Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality
Abstract
:1. Introduction
2. Results
2.1. Mycorrhization Percentage and Growth
2.2. Leaf Mineral Ontent
2.3. Water Relations
2.4. Gas Exchange
2.5. Phytohormones
2.6. Relationships between Physiological, Morphological and Ornamental Parameters
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Treatments
4.3. Fungal Colonization
4.4. Leaf Mineral Content
4.5. Biomass and Height
4.6. Water Relations
4.7. Gas Exchange and Thermography
4.8. Relative Chlorophyll Content
4.9. Hormonal Determination
4.10. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Blanco, M.J.; Álvarez, S.; Navarro, A.; Bañón, S. Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J. Plant. Physiol. 2009, 166, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, S.; Rodríguez, P.; Broetto, F.; Sánchez-Blanco, M.J. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agric. Water Manag. 2018, 202, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lozano, J.; Azcón, R.; Gomez, M. Effects of arbuscular mycorrhizal Glomus species on drought tolerance: Physiological and nutritional plant responses. Appl. Environ. Microb. 1995, 61, 456–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardukhi, B.; Rejali, F.; Daei, G. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C. R. Biol. 2011, 334, 564–571. [Google Scholar] [CrossRef]
- Smith, S.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008; ISBN 978-0-12-370526-6. [Google Scholar]
- Comandini, O.; Contu, M.; Rinaldi, A.C. An overview of Cistus ectomycorrhizal fungi. Mycorrhiza 2006, 16, 381–395. [Google Scholar] [CrossRef]
- Caravaca, F.; Alguacil, M.M.; Hernández, J.A.; Roldán, A. Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal Myrtus communis and Phillyrea angustifolia plants. Plant. Sci. 2005, 169, 191–197. [Google Scholar] [CrossRef]
- Ortuño, M.F.; Lorente, B.; Hernández, J.A.; Sánchez-Blanco, M.J. Combined effect of mycorrhizal inoculation and substrate on the plant- water relations, gas exchange, photosynthetic efficiency and nutrient content of Cistus albidus plants submitted to water stress. Braz. J. Bot. 2018, 41, 299–310. [Google Scholar] [CrossRef]
- Lehto, T.; Zwiazek, J.J. Ectomycorrhizas and water relations of trees: A review. Mycorrhiza 2011, 21, 71–90. [Google Scholar] [CrossRef]
- Lehto, T. Mycorrhizas and drought resistance of Picea sitchensis (bong) car. I. In conditions of nutrient deficiency. New Phytol. 1992, 122, 661–668. [Google Scholar] [CrossRef]
- Navarro-Ródenas, A.; Bárzana, G.; Nicolás, E.; Carra, A.; Schubert, A.; Morte, A. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol. Plant. Microbe Interact. 2013, 26, 1068–1078. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Kemppainen, M.; El Kayal, W.; Lee, S.H.; Pardo, A.G.; Cooke, J.E.; Zwiazek, J.J. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. New Phytol. 2015, 205, 757–770. [Google Scholar] [CrossRef]
- Muhsin, T.M.; Zwiazek, J.J. Colonization with Hebeloma crustuliniforme increases water conductance and limits shoot sodium uptake in white spruce (Picea glauca) seedlings. Plant. Soil 2002, 238, 217–225. [Google Scholar] [CrossRef]
- Bogeat-Triboulot, M.B.; Bartoli, F.; Garbaye, J.; Marmeisse, R.; Tagu, D. Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant. Soil 2004, 267, 213–223. [Google Scholar] [CrossRef]
- Carney, J.W.G.; Chambers, S.M. Interactions between Pisolithus tinctorius and its hosts: A review of current knowledge. Mycorrhiza 1997, 7, 117–131. [Google Scholar] [CrossRef]
