Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Biochemical Parameters in Response to Nitrate
2.2. Proteomic Analysis of M4 Root System
2.2.1. Functional Distribution of the Identified Proteins
2.2.2. Proteomic Changes Involved in Nitrogen Acquisition and in Carbon and Energy Metabolism
2.2.3. Proteomic Changes Involved in Protein and Amino Acid Metabolism
2.2.4. Other Biochemical Functions Affected by Nitrate Resupply
3. Materials and Methods
3.1. Plant Material and Nutritional Treatments
3.2. Determination of the Contents of Nitrate, Amino Acids, Sucrose and Reducing Sugars
3.3. Protein Extraction
3.4. Immunoblot Analyses
3.5. Gel Electrophoresis and In-gel Digestion
3.6. Mass Spectrometry Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6-Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Keller, M., Ed.; Academic Press: Boston, MA, USA, 2015; ISBN 878-0-12-419987-3. [Google Scholar]
- Keller, M.; Kummer, M.; Vasconcelos, M.C. Reproductive Growth of Grapevines in Response to Nitrogen Supply and Rootstock. Aust. J. Grape Wine Res. 2001, 7, 12–18. [Google Scholar] [CrossRef]
- Bell, S.-J.; Henschke, P.A. Implications of Nitrogen Nutrition for Grapes, Fermentation and Wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Gachons, C.P.; Leeuwen, C.V.; Tominaga, T.; Soyer, J.-P.; Gaudillère, J.-P.; Dubourdieu, D. Influence of Water and Nitrogen Deficit on Fruit Ripening and Aroma Potential of Vitis vinifera L cv Sauvignon Blanc in Field Conditions. J. Sci. Food Agr. 2005, 85, 73–85. [Google Scholar] [CrossRef]
- Soubeyrand, E.; Basteau, C.; Hilbert, G.; van Leeuwen, C.; Delrot, S.; Gomès, E. Nitrogen Supply Affects Anthocyanin Biosynthetic and Regulatory Genes in Grapevine cv. Cabernet-Sauvignon Berries. Phytochemistry 2014, 103, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Lecourt, J.; Lauvergeat, V.; Ollat, N.; Vivin, P.; Cookson, S.J. Shoot and Root Ionome Responses to Nitrate Supply in Grafted Grapevines Are Rootstock Genotype Dependent. Aust. J. Grape Wine Res. 2015, 21, 311–318. [Google Scholar] [CrossRef]
- Habran, A.; Commisso, M.; Helwi, P.; Hilbert, G.; Negri, S.; Ollat, N.; Gomès, E.; van Leeuwen, C.; Guzzo, F.; Delrot, S. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossdeutsch, L.; Schreiner, R.P.; Skinkis, P.A.; Deluc, L. Nitrate Uptake and Transport Properties of Two Grapevine Rootstocks with Varying Vigor. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef]
- Zapata, C.; Deléens, E.; Chaillou, S.; Magné, C. Partitioning and Mobilization of Starch and N Reserves in Grapevine (Vitis Vinifera L.). J. Plant Physiol. 2004, 161, 1031–1040. [Google Scholar] [CrossRef]
- Grechi, I.; Vivin, P.H.; Hilbert, G.; Milin, S.; Robert, T.; Gaudillère, J.-P. Effect of Light and Nitrogen Supply on Internal C:N Balance and Control of Root-to-Shoot Biomass Allocation in Grapevine. Environ. Exp. Bot. 2007, 59, 139–149. [Google Scholar] [CrossRef]
- Metay, A.; Magnier, J.; Guilpart, N.; Christophe, A. Nitrogen Supply Controls Vegetative Growth, Biomass and Nitrogen Allocation for Grapevine (cv. Shiraz) Grown in Pots. Funct. Plant Biol. 2015, 42, 105–114. [Google Scholar] [CrossRef]
