. Inheritance of yield and yield components in bread wheat (Triticum aestivum L.) cross. Turk. J. Field Crop. 2010, 15, 137–140. [Google Scholar]
- Ljubičić, N.; Petrović, S.; Dimitrijević, M.; Hristov, N.; Kostić, M.; Kondić-Špika, A.; Jevtić, R. Diallel analysis of some important grain yield traits in bread wheat. Turk. J. Field Crop. 2017, 22, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gauch, H.G.; Piepho, H.P.; Annicchiarico, P. Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop. Sci. 2008, 48, 866. [Google Scholar] [CrossRef]
- Yan, W. Analysis and handling of G × E in a practical breeding program. Crop. Sci. 2016, 56, 2106–2118. [Google Scholar] [CrossRef]
- Studnicki, M.; Kang, M.S.; Iwańska, M.; Oleksiak, T.; Wójcik-Gront, E.; Mądry, W. Consistency of Yield Ranking and Adaptability Patterns of Winter Wheat Cultivars between Multi-Environmental Trials and Farmer Surveys. Agronomy 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Júnior, B.L.A.Y.; Da Silva, C.P.; De Oliveira, L.A.; Nuvunga, J.J.; Pires, L.P.M.; Von Pinho, R.G.; Balestre, M. AMMI Bayesian Models to Study Stability and Adaptability in Maize. Agron. J. 2018, 110, 1765–1776. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Tomkowiak, A. Genotype—environment interaction for seed yield of maize hybrids and lines using the AMMI model. Maydica Electron. Publ. 2019, 64, 1–8. [Google Scholar]
- Gauch, H.G.; Rodrigues, P.C.; Munkvold, J.D.; Heffner, E.L.; Sorrells, M. Two New Strategies for Detecting and Understanding QTL × Environment Interactions. Crop. Sci. 2011, 51, 96–113. [Google Scholar] [CrossRef]
- Gauch, H.G. A simple protocol for AMMI analysis of yield trials. Crop. Sci. 2013, 53, 1860. [Google Scholar] [CrossRef]
- Hongyu, K.; Garcıa-Pena, M.; de Araujo, L.B.; dos Santos Dias, C.T. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biom. Lett. 2014, 51, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Hongyu, K. Adaptability, stability and genotype by environment interaction using the AMMI model for multienvironmental trials. Biodiversity 2018, 17, 10–21. [Google Scholar]
- Bocianowski, J.; Warzecha, T.; Nowosad, K.; Bathelt, R. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). J. Appl. Genet. 2019, 60, 127–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popović, V.; Ljubičić, N.; Kostić, M.; Radulović, M.; Blagojević, D.; Ugrenović, V.; Popović, D.; Ivošević, B. Genotype × Environment Interaction for Wheat Yield Traits Suitable for Selection in Different Seed Priming Conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef] [PubMed]
- Gauch, H.G.; Moran, D.R. AMMISOFT for AMMI Analysis with Best Practices. Soil Crop. Sci. 2019. [Google Scholar] [CrossRef]
- Belić, M.; Nešić, L.; Dimitrijevic, M.; Petrovic, S.; Ćirić, V.; Pekeč, S.; Vasin, J. Impact of reclamation practices on the content and qualitative composition of exchangeable base cations of the solonetz soil. Aust. J. Crop. Sci. 2012, 6, 1471–1480. [Google Scholar]
- Živković, B.; Nejgebauer, V.; Tanasijević, Đ.; Miljković, N.; Stojković, L.; Drezgić, P. Zemljišta Vojvodine [Soil of Vojvodina]; Institut za Poljoprivredna Istraživanja [Institute of Field and Vegetable Crops]: Novi Sad, Serbia, 1972; pp. 380–403. [Google Scholar]
- Zobel, R.W.; Wright, M.J.; Gauch, H.G. Statistical analysis of yield trial. Agron. J. 1998, 80, 388–393. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Moreira, W.N.; Duarte, J.B.; Chaves, L.J.; Pinheiro, J.B. Genotype-environment interaction in maize. Crop. Breed. Appl. Biotechnol. 2003, 3, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R.; Aemion, M.; Zadhasan, E.; Ahmadi, M.M.; Amri, A. The use of AMMI model for interpreting genotype x environment interaction in durum wheat. Exp. Agric. 2018, 54, 670–683. [Google Scholar] [CrossRef]
- Crossa, J. Statistical analyses of multi-location trials. Adv. Agron. 1990, 44, 55–85. [Google Scholar]
- Shaibu, A.S.; Adnan, A.A.; Jibrin, J.M. Stability performance of extra early maturing maize (Zea mays L.) varieties under high and low nitrogen environments in Sudan Savanna. Cogent. Food Agric. 2016, 2, 1231456. [Google Scholar] [CrossRef]
- VSN International. Available online: www.vsn-intl.com (accessed on 11 December 2020).