- Marx, D.H.; Cordell, C.E. The use of specific ectomycorrhizas to improve artificial forestation practices. In Biotechnology of Fungi for Improving Plant Growth: Symposium of the British Mycological Society Held at the University of Sussex, United Kingdom, September 1988; Whipps, J.M., Lumsden, R.D., Eds.; Cambridge University Press: Cambridge, UK, 1989; pp. 1–25. [Google Scholar]
- Sebastiana, M.; Pereira, V.; Alcântara, A.; Pais, M.; da Silva, A. Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New For. 2013, 44, 937–949. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Aroca, R.; Zamarreño, A.M.; García-Mina, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. Agric. Water Manag. 2018, 202, 271–284. [Google Scholar] [CrossRef]
- Sánchez-Romera, B.; Calvo-Polanco, M.; Ruíz-Lozano, J.M.; Zamarreño, A.M.; Arbona, V.; García-Mina, J.M.; Gómez-Cadenas, A.; Aroca, R. Involvement of the def-1 mutation in the response of tomato plants to arbuscular mycorrhizal symbiosis under well-watered and drought conditions. Plant. Cell Physiol. 2018, 59, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Rincón, A.; Priha, O.; Lelu-Walter, M.A.; Bonnet, M.; Sotta, B.; Le Tacon, F. Shoot water status and ABA responses of transgenic hybrid larch Larix kempferi × L. decidua to ectomycorrhizal fungi and osmotic stress. Tree Physiol. 2005, 25, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.B.; Janz, D.; Jiang, X.; Göbel, C.; Wildhagen, H.; Tan, Y.; Rennenberg, H.; Feussner, I.; Polle, A. Upgrading root physiology for stress tolerance by ectomycorrhizas: Insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant. Physiol. 2009, 151, 1902–1917. [Google Scholar] [CrossRef] [Green Version]
- Dell’Amico Rodríguez, J.M.; Torrecillas, A.; Rodríguez Hernández, P.; Morte, A.; Sánchez-Blanco, M.J. Responses of tomato plants associated with the arbuscular mycorrhizal fungus Glomus clarum during drought and recovery. J. Agric. Sci. 2002, 138, 387–393. [Google Scholar] [CrossRef]
- Gehring, C.A.; Mueller, R.C.; Whitham, T.G. Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 2006, 149, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Querejeta, J.I.; Egerton-Warburton, L.M.; Allen, M.F. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 2009, 90, 649–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, S.; Bañón, S.; Sánchez-Blanco, M.J. Regulated deficit irrigation in different phenological stages of potted geranium plants: Water consumption, water relations and ornamental quality. Acta Physiol. Plant. 2013, 35, 1257–1267. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, S.; Gómez-Bellot, M.J.; Acosta-Motos, J.R.; Sánchez-Blanco, M.J. Application of deficit irrigation in Phillyrea angustifolia for landscaping purposes. Agric. Water Manag. 2019, 218, 193–202. [Google Scholar] [CrossRef]
- Limousin, J.M.; Rambal, S.; Ourcival, J.M.; Rocheteau, A.; Joffre, R.; Rodriguez-Cortina, R. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob. Chang. Biol. 2009, 15, 2163–2175. [Google Scholar] [CrossRef]
- Barbeta, A.; Mejía-Chang, M.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Peñuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, M.J.; Rodríguez, P.; Morales, M.A.; Ortuño, M.J.; Torrecillas, A. Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery. Plant. Sci. 2002, 162, 107–113. [Google Scholar] [CrossRef]