- Ferrara, G.; Malerba, A.D.; Matarrese, A.M.S.; Mondelli, D.; Mazzeo, A. Nitrogen Distribution in Annual Growth of ‘Italia’ Table Grape Vines. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrignon-Brenas, S.; Aurélie, M.; Romain, L.; Shiva, G.; Alana, F.; Myriam, D.; Gaëlle, R.; Anne, P. Gradual Responses of Grapevine Yield Components and Carbon Status to Nitrogen Supply. OENO One 2019. [Google Scholar] [CrossRef]
- Jiménez, S.; Gogorcena, Y.; Hévin, C.; Rombolà, A.D.; Ollat, N. Nitrogen Nutrition Influences Some Biochemical Responses to Iron Deficiency in Tolerant and Sensitive Genotypes of Vitis. Plant Soil 2007, 290, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Kulmann, M.S.; Sete, P.B.; Paula, B.V.; Stefanello, L.O.; Schwalbert, R.; Schwalbert, R.A.; Arruda, W.S.; Sans, G.A.; Parcianello, C.F.; Nicoloso, F.T.; et al. Kinetic Parameters Govern of the Uptake of Nitrogen Forms in ‘Paulsen’ and ‘Magnolia’ Grapevine Rootstocks. Sci. Hortic. 2020, 264, 109174. [Google Scholar] [CrossRef]
- Miller, A.J.; Fan, X.; Orsel, M.; Smith, S.J.; Wells, D.M. Nitrate Transport and Signalling. J. Exp. Bot. 2007, 58, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Hsu, P.-K.; Tsay, Y.-F. Uptake, Allocation and Signaling of Nitrate. Trends Plant Sci. 2012, 17, 458–467. [Google Scholar] [CrossRef]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant Nitrate Transporters: From Gene Function to Application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef]
- Pii, Y.; Alessandrini, M.; Guardini, K.; Zamboni, A.; Varanini, Z. Induction of High-Affinity NO3– Uptake in Grapevine Roots Is an Active Process Correlated to the Expression of Specific Members of the NRT2 and Plasma Membrane H+-ATPase Gene Families. Funct. Plant Biol. 2014, 41, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, N.; Monte, R.; Varanini, Z.; Cesco, S.; Pinton, R. Induction of Nitrate Uptake in Sauvignon Blanc and Chardonnay Grapevines Depends on the Scion and Is Affected by the Rootstock. Aust. J. Grape Wine Res. 2015, 21, 331–338. [Google Scholar] [CrossRef]
- Loulakakis, K.A.; Morot-Gaudry, J.F.; Velanis, C.N.; Skopelitis, D.S.; Moschou, P.N.; Hirel, B.; Roubelakis-Angelakis, K.A. Advancements in Nitrogen Metabolism in Grapevine. In Grapevine Molecular Physiology & Biotechnology; Roubelakis-Angelakis, K.A., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 161–205. [Google Scholar] [CrossRef]
- Zerihun, A.; Treeby, M.T. Biomass Distribution and Nitrate Assimilation in Response to N Supply for Vitis vinifera L. cv. Cabernet Sauvignon on Five Vitis Rootstock Genotypes. Aust. J. Grape Wine Res. 2002, 8, 157–162. [Google Scholar] [CrossRef]
- Lang, C.P.; Merkt, N.; Zörb, C. Different Nitrogen (N) Forms Affect Responses to N Form and N Supply of Rootstocks and Grafted Grapevines. Plant Sci. 2018, 277, 311–321. [Google Scholar] [CrossRef]
- Lang, C.P.; Bárdos, G.; Merkt, N.; Zörb, C. Expression of Key Enzymes for Nitrogen Assimilation in Grapevine Rootstock in Response to N-Form and Timing. J. Plant Nutr. Soil Sci. 2020, 183, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Scheible, W.-R.; Morcuende, R.; Czechowski, T.; Fritz, C.; Osuna, D.; Palacios-Rojas, N.; Schindelasch, D.; Thimm, O.; Udvardi, M.K.; Stitt, M. Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiol. 2004, 136, 2483–2499. [Google Scholar] [CrossRef] [Green Version]