- Popović, V.; Glamočlija, Đ.; Malešević, M.; Ikanović, J.; Dražić, G.; Spasić, M.; Stanković, S. Genotype specificity in nitrogen nutrition of malting barley. Genetika 2011, 43, 197–204. [Google Scholar] [CrossRef]
- Vasileva, V.; Vasilev, V. Agronomic characterization and the possibility for potential use of subterranean clover (Trifolium subterraneum L.) in the forage production in Bulgaria. Pak. J. Bot. 2020, 52, 1–5. [Google Scholar] [CrossRef]
- Mitrović, B.; Stojaković, M.; Zorić, M.; Stanisavljević, D.; Bekavac, G.; Nastasić, A.; Mladenov, V. Genetic gains in grain yield, morphological traits and yield stability of middle-late maize hybrids released in Serbia between 1978 and 2011. Euphytica 2016, 211, 321–330. [Google Scholar] [CrossRef]
- Kang, M. Genotype-Environment Interaction and Stability Analyses: An Update. In Quantitative Genetics, Genomics and Plant Breeding; Kansas State University: Manhattan, KS, USA, 2020. [Google Scholar]
- Božović, D.; Popović, V.; Rajičić, V.; Kostić, M.; Filipović, V.; Kolarić, L.; Ugrenović, V.; Spalević, V. Stability of the expression of the maize productivity parameters by AMMI models and GGE-biplot analysis. Not. Bot. Horti. Agrobot. Cluj-Napoca. 2020, 48, 1387–1397. [Google Scholar] [CrossRef]
- Rad, M.R.N.; Kadir, M.A.; Rafii, M.Z.; Jaafar, H.Z.E.; Naghavi, M.R.; Ahmadi, F. Genotype × environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Aust. J. Crop. Sci. 2013, 7, 956–961. [Google Scholar]
- Popović, V.; Vučković, S.; Jovović, Z.; Ljubičić, N.; Kostić, M.; Rakaščan, N.; Glamočlija-Mladenović, M.; Ikanović, J. Genotype by year interaction effects on soybean morpho-productive traits and biogas production. Genetika 2020, 52, 1055–1073. [Google Scholar] [CrossRef]
- Branković-Radojčić, D.; Babić, V.; Girek, Z.; Živanović, T.; Radojĉić, A.; Filipović, M.; Srdić, J. Evaluation of maize grain yield and yield stability by AMMI analysis. Genetika 2018, 50, 1067–1080. [Google Scholar] [CrossRef]
- Ugrenović, V.; Popović, V.; Ugrinović, M.; Filipović, V.; Mačkić, K.; Ljubičić, N.; Popović, S.; Lakić, Ž. Black Oat (Avena strigosa Schreb.) Ontogenesis and Agronomic Performance in Organic Cropping System and Pannonian Environments. Agriculture 2021, 11, 55. [Google Scholar] [CrossRef]
- Knežević, D.; Radosavac, A.; Zelenika, M. Variability of grain weight per spike in wheat grown in different ecological conditions. Acta. Agric. Serbica 2015, 20, 85–951. [Google Scholar] [CrossRef]
- Protich, R.; Todorovich, G.; Protich, N. Grain weight per spike of wheat using different ways of seed protection. Bulg. J. Agric. Sci. 2012, 18, 185–190. [Google Scholar]