- Liese, R.; Alings, K.; Meier, I.C. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Front. Plant. Sci. 2017, 8, 315. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.S.; Srivastava, A.K.; Zou, Y.N.; Malhotra, S.K. Mycorrhizas in citrus: Beyond soil fertility and plant nutrition. Indian J. Agric. Sci. 2017, 87, 427–432. [Google Scholar]
- Liu, C.Y.; Zhang, F.; Zhang, D.J.; Srivastava, A.K.; Wu, Q.S.; Zou, Y.N. Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci. Rep. 2018, 8, 1978. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.N.; Wu, Q.S.; Huang, Y.M.; Ni, Q.D.; He, X.H. Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation. PLoS ONE 2013. [Google Scholar] [CrossRef] [Green Version]
- Morte, A.; Zamora, M.; Gutiérrez, A.; Honrubia, M. Desert truffle cultivation in semiarid Mediterranean areas. In Mycorrhizas Functional Processes and Ecological Impact; Azcón-Aguilar, C., Barea, J.M., Gianinazzi, S., Gianinazzi-Pearson, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 221–233. [Google Scholar]
- Álvarez, S.; Sánchez-Blanco, M.J. Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Sci. Hortic. 2013, 156, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, S.; Sánchez-Blanco, M.J. Comparison of individual and combined effects of salinity and deficit irrigation on physiological, nutritional and ornamental aspects of tolerance in Callistemon laevis plants. J. Plant. Physiol. 2015, 185, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sánchez-Blanco, M.J.; Hernández, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Blanco, M.J.; Morales, M.; Torrecillas, A.; Alarcón, J.J. Diurnal and seasonal osmotic potential changes in Lotus creticus creticus plants grown under saline stress. Plant. Sci. 1998, 136, 1–10. [Google Scholar] [CrossRef]
- Álvarez, S.; Gómez-Bellot, M.J.; Castillo, M.; Bañón, S.; Sánchez-Blanco, M.J. Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environ. Exp. Bot. 2012, 78, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sanchez-Blanco, M.J.; Hernández, J.A. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 2015, 242, 829–846. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Ortuño, M.F.; Alvarez, S.; López-Climent, M.F.; Gómez-Cadenas, A.; Sánchez-Blanco, M.J. Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. J. Plant. Physiol. 2016, 191, 12–21. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Dixon, J.B.; Arora, H.S.; Hons, F.M.; Askenasy, P.E.; Hossner, L.R. Chemical, physical, and mineralogical properties of soils, mine spoil, and overburden associated with lignite mining. In Reclamation of Surface-Mined Lignite Spoil in Texas; Research Monograph No. 10: Texas Agricultural Experiment Station; Hossner, L.R., Ed.; Texas A & M University: College Station, TX, USA, 1980; pp. 13–21. [Google Scholar]
- Futai, K.; Taniguchi, T.; Kataoka, R. Ectomycorrhizae and Their Importance in Forest Ecosystems. In Mycorrhizae: Sustainable Agriculture and Forestry; Siddiqui, Z.A., Akhtar, M.S., Futai, K., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Lopes, C.; Chaves, M.M. Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct. Plant. Biol. 2012, 39, 179–189. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant. Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Chaves, M.M.; Costa, M.; Zarrouk, O.; Pinheiro, C.; Lopes, C.; Pereira, J. Controlling stomatal aperture in semi-arid regions—The dilemma of saving water or being cool? Plant. Sci. 2016, 251, 54–64. [Google Scholar] [CrossRef]
- Lawson, T.; von Caemmerer, S.; Baroli, I. Photosynthesis and stomatal behaviour. In Progress Inbotany; Luttge, U., Beyschlag, W., Beudel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 265–304. [Google Scholar]