- Nunes-Nesi, A.; Fernie, A.R.; Stitt, M. Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Mol. Plant 2010, 3, 973–996. [Google Scholar] [CrossRef]
- Cochetel, N.; Escudié, F.; Cookson, S.J.; Dai, Z.; Vivin, P.; Bert, P.-F.; Muñoz, M.S.; Delrot, S.; Klopp, C.; Ollat, N.; et al. Root Transcriptomic Responses of Grafted Grapevines to Heterogeneous Nitrogen Availability Depend on Rootstock Genotype. J. Exp. Bot. 2017, 68, 4339–4355. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Okamoto, M.; Xing, X.; Crawford, N.M. Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1000 Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate Metabolism. Plant Physiol. 2003, 132, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejay, L.; Wirth, J.; Pervent, M.; Cross, J.M.-F.; Tillard, P.; Gojon, A. Oxidative Pentose Phosphate Pathway-Dependent Sugar Sensing as a Mechanism for Regulation of Root Ion Transporters by Photosynthesis. Plant Physiol. 2008, 146, 2036–2053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meggio, F.; Prinsi, B.; Negri, A.S.; Lorenzo, G.S.D.; Lucchini, G.; Pitacco, A.; Failla, O.; Scienza, A.; Cocucci, M.; Espen, L. Biochemical and Physiological Responses of Two Grapevine Rootstock Genotypes to Drought and Salt Treatments. Aust. J. Grape Wine Res. 2014, 20, 310–323. [Google Scholar] [CrossRef]
- Corso, M.; Vannozzi, A.; Maza, E.; Vitulo, N.; Meggio, F.; Pitacco, A.; Telatin, A.; D’Angelo, M.; Feltrin, E.; Negri, A.S.; et al. Comprehensive Transcript Profiling of Two Grapevine Rootstock Genotypes Contrasting in Drought Susceptibility Links the Phenylpropanoid Pathway to Enhanced Tolerance. J. Exp. Bot. 2015, 66, 5739–5752. [Google Scholar] [CrossRef]
- Prinsi, B.; Negri, A.S.; Failla, O.; Scienza, A.; Espen, L. Root Proteomic and Metabolic Analyses Reveal Specific Responses to Drought Stress in Differently Tolerant Grapevine Rootstocks. BMC Plant Biol. 2018, 18, 126. [Google Scholar] [CrossRef] [PubMed]
- Prinsi, B.; Failla, O.; Scienza, A.; Espen, L. Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress. Int. J. Mol. Sci. 2020, 21, 1076. [Google Scholar] [CrossRef] [Green Version]
- Prinsi, B.; Simeoni, F.; Galbiati, M.; Meggio, F.; Tonelli, C.; Scienza, A.; Espen, L. Grapevine Rootstocks Differently Affect Physiological and Molecular Responses of the Scion under Water Deficit Condition. Agronomy 2021, 11, 289. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant Nitrogen Assimilation and Use Efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, J.M.; Washburn, M.P. Advances in Shotgun Proteomics and the Analysis of Membrane Proteomes. J. Proteom. 2010, 73, 2078–2091. [Google Scholar] [CrossRef]
- Schwacke, R.; Ponce-Soto, G.Y.; Krause, K.; Bolger, A.M.; Arsova, B.; Hallab, A.; Gruden, K.; Stitt, M.; Bolger, M.E.; Usadel, B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. Mol. Plant 2019, 12, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Canales, J.; Moyano, T.C.; Villarroel, E.; Gutiérrez, R.A. Systems Analysis of Transcriptome Data Provides New Hypotheses about Arabidopsis Root Response to Nitrate Treatments. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Prinsi, B.; Espen, L. Time-Course of Metabolic and Proteomic Responses to Different Nitrate/Ammonium Availabilities in Roots and Leaves of Maize. Int. J. Mol. Sci. 2018, 19, 2202. [Google Scholar] [CrossRef] [Green Version]