- Khan, F.U.; Mohammad, F.; Raziuddin, A.; Shah, Z.; Ahmad, M.; Shah, Z. Genotypic differences and genotype x nitrogen interactions for yield traits in bread wheat. J. Anim. Plant. Sci. 2017, 27, 1264–1268. [Google Scholar]
- Vlachostergios, D.N.; Roupakias, D.G. Response to conventional and organic environment of thirty-six lentil (Lens culinaris Medik.) varieties. Euphytica 2008, 163, 449–457. [Google Scholar] [CrossRef]
- Windhausen, V.S.; Wagener, S.; Magorokosho, C.; Makumbi, D.; Vivek, B.; Piepho, H.P.; Melchinger, A.E.; Atlin, G.N. Strategies to subdivide a target population of environments: Results from the CIMMYT-led maize hybrid testing programs in Africa. Crop. Sci. 2012, 52, 2143–2152. [Google Scholar] [CrossRef] [Green Version]
- White, E.M.; Wilson, F.E.A. Responses of grain yield, biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties. Ir. J. Agric. Food Res. 2006, 45, 85–101. [Google Scholar]
- Porker, K.; Straight, M.; Hunt, J.R. Evaluation of G × E × M Interactions to Increase Harvest Index and Yield of Early Sown Wheat. Front. Plant. Sci. 2020, 11, 994. [Google Scholar] [CrossRef]
- Tayyar, S. Grain yield and agronomic characteristics of Romanian bread wheat varieties under the conditions of Northwestern Turkey. Afr. J. Biotechnol. 2008, 7, 1479–1486. [Google Scholar]
- Vuković, N. Multivariate Analysis of Wheat Genotypes Grown on Meliorated Soil. Master’s Thesis, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia, 7 October 2009. [Google Scholar]
- Lakić, Ž.; Glamočlija, Đ.; Kondić, D.; Popović, V.; Pavlović, S. Fodder Plants and Cereals in the Function of Soil Protection from Degradation; Monograph: Banja Luka, Bosnia and Herzegovina, 2018; pp. 1–403. ISBN 978-99938-93-47-9. [Google Scholar]
- Kondić-Špika, A.; Mladenov, N.; Grahovac, N.; Zorić, M.; Mikic, S.; Trkulja, D.; Marjanović-Jeromela, A.; Miladinović, D.; Hristov, N. Biometric Analyses of Yield, Oil and Protein Contents of Wheat (Triticum aestivum L.) Genotypes in Different Environments. Agronomy 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.P.; Trethowan, R.; Crossa, J.; Vargas, M.; Sayre, K.D. Erratum to “Physiological factors associated with genotype by environment interaction in wheat”. Field Crop. Res. 2004, 85, 253–274. [Google Scholar] [CrossRef]
Environments Code | Growing Seasons | Treatments by Phosphogypsum |
---|---|---|
E1 | 2004/2005 | Control–non-ameliorated solonetz |
E2 | 2004/2005 | Solonetz ameliorated by 25 tha−1 phosphogypsum |
E3 | 2004/2005 | Solonetz ameliorated by 50 tha−1 phosphogypsum |