- Meng, F.R.; Arp, P. Net photosynthesis and stomatal conductance of red spruce twigs before and after twig detachment. Can. J. Res. 1993, 23, 716–721. [Google Scholar] [CrossRef]
- Sánchez-Blanco, M.J.; Ortuño, M.F.; Bañón, S.; Álvarez, S. Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. J. Hortic. Sci. Biotechnol. 2019, 94, 137–150. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant. Biol. 2009, 36, 978–979. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013, 64, 3937–3949. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Nortes, P.A.; Sánchez-Blanco, M.J.; Ortuño, M.F. Sensitivity of thermal imaging and infrared thermometry to detect water status changes in Euonymus japonica plants irrigated with saline reclaimed water. Biosyst. Eng. 2015, 133, 21–32. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Penuelas, J. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 2003, 217, 758–766. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cadenas, A.; Tadeo, F.R.; Talón, M.; Primo-Millo, E. Leaf abscission induced by ethylene in water-stressed intact seedlings of cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant. Physiol. 1996, 112, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.T.C. The effect of plant growth regulator treatments on the levels of ethylene emanating from excised turgid and wilted wheat leaves. Planta 1980, 148, 381–388. [Google Scholar] [CrossRef]
- Tan, Z.-Y.; Thimann, K.V. The roles of carbon dioxide and abscisic acid in the production of ethylene. Physiol. Plant. 1989, 75, 13–19. [Google Scholar] [CrossRef]
- Chaves, M.M.; Maroco, J.P.; Pereira, J.S. Understanding plant responses to drought—From genes to the whole plant. Funct. Plant. Biol. 2003, 30, 239–264. [Google Scholar] [CrossRef]
- Olivella, C.; Vendrell, M.; Savé, R. Abscisic acid and ethylene content in Gerbera jamesonii plants submitted to drought and rewatering. Biol. Plant. 1998, 41, 613–616. [Google Scholar] [CrossRef]
- Spollen, W.G.; LeNoble, M.E.; Samuels, T.D.; Bernstein, N.; Sharp, R.E. Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant. Physiol. 2000, 122, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Lizarazo, J.C.; Moreno-Fonseca, L.P. Mechanisms for tolerance to water-deficit stress in plants inoculated with arbuscular mycorrhizal fungi. A review. Agron. Colomb. 2016, 34, 179–189. [Google Scholar] [CrossRef]
- Miransari, M.; Abrishamchi, A.; Khoshbakht, K.; Niknam, V. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 2014, 8551, 1–12. [Google Scholar] [CrossRef]
- Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Rev. Plant. Biol. 2010, 12, 563–569. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, A.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant. Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Zhang, J.; Schurr, U.; Davies, W.J. Control of stomatal behavior by abscisic acid which apparently originates in roots. J. Exp. Bot. 1987, 38, 1174–1181. [Google Scholar] [CrossRef]
- Siwinska, J.; Kadzinski, L.; Banasiuk, R.; Gwizdek-Wisniewska, A.; Olry, A.; Banecki, B.; Lojkowska, E.; Ihnatowicz, A. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana. BMC Plant. Biol. 2014, 14, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tal, B.; Robeson, D.J. The metabolism of sunflower phytoalexins ayapin and scopoletin: Plant-fungus interactions. Plant. Physiol. 1986, 82, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Costet, L.; Fritig, B.; Kauffmann, S. Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. Physiol. Plant. 2002, 115, 228–235. [Google Scholar] [CrossRef]