- Bernard, S.M.; Habash, D.Z. The Importance of Cytosolic Glutamine Synthetase in Nitrogen Assimilation and Recycling. New Phytol. 2009, 182, 608–620. [Google Scholar] [CrossRef]
- Stitt, M. Nitrate Regulation of Metabolism and Growth. Curr. Opin. Plant Biol. 1999, 2, 178–186. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An Overview of Sucrose Synthases in Plants. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.-L.; Li, J.-Y.; Wang, M.-J.; Song, Z.-T.; Liu, J.-X. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. Mol. Plant 2021, 14, 95–114. [Google Scholar] [CrossRef] [PubMed]
- Kohli, A.; Narciso, J.O.; Miro, B.; Raorane, M. Root Proteases: Reinforced Links between Nitrogen Uptake and Mobilization and Drought Tolerance. Physiol. Plant. 2012, 145, 165–179. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Garvin, D.F.; Kochian, L.V. Nitrate-Induced Genes in Tomato Roots. Array Analysis Reveals Novel Genes That May Play a Role in Nitrogen Nutrition. Plant Physiol. 2001, 127, 345–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-C.; Kim, Y.-H.; Jeong, J.C.; Kim, C.Y.; Lee, H.-S.; Bang, J.-W.; Kwak, S.-S. Sweetpotato Late Embryogenesis Abundant 14 (IbLEA14) Gene Influences Lignification and Increases Osmotic- and Salt Stress-Tolerance of Transgenic Calli. Planta 2011, 233, 621–634. [Google Scholar] [CrossRef]
- Yu, P.; Li, X.; Yuan, L.; Li, C. A Novel Morphological Response of Maize (Zea mays) Adult Roots to Heterogeneous Nitrate Supply Revealed by a Split-Root Experiment. Physiol. Plant. 2014, 150, 133–144. [Google Scholar] [CrossRef]
- Vega, A.; O’Brien, J.A.; Gutiérrez, R.A. Nitrate and Hormonal Signaling Crosstalk for Plant Growth and Development. Curr. Opin. Plant Biol. 2019, 52, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Kose, C.; Erdal, S.; Kaya, O.; Atici, O. Comparative Evaluation of Oxidative Enzyme Activities during Adventitious Rooting in the Cuttings of Grapevine Rootstocks. J. Sci. Food Agr. 2011, 91, 738–741. [Google Scholar] [CrossRef]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of Secondary Metabolism by the Carbon–Nitrogen Status in Tobacco: Nitrate Inhibits Large Sectors of Phenylpropanoid Metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef]
- He, F.; Mu, L.; Yan, G.-L.; Liang, N.-N.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules 2010, 15, 9057–9091. [Google Scholar] [CrossRef] [Green Version]
- Larbat, R.; Bot, J.L.; Bourgaud, F.; Robin, C.; Adamowicz, S. Organ-Specific Responses of Tomato Growth and Phenolic Metabolism to Nitrate Limitation. Plant Biol. 2012, 14, 760–769. [Google Scholar] [CrossRef]
- Prinsi, B.; Negrini, N.; Morgutti, S.; Espen, L. Nitrogen Starvation and Nitrate or Ammonium Availability Differently Affect Phenolic Composition in Green and Purple Basil. Agronomy 2020, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Schmidlin, L.; Poutaraud, A.; Claudel, P.; Mestre, P.; Prado, E.; Santos-Rosa, M.; Wiedemann-Merdinoglu, S.; Karst, F.; Merdinoglu, D.; Hugueney, P. A Stress-Inducible Resveratrol O-Methyltransferase Involved in the Biosynthesis of Pterostilbene in Grapevine. Plant Physiol. 2008, 148, 1630–1639. [Google Scholar] [CrossRef] [Green Version]