E4 | 2005/2006 | Control–non-ameliorated solonetz–control |
E5 | 2005/2006 | Solonetz ameliorated by 25 tha−1 phosphogypsum |
E6 | 2005/2006 | Solonetz ameliorated by 50 tha−1 phosphogypsum |
Parameter | pH | CaCO3 | Humus | Total N | P2O5 | K2O | Salt | |
---|---|---|---|---|---|---|---|---|
Depth (cm) | KCl | H2O | (%) | (%) | (%) | mg/100 g Soil | (%) | |
0–10 | 4.50 | 5.80 | 0.00 | 5.95 | 0.40 | 7.20 | 85.00 | 0.03 |
11–30 | 6.30 | 7.85 | 0.26 | 1.68 | 0.11 | 1.60 | 17.50 | 0.13 |
31–60 | 6.90 | 8.20 | 0.02 | 1.47 | 0.07 | 5.30 | 23.40 | 0.18 |
Plant Height (cm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | |||||||||||||
E | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | Em | IPCAe1 | V |
E1 | 61.0 | 59.9 | 60.3 | 66.9 | 65.6 | 68.6 | 65.5 | 64.6 | 63.9 | 59.3 | 63.5 | 1.184 | 73.4 |
E2 | 61.3 | 60.0 | 59.8 | 66.4 | 64.1 | 68.5 | 64.9 | 65.2 | 63.7 | 60.9 | 63.5 | 0.528 | 42.0 |
E3 | 60.3 | 58.9 | 58.0 | 64.5 | 61.2 | 67.1 | 63.0 | 64.7 | 62.2 | 61.5 | 62.1 | −0.209 | 86.8 |
E4 | 39.7 | 38.7 | 40.2 | 47.0 | 47.1 | 47.8 | 45.5 | 42.6 | 43.3 | 35.7 | 42.8 | 2.287 | 67.2 |
E5 | 57.5 | 56.0 | 53.3 | 59.6 | 54.0 | 63.5 | 58.1 | 63.0 | 58.2 | 62.4 | 58.6 | −1.952 | 39.6 |
E6 | 47.2 | 45.7 | 43.2 | 49.5 | 44.0 | 53.3 | 48.0 | 52.6 | 48.0 | 51.9 | 48.3 | −1.838 | 57.6 |
IPCAg1 | 0.4688 | −0.3468 | 0.6165 | 0.7413 | 2.1104 | 0.0333 | 0.7631 | −1.0834 | 0.2071 | −2.572 | 56.5 | 1.184 | 124.7 |
Gm | 54.5 | 53.2 | 52.4 | 59.0 | 56.0 | 61.5 | 57.5 | 58.8 | 56.5 | 55.3 |
Source 1 | df | SS | MS | F-Value | F-prob | The Share of Total Variation % |
---|---|---|---|---|---|---|
Total | 179 | 22,318 | 124.7 | - | - | |
Treatments | 59 | 14,588 | 247.3 | 4.81 ** | 0.0000 | 65.36 |
Genotypes | 9 | 1260 | 140 | 2.72 ** | 0.0067 | 8.64 |
Environments | 5 | 11,691 | 2338.1 | 12.89 ** | 0.0000 | 80.14 |
Block | 12 | 2176 | 181.3 | 3.53 ** | 0.0002 | 14.92 |
Interactions | 45 | 1638 | 36.4 | 0.71 ns | 0.9039 | 11.23 |
IPCA1 | 13 | 600 | 46.2 | 0.90 ns | 0.5579 | 36.63 |
IPCA2 | 11 | 476 | 43.3 | 0.84 ns | 0.5992 | 29.06 |
Residuals | 21 | 562 | 26.7 | 0.52 ns | 0.9567 | 3.85 |
Error | 108 | 5553 | 51.4 | - | - | - |
No. | E | Mean | IPCA | Genotypic Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
4 | E4 | 42.8 | 2.287 | G6 | G4 | G5 | G7 | G8 | G9 | G1 | G3 | G2 | G10 |
1 | E1 | 63.5 | 1.184 | G6 | G4 | G8 | G7 | G5 | G9 | G1 | G10 | G2 | G3 |
2 | E2 | 63.5 | 0.528 | G6 | G8 | G4 | G7 | G9 | G10 | G5 | G1 | G2 | G3 |
3 | E3 | 62.1 | −0.209 | G6 | G5 | G4 | G7 | G9 | G8 | G3 | G1 | G2 | G10 |
6 | E6 | 48.3 | −1.838 | G6 | G8 | G10 | G4 | G9 | G7 | G1 | G2 | G5 | G3 |