- Tanaka, Y.; Data, E.S.; Hirose, S.; Taniguchi, T.; Uritani, I. Biochemical changes in secondary metabolites in wounded and deteriorated cassava roots. Agric. Biol. Chem. 1983, 47, 693–700. [Google Scholar]
- Uritani, I. Biochemistry on postharvest metabolism and deterioration of some tropical tuberous crops. Bot. Bul. Acad. Sin. 1999, 40, 177–183. [Google Scholar]
- Buschmann, H.; Rodriguez, M.X.; Tohme, J.; Beeching, J.R. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann. Bot. 2000, 86, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Giesemann, A.; Biehl, B.; Leiberei, R. Identification of scopoletin as a phytoalexin of the rubber tree Hevea brasiliensis. J. Phytopathol. 2008, 117, 373–376. [Google Scholar] [CrossRef]
- Kormanik, P.P.; McGraw, A. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and Principles of M~corrhizal Research; Schenck, N.C., Ed.; American Phytopathological Society: St. Paul, MN, USA, 1982; pp. 37–45. [Google Scholar]
- Sieverding, E. Manual de Métodos para la Investigación de la Micorriza Vesículo-Arbuscular en el Laboratorio; Centro Internacional de Agricultura Tropical (CIAT): Cali, Colombia, 1983; 121p. [Google Scholar]
- Scholander, P.F.; Hammel, H.T.; Bradstreet, E.D.; Hemmingsen, E.A. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Gucci, R.; Xiloyannis, C.; Flore, J.A. Gas exchange parameters water relations and carbohydrate partitioning in leaves of field-grown Prunus domestica following fruit removal. Physiol. Plant. 1991, 83, 497–505. [Google Scholar] [CrossRef]
- Girma, F.S.; Krieg, D.R. Osmotic Adjustment in Sorghum. Plant. Physiol. 1992, 99, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Estimation of an effective soil water potential at the root surface of transpiring plants. Plant. Cell Environ. 1983, 6, 671–674. [Google Scholar]
- Leinonen, I.; Grant, O.; Tagliavia, C.P.P.; Chaves, M.; Jones, H. Estimating stomatal conductance with thermal imagery. Plant. Cell Environ. 2006, 29, 1508–1518. [Google Scholar] [CrossRef]
- Albacete, A.; Ghanem, M.E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I.C.; Pérez-Alfocea, F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 2008, 59, 4119–4131. [Google Scholar] [CrossRef]
Mycorrhization Percentage (%) | |
---|---|
CM | 29.3 a |
WSM | 21.05 b |
TREATMENTS | ||||
---|---|---|---|---|
C | WS | CM | WSM | |
Leaf DW (g) | 3.32 ± 0.39 b | 2.37 ± 0.31 c | 5.59 ± 1.44 a | 4.06 ± 0.41 ab |
Stem DW (g) | 2.25 ± 0.30 | 2.05 ± 0.22 | 3.58 ± 1.05 | 2.80 ± 0.15 |
Root DW (g) | 1.64 ± 0.15 c | 1.55 ± 0.20 c | 2.05 ± 0.13 b | 3.17 ± 0.30 a |
Shoot DW (g) | 5.58 ± 0.68 bc | 4.43 ± 0.54 c | 8.50 ± 0.89 a | 6.85 ± 0.55 ab |
Root/shoot ratio | 0.30 ± 0.03 b | 0.35 ± 0.01 ab | 0.22 ± 0.03 b | 0.48 ± 0.09 a |
Height (cm) | 33.42 ± 1.35 b | 30.50 ± 1.08 c | 35.83 ± 1.46 a | 33.23 ± 1.49 b |
TREATMENTS | ||||
---|---|---|---|---|
C | WS | CM | WSM | |
Macronutrients | ||||
Ca (%) | 0.86 ± 0.02 b | 0.60 ± 0.03 c | 1.00 ± 0.05 a | 0.49 ± 0.05 c |
K (%) | 3.19 ± 0.23 a | 2.72 ± 0.50 ab | 3.02 ± 0.32 a | 2.18 ± 1.28 b |
P (%) | 0.67 ± 0.06 ab | 0.59 ± 0.03 ab | 0.73 ± 0.06 a | 0.54 ± 0.04 b |
Na (%) | 0.14 ± 0.02 a | 0.08 ± 0.01 b | 0.16 ± 0.01 a | 0.05 ± 0.01 b |
S (%) | 0.17 ± 0.03 b | 0.16 ± 0.02 b | 0.22 ± 0.01 a | 0.15 ± 0.01 b |
Mg (%) | 0.35 ± 0.02 a | 0.26 ± 0.02 b | 0.37 ± 0.01 a | 0.24 ± 0.01 b |