- Ramawat, K.G.; Goyal, S. Co-Evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview. In Co-Evolution of Secondary Metabolites; Merillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Germany, 2019; pp. 1–15. [Google Scholar] [CrossRef]
- González, J.F.; Venturi, V. A Novel Widespread Interkingdom Signaling Circuit. Trends Plant Sci. 2013, 18, 167–174. [Google Scholar] [CrossRef]
- Di, C.; Xu, W.; Su, Z.; Yuan, J.S. Comparative Genome Analysis of PHB Gene Family Reveals Deep Evolutionary Origins and Diverse Gene Function. BMC Bioinform. 2010, 11, S22. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, L.; Chen, X.; Ye, T.; Zhong, B.; Liu, R.; Wu, Y.; Chan, Z. Major Latex Protein-like Protein 43 (MLP43) Functions as a Positive Regulator during Abscisic Acid Responses and Confers Drought Tolerance in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Konopka-Postupolska, D.; Clark, G.; Hofmann, A. Structure, Function and Membrane Interactions of Plant Annexins: An Update. Plant Sci. 2011, 181, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.S.; Ok, S.H.; Jeong, B.-C.; Jung, K.W.; Cui, M.H.; Hyoung, S.; Lee, M.-R.; Song, H.K.; Shin, J.S. Single Cystathionine β-Synthase Domain–Containing Proteins Modulate Development by Regulating the Thioredoxin System in Arabidopsis. Plant Cell 2011, 23, 3577–3594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in Plants: An Integrated Overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid Colorimetric Determination of Nitrate in Plant Tissue by Nitration of Salicylic Acid. Commun. Soil Sci. Plant 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Moore, S.; Stein, W.H. A Modified Ninhydrin Reagent for the Photometric Determination of Amino Acids and Related Compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef]
- Nelson, N. A Photometric Adaptation of the Somogyi Method for the Determination of Glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Prinsi, B.; Negri, A.S.; Pesaresi, P.; Cocucci, M.; Espen, L. Evaluation of Protein Pattern Changes in Roots and Leaves of Zea mays plants in Response to Nitrate Availability by Two-Dimensional Gel Electrophoresis Analysis. BMC Plant Biol. 2009, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange Provides Globally Co-Ordinated Proteomics Data Submission and Dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef] [PubMed]
# | Accession Number | UIP | Score | Protein Name | Δ (nit/con) | s |
---|---|---|---|---|---|---|
Carbon and energy metabolism (1, 2, 3) | ||||||
28 | A5B118 | 12 | 167.9 | Fructose-bisphosphate aldolase | 2.01 | * |
23 | A5CAF6 | 12 | 191.3 | Phosphoglycerate kinase | 1.83 | * |
122 | F6I1P0 | 6 | 80.5 | Pyruvate dehydrogenase E1 component subunit beta | 0.22 | ** |
251 | A5AY34 | 4 | 45.9 | Oxidored_q6 domain-containing protein | 4.34 | * |
2 | A5AYU8 | 18 | 330.6 | ATP synthase subunit beta | 0.63 | ** |
150 | D7T300 | 6 | 54.9 | ATP synthase subunit O, mitochondrial I a | new | * |
14 | F6HGZ9 | 14 | 160.9 | Sucrose synthase | new | * |