5 | E5 | 58.6 | −1.952 | G6 | G8 | G10 | G4 | G9 | G7 | G1 | G2 | G5 | G3 |
Grain Weight Per Plant (g) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | |||||||||||||
E | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | Em | IPCAe1 | V |
E1 | 5.78 | 6.13 | 5.69 | 6.28 | 6.41 | 7.53 | 7.44 | 7.15 | 6.59 | 6.10 | 6.51 | 0.3463 | 2.0 |
E2 | 6.24 | 5.35 | 5.55 | 6.32 | 7.09 | 7.08 | 6.58 | 6.05 | 6.97 | 6.28 | 6.35 | −0.6171 | 1.4 |
E3 | 6.67 | 4.78 | 5.50 | 6.41 | 7.70 | 6.78 | 5.96 | 5.23 | 7.35 | 6.49 | 6.29 | −1.3967 | 2.7 |
E4 | 3.20 | 3.78 | 3.22 | 3.78 | 3.79 | 5.11 | 5.10 | 4.86 | 4.02 | 3.57 | 4.04 | 0.5236 | 3.3 |
E5 | 5.31 | 6.40 | 5.57 | 6.06 | 5.80 | 7.59 | 7.74 | 7.61 | 6.15 | 5.79 | 6.40 | 0.9248 | 1.4 |
E6 | 4.90 | 5.09 | 4.73 | 5.35 | 5.56 | 6.53 | 6.38 | 6.38 | 5.70 | 5.18 | 5.55 | 0.2192 | 1.4 |
IPCAg1 | −0.636 | 0.6512 | −0.017 | −0.201 | −0.870 | 0.297 | 0.718 | 0.975 | −0.566 | −0.351 | 2.7 | ||
Gm | 5.35 | 5.25 | 5.04 | 5.70 | 6.06 | 6.77 | 6.53 | 6.16 | 6.13 | 5.57 |
Source 1 | df | SS | MS | F-Value | F-Prob | The Share of Total Variation % |
---|---|---|---|---|---|---|
Total | 179 | 488.4 | 2.728 | - | - | - |
Treatments | 59 | 284.1 | 4.816 | 3.04 ** | 0.0000 | 58.17 |
Genotypes | 9 | 52 | 5.773 | 3.64 ** | 0.0005 | 18.30 |
Environments | 5 | 136.1 | 27.23 | 9.85 ** | 0.0000 | 48.97 |
Block | 12 | 33.2 | 2.765 | 1.75 * | 0.0669 | 11.69 |
Interactions | 45 | 96 | 2.134 | 1.34 | 0.1074 | 33.79 |
IPCA 1 | 13 | 39.5 | 3.039 | 1.92 * | 0.0355 | 41.15 |
IPCA 2 | 11 | 27.1 | 2.46 | 1.55 | 0.1234 | 28.23 |
Residuals | 21 | 29.5 | 1.403 | 0.89 | 0.6093 | 10.38 |
Error | 108 | 171.1 | 1.584 | - | - | - |
No. | E | Mean | IPCA | Genotypic Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
5 | E5 | 6.40 | 0.9248 | G7 | G8 | G6 | G2 | G9 | G4 | G5 | G10 | G3 | G1 |
4 | E4 | 4.04 | 0.5236 | G6 | G7 | G8 | G9 | G5 | G2 | G4 | G10 | G3 | G1 |
1 | E1 | 6.51 | 0.3463 | G6 | G7 | G8 | G9 | G5 | G4 | G2 | G10 | G1 | G3 |
6 | E6 | 5.55 | 0.2192 | G6 | G7 | G8 | G9 | G5 | G4 | G10 | G2 | G1 | G3 |
2 | E2 | 6.35 | −0.6171 | G5 | G6 | G9 | G7 | G4 | G10 | G1 | G8 | G3 | G2 |
3 | E3 | 6.29 | −1.3967 | G5 | G9 | G6 | G1 | G10 | G4 | G7 | G3 | G8 | G2 |
Grain Yield Per m2 (g) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | |||||||||||||
E | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | Em | IPCAe1 | V |
E1 | 580.90 | 780.70 | 704.00 | 785.90 | 816.50 | 762.50 | 749.20 | 819.90 | 623.50 | 663.70 | 728.7 | 4.4755 | 20,653 |
E2 | 671.70 | 631.00 | 647.60 | 740.80 | 837.20 | 767.00 | 701.50 | 679.60 | 736.90 | 696.00 | 710.9 | −6.5731 | 17,808 |