Micronutrients | ||||
Cu (mg/Kg) | 12.95 ± 1.29 a | 4.97 ± 0.82 b | 10.85 ± 2.23 a | 4.15 ± 0.45 b |
Fe (mg/Kg) | 68.78 ± 7.44 ab | 54.68 ± 4.96 b | 82.97 ± 10.13 a | 102.85±35.34 a |
Mn (mg/Kg) | 117.13 ± 3.41 ab | 123.52 ±28.55 ab | 153.05 ± 7.71 b | 108.93 ± 23.75a |
B (mg/Kg) | 165.35 ± 3.29 | 158.55 ± 1.40 | 162.75 ± 3.98 | 161.10 ± 7.69 |
Zn (mg/Kg) | 87.95 ± 13.71 a | 59.58 ± 9.09 ab | 72.73 ± 5.42 ab | 41.97 ± 7.37 b |
TREATMENTS | ||||
---|---|---|---|---|
C | WS | CM | WSM | |
Pn/gs (μmol CO2/mol H2O) | 26.21 ± 4.41 b | 38.58 ± 3.87 a | 23.31 ± 8.62 b | 40.55 ± 2.10 a |
−Ψl/gs (MPa/mol H2O m−2 s−1) | 5.40 ± 0.23 b | 170.10 ± 45.75 a | 4.73 ± 1.05 b | 205.97 ± 33.10 a |
Tl/gs (°C/mol H2O m−2 s−1) | 166.2 ± 32.61 b | 2215.92 ± 82.63 a | 130.34 ± 27.72 b | 2576 ± 50.02 a |
RCC/Pn (%/μmol CO2 m−2 s−1) | 10.10 ± 0.57 c | 102.60 ± 8.24 b | 10.20 ± 2.17 c | 127.95 ± 11.16 a |
Pn/Shoot DW (μmol CO2 m−2 s−1/g) | 0.63 ± 0.05 a | 0.10 ± 0.01 c | 0.34 ± 0.02 b | 0.06 ± 0.02 c |
Hormone | Reference | Laboratory | Solubility |
---|---|---|---|
Jasmonic acid | 14631-10 MG | SIGMA | DMSO (16 mg/mL) |
trans-Zeatin | Z0876-5 MG | SIGMA | DMSO (3 mg/mL) |
trans-Zeatin | 001030n (5 mg) | OLCHEMLM | DMSO (3 mg/mL) |
[2H5]-trans-Zeatin | 030030n (1 mg) | OLCHEMLM | DMSO (3 mg/mL) |
Camalexin | SML1016-5 MG | SIGMA | DMSO (20 mg/mL) |
Isopentenyladenine | SC-279669 (1G) | SANTA CRUZ | DMSO (20 mg/mL) |
trans-Zeatin riboside | SC-20846 (5 MG) | SANTA CRUZ | ETHANOL/DMSO (78.95:21.05, v/v) (50 mg/mL) |
trans-Zeatin riboside | 001031n (5 mg) | OLCHEMLM | DMSO |
trans-Zeatin glucoside | SC-237225 (1MG) | SANTA CRUZ | ETHANOL/DMSO (75.00:25.00, v/v) (50 mg/mL) |
trans-Zeatin 9-glucoside | 001047n (1 mg) | OLCHEMLM | DMSO |
Abscisic acid | SC-238015 (50 MG) | SANTA CRUZ | ETHANOL (50 mg/mL) |
3-indoleacetic acid | SC-254494 (5 G) | SANTA CRUZ | ETHANOL (50 mg/mL) |
1-aminocyclopropane-1-carboxylic acid (ACC) | SC-202393 (500 MG) | SANTA CRUZ | WATER (437 mg/mL) |
Giberellic acid (GA1) | 012249n (1 mg) | OLCHEMLM | ETHANOL (50 mg/mL) |
Giberellic acid (GA3) | SC-257556 (500 MG) | SANTA CRUZ | ETHANOL (50 mg/mL) |
Giberellic acid (GA4) | SC-235248 (5 MG) | SANTA CRUZ | ETHANOL (50 mg/mL) |
Giberellic acid (GA5) | SC-490117 (25 MG) | SANTA CRUZ | ETHANOL (50 mg/mL) |
Giberellic acid (GA7) | 012254n (1 mg) | OLCHEMLM | ETHANOL (50 mg/mL) |
Salycilic acid | SC-203374 (100 G) | SANTA CRUZ | ETHANOL (50 mg/mL) |
Scopoletin | SC-206059 (50 MG) | SANTA CRUZ | DMSO (30 mg/mL) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente, B.; Zugasti, I.; Sánchez-Blanco, M.J.; Nicolás, E.; Ortuño, M.F. Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality. Plants 2021, 10, 976. https://doi.org/10.3390/plants10050976
Lorente B, Zugasti I, Sánchez-Blanco MJ, Nicolás E, Ortuño MF. Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality. Plants. 2021; 10(5):976. https://doi.org/10.3390/plants10050976
Chicago/Turabian StyleLorente, Beatriz, Inés Zugasti, María Jesús Sánchez-Blanco, Emilio Nicolás, and María Fernanda Ortuño. 2021. "Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality" Plants 10, no. 5: 976. https://doi.org/10.3390/plants10050976
APA StyleLorente, B., Zugasti, I., Sánchez-Blanco, M. J., Nicolás, E., & Ortuño, M. F. (2021). Effect of Pisolithus tinctorious on Physiological and Hormonal Traits in Cistus Plants to Water Deficit: Relationships among Water Status, Photosynthetic Activity and Plant Quality. Plants, 10(5), 976. https://doi.org/10.3390/plants10050976