257 | Q1PSI9 | 4 | 43.7 | L-idonate 5-dehydrogenase | 15.59 | ** |
323 | A0A438D9B1 | 3 | 36.8 | Glucose-6-phosphate 1-dehydrogenase | new | ** |
169 | A0A438HWY8 | 5 | 66.2 | Probable 6-phosphogluconolactonase | 0.29 | * |
64 | F6HGH4 | 8 | 120.0 | 6-phosphogluconate dehydrogenase, decarboxylating | 9.40 | ** |
239 | D7TJI9 | 4 | 50.4 | Pyruvate decarboxylase | 0.34 | ** |
77 | F6HUI7 | 8 | 88.3 | RmlD_sub_bind domain-containing protein | 3.34 | * |
Cell wall (21) | ||||||
131 | A0A438KK24 | 6 | 75.1 | Caffeoyl-CoA O-methyltransferase | 0.36 | ** |
54 | F6GSZ7 | 9 | 119.1 | Omega-hydroxypalmitate O-feruloyl transferase a | 0.63 | * |
Amino acid metabolism (4) | ||||||
3 | F6HMN8 | 18 | 266.7 | 5-methyltetrahydropteroyltriglutamate--homocysteine S-methyltransferase | 2.90 | * |
73 | A0A438GBL8 | 8 | 106.4 | Acetohydroxy-acid reductoisomerase | 6.64 | * |
30 | F6I5Y5 | 12 | 159.3 | D-3-phosphoglycerate dehydrogenase | 1.66 | * |
140 | F6H0X2 | 6 | 67.6 | Phospho-2-dehydro-3-deoxyheptonate aldolase | 2.39 | ** |
Lipid metabolism (5) | ||||||
51 | F6I1D6 | 9 | 142.9 | Non-specific phospholipase C3 a | 0.52 | ** |
462 | A0A438FDG5 | 2 | 20.2 | Enoyl-CoA delta isomerase 3 | 1.63 | * |
Secondary metabolism (9) | ||||||
173 | F6HHQ7 | 5 | 65.2 | Putative acetyl-CoA acetyltransferase, cytosolic 2 a | 0.39 | * |
314 | A0A024FS61 | 3 | 39.3 | Polyphenol_oxidase | 4.73 | * |
415 | A0A438ESC9 | 2 | 25.1 | 3-isopropylmalate dehydratase small subunit 3 | 0.09 | * |
86 | F6I076 | 7 | 107.7 | CN hydrolase domain-containing protein | 0.05 | ** |
Redox homeostasis (10) | ||||||
185 | G1JT87 | 5 | 59.7 | Glutaredoxin-dependent peroxiredoxin | 0.41 | * |
269 | D7T6T0 | 4 | 39.8 | Glutaredoxin-dependent peroxiredoxin | 4.16 | * |
330 | A9UFY2 | 3 | 36.1 | Thioredoxin h-type | 0.45 | * |
Enzymes/Coenzyme metabolism (50, 7) | ||||||
136 | D7TKJ3 | 6 | 71.1 | Ferredoxin-NADP reductase, chloroplastic | new | ** |
148 | D7SNB1 | 6 | 58.9 | Salutaridine reductase a | 0.41 | * |
11 | K9N4H5 | 14 | 213.1 | Mitochondrial aldehyde dehydrogenase 2B8 | 0.65 | * |
119 | A5BHH9 | 6 | 80.8 | NADH-cytochrome b5 reductase | 0.29 | * |
41 | F6H5H5 | 10 | 156.0 | Trans-resveratrol di-O-methyltransferase a | 1.63 | ** |
458 | A0A438CVH9 | 2 | 20.5 | UDP-glycosyltransferase 74F2 | 7.77 | * |
105 | A0A438KGT6 | 6 | 98.7 | Glucan endo-1,3-beta-D-glucosidase | 0.27 | ** |
151 | A0A438ITG1 | 5 | 93.1 | Putative cysteine protease RD21B | 0.36 | ** |
81 | A0A438EKJ2 | 7 | 116.9 | Phosphopyruvate hydratase (synonym: Enolase) | 2.28 | ** |
154 | A0A438D2Y0 | 5 | 83.1 | Phosphoglycerate mutase | 2.00 | ** |
38 | F6GTM7 | 11 | 160.1 | Adenosylhomocysteinase | 4.96 | * |
DNA/RNA/Cell cycle (6, 12, 13, 16) | ||||||
280 | A5B6U5 | 4 | 34.5 | Proliferating cell nuclear antigen | 0.05 | * |
378 | F6GSZ1 | 2 | 31.5 | RRM domain-containing protein | 0.61 | * |
Protein (17,18,19,23) | ||||||
300 | A5AXI6 | 3 | 43.0 | 60S acidic ribosomal protein P0 | 24.11 | ** |
126 | A5BUU4 | 6 | 78.2 | 40S ribosomal protein SA | 4.43 | ** |
217 | A5C4J2 | 4 | 58.0 | 40S ribosomal protein S19-3 a | 2.38 | * |
443 | A5AJ83 | 2 | 22.4 | Ribosomal_S10 domain-containing protein | 4.27 | * |
135 | A0A438KA42 | 6 | 72.8 | Guanine nucleotide-binding protein subunit beta-like protein | 3.44 | ** |