E3 | 772.10 | 502.10 | 590.10 | 685.60 | 822.30 | 804.80 | 703.50 | 580.30 | 863.50 | 731.70 | 705.6 | −14.638 | 30,580 |
E4 | 448.00 | 384.10 | 322.60 | 375.70 | 367.90 | 632.60 | 631.50 | 535.80 | 538.90 | 423.30 | 466.0 | 4.5323 | 34,238 |
E5 | 638.10 | 708.10 | 599.50 | 648.60 | 610.40 | 865.30 | 889.40 | 848.80 | 715.10 | 648.40 | 717.2 | 10.0010 | 15,810 |
E6 | 566.70 | 573.20 | 524.20 | 592.90 | 616.40 | 731.90 | 714.30 | 675.40 | 640.20 | 578.90 | 621.4 | 2.2030 | 15,536 |
IPCAg1 | −5.8809 | 7.8640 | −0.1107 | −1.9985 | −9.1038 | 2.0113 | 7.1011 | 10.4235 | −6.4573 | −3.8487 | 658.3 | 0.0000 | 30,483 |
Gm | 612.90 | 596.50 | 564.70 | 638.20 | 678.40 | 760.70 | 731.60 | 690.00 | 686.30 | 623.70 |
Source 1 | df | SS | MS | F-Value | F-prob | The Share of Total Variation % |
---|---|---|---|---|---|---|
Total | 179 | 5,456,441 | 30,483 | * | * | |
Treatments | 59 | 3,351,528 | 56,806 | 3.60 ** | 0.0000 | 61.40 |
Genotypes | 9 | 617,250 | 68,583 | 4.35 ** | 0.0001 | 18.45 |
Environments | 5 | 1,552,340 | 310,468 | 9.26 ** | 0.0000 | 46.30 |
Block | 12 | 402,215 | 33,518 | 2.13 * | 0.0208 | 12.00 |
Interactions | 45 | 1,181,937 | 26,265 | 1.67 ** | 0.0168 | 35.20 |
IPCA1 | 13 | 487,088 | 37,468 | 2.38 ** | 0.0077 | 41.21 |
IPCA2 | 11 | 346,349 | 31,486 | 2.00 * | 0.0354 | 29.30 |
Residuals | 21 | 348,501 | 16,595 | 1.05 | 0.4098 | 10.40 |
Error | 108 | 1,702,698 | 15,766 | * | * | - |
No. | E | Mean | IPCA | Genotypic Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g) | Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
5 | E5 | 717.20 | 10.0010 | G7 | G6 | G8 | G9 | G2 | G4 | G10 | G1 | G5 | G3 |
4 | E4 | 466.00 | 4.5320 | G6 | G7 | G9 | G8 | G1 | G10 | G2 | G4 | G5 | G3 |
1 | E1 | 728.70 | 4.4760 | G8 | G5 | G4 | G2 | G6 | G7 | G3 | G10 | G9 | G1 |
6 | E6 | 621.40 | 2.2030 | G6 | G7 | G8 | G9 | G5 | G4 | G10 | G2 | G1 | G3 |
2 | E2 | 710.90 | −6.5730 | G5 | G6 | G4 | G9 | G7 | G10 | G8 | G1 | G3 | G2 |
3 | E3 | 705.60 | −14.6390 | G9 | G5 | G6 | G1 | G10 | G7 | G4 | G3 | G8 | G2 |
Harvest Index (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes (G) | |||||||||||||
E | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | Em | IPCAe1 | V |
E1 | 0.51 | 0.50 | 0.52 | 0.54 | 0.51 | 0.51 | 0.49 | 0.53 | 0.51 | 0.54 | 0.51 | 0.1303 | 0.001 |
E2 | 0.51 | 0.46 | 0.48 | 0.51 | 0.51 | 0.52 | 0.49 | 0.50 | 0.51 | 0.53 | 0.50 | 0.0342 | 0.003 |
E3 | 0.50 | 0.44 | 0.46 | 0.48 | 0.50 | 0.52 | 0.49 | 0.47 | 0.51 | 0.51 | 0.49 | −0.0395 | 0.003 |
E4 | 0.46 | 0.27 | 0.29 | 0.32 | 0.44 | 0.51 | 0.45 | 0.31 | 0.48 | 0.42 | 0.40 | −0.4241 | 0.021 |