375 | F6HLE8 | 2 | 33.4 | Ribosomal_S7 domain-containing protein | 3.47 | * |
171 | A0A438C2W6 | 5 | 65.7 | Aspartate-tRNA ligase | 2.44 | * |
37 | F6HXZ5 | 11 | 164.6 | Eukaryotic initiation factor 4A-2 a | 2.50 | ** |
407 | F6GTY8 | 2 | 26.2 | Tr-type G domain-containing protein | 10.31 | ** |
149 | A0A438CSH7 | 6 | 57.0 | Elongation factor 1-gamma | new | * |
128 | F6H4T7 | 6 | 77.2 | Tr-type G domain-containing protein | 20.06 | ** |
346 | A0A438JTD3 | 3 | 33.5 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit | new | * |
44 | D7TBD9 | 10 | 143.7 | Alpha-MPP | 0.39 | * |
99 | A5ANH8 | 7 | 82.5 | Probable mitochondrial-processing peptidase subunit beta, mitochondrial a | 3.78 | * |
176 | A0A438DUK9 | 5 | 63.2 | Protein disulfide-isomerase | 13.28 | ** |
335 | A0A438K994 | 3 | 35.3 | Citrulline-aspartate ligase | 7.32 | ** |
47 | D7SIX7 | 10 | 128.0 | Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform a | 0.56 | * |
108 | A0A438G7L8 | 6 | 97.4 | Glutathione S-transferase U10 | 2.49 | * |
337 | F6I510 | 3 | 34.9 | Putative glutathione S-transferase parC a | 2.94 | * |
448 | F6GT86 | 2 | 21.5 | Glutathione S-transferase a | 4.05 | * |
232 | A0A438KHW4 | 4 | 53.1 | Glutathione transferase | 1.65 | * |
452 | F6HYG1 | 2 | 21.4 | Heat shock 70 kDa protein 15-like a | new | * |
1 | F6HNX5 | 20 | 361.7 | Putative heat shock cognate protein 2 a | 2.04 | ** |
370 | A0A438K358 | 2 | 38.1 | Hsp70-Hsp90 organizing protein 1 | new | ** |
317 | A0A438D490 | 3 | 38.2 | Heat shock cognate protein 80 | new | * |
107 | D7SLM9 | 6 | 98.0 | RuBisCO large subunit-binding protein subunit beta, chloroplastic a | 5.54 | ** |
145 | F6GUM1 | 6 | 65.0 | E1 ubiquitin-activating enzyme | 6.77 | ** |
379 | A0A438J7X4 | 2 | 31.5 | Ubiquitin-conjugating enzyme E2-17 kDa | 1.48 | * |
147 | A0A438KGZ1 | 6 | 62.4 | Proteasome subunit beta | 0.52 | * |
420 | D7SKV3 | 2 | 24.4 | Proteasome subunit beta | 6.25 | * |
388 | A0A438EWK5 | 2 | 29.3 | 26S proteasome regulatory subunit 7 | 8.65 | * |
322 | F6HT17 | 3 | 36.9 | PCI domain-containing protein | 3.30 | * |
93 | A0A438JN39 | 7 | 93.2 | Serine carboxypeptidase-like 7 | 0.48 | * |
115 | D7T3Q1 | 6 | 85.9 | Glucose acyltransferase 1 a | 0.48 | ** |
195 | A5C1I0 | 5 | 57.1 | Carboxypeptidase | 0.71 | * |
26 | F6H7H1 | 12 | 172.6 | Aspartic proteinase A1 a | 0.56 | * |
396 | A0A438K8Z1 | 2 | 28.0 | Aminopeptidase | new | ** |
400 | A0A438EKP3 | 2 | 27.0 | Ankyrin repeat domain-containing protein 2A | 0.21 | * |
228 | A0A438JPS3 | 4 | 53.8 | GTP-binding nuclear protein Ran1B | 12.55 | ** |
Cytoskeleton organization (20) | ||||||
4 | A5ATG8 | 17 | 307.8 | Tubulin beta chain | 0.78 | * |
347 | A0A438F6R2 | 3 | 33.3 | T-complex protein 1 subunit gamma | 4.31 | ** |
Vesicle trafficking (22) | ||||||
144 | D7T9L8 | 6 | 65.0 | Coatomer subunit delta | 6.58 | ** |
Solute transport/Nutrient uptake (24, 25) | ||||||
306 | F6I0Z8 | 3 | 40.4 | Plasma membrane 22 aquaporin | 2.81 | ** |
203 | Q9FS46 | 4 | 70.6 | Putative aquaporin | 0.65 | ** |
216 | A5AQ65 | 4 | 58.1 | Mitochondrial outer membrane protein porin 2 a | 0.38 | ** |
325 | A0A438CTH2 | 3 | 36.5 | Mitochondrial outer membrane protein porin of 34 kDa | 0.43 | ** |