E5 | 0.48 | 0.47 | 0.49 | 0.51 | 0.48 | 0.48 | 0.46 | 0.50 | 0.48 | 0.52 | 0.49 | 0.1592 | 0.002 |
E6 | 0.49 | 0.48 | 0.50 | 0.52 | 0.49 | 0.49 | 0.48 | 0.51 | 0.49 | 0.53 | 0.50 | 0.1399 | 0.002 |
PCAg1 | −0.127 | 0.188 | 0.1867 | 0.1703 | −0.0910 | −0.2039 | −0.1433 | 0.1728 | −0.168 | 0.0153 | 0.48 | 0.007 | |
Gm | 0.49 | 0.44 | 0.46 | 0.48 | 0.49 | 0.51 | 0.48 | 0.47 | 0.49 | 0.51 |
Source 1 | df | SS | MS | F-Value | F-prob | The Share of Total Variation % |
---|---|---|---|---|---|---|
Total | 179 | 1.196 | 0.00668 | * | * | |
Treatments | 59 | 0.5794 | 0.00982 | 2.59 ** | 0.00001 | 48.44 |
Genotypes | 9 | 0.0779 | 0.00866 | 2.28 * | 0.02199 | 13.44 |
Environments | 5 | 0.2732 | 0.05463 | 3.17 ** | 0.01043 | 47.15 |
Block | 12 | 0.2069 | 0.01724 | 4.55 ** | 0.00001 | 35.71 |
Interactions | 45 | 0.2283 | 0.00507 | 1.35 * | 0.11293 | 39.40 |
IPCA 1 | 13 | 0.1793 | 0.01379 | 3.64 ** | 0.00009 | 78.54 |
IPCA 2 | 11 | 0.0281 | 0.00255 | 0.67 | 0.76147 | 12.31 |
Residuals | 21 | 0.0209 | 0.00100 | 0.26 | 0.99953 | 3.61 |
Error | 108 | 0.4097 | 0.00379 | * | * |
Number | E | Mean | IPCA | Genotypic Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | Score | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
5 | E5 | 0.4883 | 0.1592 | G10 | G8 | G4 | G6 | G7 | G2 | G3 | G1 | G9 | G5 |
6 | E6 | 0.4973 | 0.1399 | G10 | G4 | G8 | G6 | G3 | G9 | G1 | G5 | G2 | G7 |
1 | E1 | 0.5147 | 0.1303 | G10 | G4 | G8 | G6 | G3 | G9 | G1 | G5 | G7 | G2 |
2 | E2 | 0.5007 | 0.0343 | G9 | G5 | G1 | G10 | G4 | G3 | G6 | G8 | G7 | G2 |
3 | E3 | 0.4873 | −0.0396 | G9 | G5 | G1 | G10 | G6 | G4 | G3 | G7 | G8 | G2 |
4 | E4 | 0.396 | −0.4241 | G6 | G9 | G7 | G1 | G5 | G10 | G4 | G8 | G3 | G2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah, S.; Janković, S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants 2021, 10, 604. https://doi.org/10.3390/plants10030604
Ljubičić N, Popović V, Ćirić V, Kostić M, Ivošević B, Popović D, Pandžić M, El Musafah S, Janković S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants. 2021; 10(3):604. https://doi.org/10.3390/plants10030604
Chicago/Turabian StyleLjubičić, Nataša, Vera Popović, Vladimir Ćirić, Marko Kostić, Bojana Ivošević, Dragana Popović, Miloš Pandžić, Seddiq El Musafah, and Snežana Janković. 2021. "Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions" Plants 10, no. 3: 604. https://doi.org/10.3390/plants10030604
APA StyleLjubičić, N., Popović, V., Ćirić, V., Kostić, M., Ivošević, B., Popović, D., Pandžić, M., El Musafah, S., & Janković, S. (2021). Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants, 10(3), 604. https://doi.org/10.3390/plants10030604