246 | A0A438FMR0 | 4 | 46.7 | Ferredoxin--nitrite reductase, chloroplastic | new | ** |
29 | A5AP38 | 12 | 162.2 | Glutamine synthetase (cytosolic a) | 0.65 | * |
321 | A0A438E3X6 | 3 | 37.1 | Ferritin | 10.77 | ** |
Phytohormone action/External stimuli response (11, 26) | ||||||
224 | F6H6V6 | 4 | 54.5 | Senescence-associated carboxylesterase 101 a | 4.18 | ** |
Not assigned-annotated (35.1) | ||||||
46 | A0A438KRJ6 | 10 | 138.5 | Annexin (D2 a) | 1.44 | ** |
403 | A0A438JYU9 | 2 | 26.9 | Dipeptide epimerase | 8.06 | ** |
76 | D7SJF5 | 8 | 95.2 | Cystathionine beta-synthase family protein a | 5.70 | ** |
158 | A5BM68 | 5 | 73.7 | TCTP domain-containing protein | 1.81 | * |
48 | A0A438J6W5 | 10 | 124.3 | Glutelin type-A 2 | 0.11 | ** |
230 | A0A438KKU7 | 4 | 53.6 | Stem-specific protein TSJT1 | 0.26 | ** |
89 | A0A438JUJ6 | 7 | 104.2 | MLP-like protein 34 | 1.49 | ** |
165 | A0A438JUL6 | 5 | 68.5 | MLP-like protein 43 | 3.25 | * |
42 | F6GTA6 | 10 | 147.7 | PHB domain-containing protein | 0.54 | ** |
91 | D7TNE5 | 7 | 97.3 | PHB domain-containing protein | 0.51 | * |
106 | A0A438J2L0 | 6 | 98.2 | Chalcone-flavonone isomerase family protein (synonim: Chalcone isomerase) | 0.61 | * |
110 | A0A438BSC8 | 6 | 92.9 | NAD(P)H dehydrogenase (quinone) | 0.40 | * |
215 | D7T2N7 | 4 | 59.9 | Late embryogenesis abundant protein Lea14-A, putative a | 0.58 | * |
265 | D7T3J3 | 4 | 41.3 | Proline iminopeptidase | 0.26 | ** |
289 | F6H6H8 | 3 | 48.8 | Glyco_hydro_18 domain-containing protein | d. | * |
387 | A5BM29 | 2 | 29.4 | NTF2 domain-containing protein | 0.11 | ** |
104 | D7T7N4 | 6 | 102.7 | RRM domain-containing protein | 0.28 | * |
112 | A0A438GQU3 | 6 | 91.0 | Kunitz trypsin inhibitor 2 | 0.02 | ** |
199 | A0A438IQU7 | 5 | 47.6 | Major allergen Pru ar 1 | d. | * |
180 | A0A438C6P2 | 5 | 62.0 | Plastid-lipid-associated protein, chloroplastic | 0.14 | * |
395 | A5AJB3 | 2 | 28.1 | Chitin-binding type-1 domain-containing protein | d. | * |
208 | A0A438JVD2 | 4 | 64.1 | Peroxidase | 0.42 | ** |
345 | F6HIK4 | 3 | 33.9 | Peroxidase | 4.52 | * |
Not assigned-not annotated (35.2) | ||||||
72 | A5C8L8 | 8 | 106.9 | Pyr_redox_2 domain-containing protein | 5.10 | ** |
95 | D7TA35 | 7 | 88.6 | Usp domain-containing protein | 4.39 | * |
273 | D7U4I8 | 4 | 38.5 | Usp domain-containing protein | d. | ** |
142 | A0A438JK35 | 6 | 66.9 | Bifunctional epoxide hydrolase 2 | 0.01 | * |
167 | A5AEX6 | 5 | 67.0 | DLH domain-containing protein | 0.75 | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinsi, B.; Muratore, C.; Espen, L. Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability. Plants 2021, 10, 792. https://doi.org/10.3390/plants10040792
Prinsi B, Muratore C, Espen L. Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability. Plants. 2021; 10(4):792. https://doi.org/10.3390/plants10040792
Chicago/Turabian StylePrinsi, Bhakti, Chiara Muratore, and Luca Espen. 2021. "Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability" Plants 10, no. 4: 792. https://doi.org/10.3390/plants10040792
APA StylePrinsi, B., Muratore, C., & Espen, L. (2021). Biochemical and Proteomic Changes in the Roots of M4 Grapevine Rootstock in Response to Nitrate Availability. Plants, 10(4), 792. https://doi.org/10.3390/plants10040792