Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat (Fagopyrum esculentum Moench)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flavonoids and Phenolic Acids in Buckwheat Leaves
2.2. Flavonoids and Phenolic Acids in Flowers
2.3. Flavonoids and Phenolic Acids in Grains
2.4. Correlation between Flavonoid and Phenolic Acids Concentrations in Leaves, Flowers, and Grains
3. Material and Methods
3.1. Plant Material
3.2. Extract Preparation
3.3. HPLC-DAD Determination of Selected Phenolic Contents
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2004, 37, 319–327. [Google Scholar] [CrossRef]
- Fabjan, N.; Rode, J.; Košir, I.J.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercetin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef]
- Hęś, M.; Górecka, D.; Dziedzic, K. Antioxidant properties of extracts from buckwheat by-products. Acta Sci. Pol. Technol. Aliment. 2012, 11, 167–174. Available online: https://www.researchgate.net/publication/223974525_Antioxidant_properties_of_extracts_from_buckwheat_by-products (accessed on 20 January 2021).
- Christa, K.; Soral-Śmietana, M. Buckwheat grains and buckwheat products—Nutritional and prophylactic value of their components—A review. Czech J. Food Sci. 2008, 26, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.S. The contribution of buckwheat genetic resources to health and dietary diversity. Curr. Genomics 2016, 17, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojo, O. Nutrition and chronic conditions. Nutrients 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Comino, I.; Moreno, M.; Real, A.; Rodríguez-Herrera, A.; Barro, F.; Sousa, C. The gluten-free diet: Testing alternative cereals tolerated by celiac patients. Nutrients 2013, 5, 4250–4268. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Kuhn, M. Physical properties of buckwheat starches from various origins. Starch/Stärke 1999, 51, 81–85. [Google Scholar] [CrossRef]
- Podolska, G.; Górecka, D.; Russel, H.; Dziedzic, K.; Boguszewska, E. Abiotic stress affects the yield and nutrients of buckwheat grains. Zemdirb. -Agric. 2019, 106, 233–240. Available online: http://www.zemdirbyste-agriculture.lt/wp-content/uploads/2019/08/106_3_str30.pdf (accessed on 18 January 2021). [CrossRef] [Green Version]
- Steadman, K.J.; Burgoon, M.S.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Buckwheat seed milling fraction: Description, macronutrient composition and dietary fibre. J. Cereal Sci. 2001, 33, 271–278. [Google Scholar] [CrossRef]
- Stibilj, V.; Kreft, I.; Smrkolj, P.; Osvald, J. Enhanced selenium content in buckwheat (Fagopyrum esculentum Moench) and pumpkin (Cucurbita pepo L.) seeds by foliar fertilisation. Eur. Food Res. Technol. 2004, 219, 142–144. Available online: https://link.springer.com/article/10.1007/s00217-004-0927-0 (accessed on 15 January 2021). [CrossRef]
- Vojtíšková, P.; Kmentová, K.; Kubáň, V.; Kráčmar, S. Chemical composition of buckwheat plant (Fagopyrum esculentum) and selected buckwheat products. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1011–1019. [Google Scholar] [CrossRef] [Green Version]
- Stojilkovski, K.; Kočevar Glavač, N.; Kreft, S.; Kreft, I. Fagopyrin and flavonoid contents in common, Tartary, and cymosum buckwheat. J. Food Compos. Anal. 2013, 32, 126–130. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, K.T. Fagopyrins in different parts of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) during growth. J. Food Compos. Anal. 2020, 86, 103354. [Google Scholar] [CrossRef]
- Glavač, K.; Stojilkovski, K.; Kreft, S.; Park, C.H.; Kreft, I. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. LWT Food Sci. Technol. 2017, 79, 423–427. [Google Scholar] [CrossRef]
- Benkovič, E.T.; Kreft, S. Fagopyrins and protofagopyrins: Detection, analysis, and potential phototoxicity in buckwheat. J. Agric. Food Chem. 2015, 63, 5715–5724. [Google Scholar] [CrossRef]
- Sytar, O.; Švedienė, J.; Ložienė, K.; Paškevičius, A.; Kosyan, A.; Taran, N. Antifungal properties of hypericin, hypericin tetrasulphonic acid and fagopyrin on pathogenic fungi and spoilage yeasts. Pharm. Biol. 2016, 54, 3121–3125. [Google Scholar] [CrossRef] [Green Version]
- Molnar, M.; Jakovljević, M.; Jokić, S. Optimization of the process conditions for the extraction of rutin from Ruta graveolens L. by choline chloride based deep eutectic solvents. Solvent Extr. Res. Dev. 2018, 25, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Brossa, R.; Casals, I.; Pintó-Marijuan, M.; Fleck, I. Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation. Trees 2009, 23, 401–408. [Google Scholar] [CrossRef]
- Seyis, F.; Yurteri, E.; Özcan, A.; Cirak, C. Altitudinal impacts on chemical content and composition of Hypericum perforatum, a prominent medicinal herb. S. Afr. J. Bot. 2020, 135, 391–403. [Google Scholar] [CrossRef]
- Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006, 98, 508–512. [Google Scholar] [CrossRef]
- Kitabayashi, H.; Ujihara, A.; Hirose, T.; Minami, M. Varietal differences and heritability for rutin content in common buckwheat, Fagopyrum esculentum Moench. Breed. Sci. 1995, 45, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Bystricka, J.; Musilova, J.; Tomas, J.; Vollmannova, A.; Lachman, J.; Kavalcova, P. Changes od polyphenolic substances in the anatomical parts of buckwheat (Fagopyrum esculentum Moench.) during its growth phases. Foods 2014, 4, 558–568. Available online: https://www.mdpi.com/2304-8158/3/4/558 (accessed on 25 January 2021). [CrossRef] [Green Version]
- Kalinova, J.; Dadakova, E. Influence of sowing date and stand density on rutin level in buckwheat. Cereal Res. Commun. 2013, 41, 348–358. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Szwengiel, A.; Sulewska, H.; Kreft, I.; Gujska, E.; Walkowiak, J. The content of dietary fibre and polyphenols in morphological parts of buckwheat (Fagopyrum tataricum). Plant Foods Hum. Nutr. 2018, 73, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kreft, M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Žvikas, V.; Pukelevičienė, V.; Ivanauskas, L.; Pukalskas, A.; Ražukas, A.; Jakštas, V. Variety-based research on the phenolic content in the aerial parts of organically and conventionally grown buckwheat. Food Chem. 2016, 213, 660–667. [Google Scholar] [CrossRef]
- Seo, J.; Lee, D.; Valan Arasu, M.; Wu, Q.; Suzuki, T.; Yoon, Y.; Lee, S.; Park, S.; Kim, S. Quantitative differentiation of phenolic compounds in different varieties of buckwheat cultivars from China, Japan and Korea. J. Agric. Chem. Environ. 2013, 2, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Sytar, O. Phenolic acids in the inflorescences of different varieties of buckwheat and their antioxidant activity. J. King Saud Univ. Sci. 2014, 27, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Habtemariam, S. Antioxidant and rutin content analysis of leaves of the common buckwheat (Fagopyrum esculentum Moench) grown in the United Kingdom: A Case Study. Antioxidants 2019, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Dražić, S.; Glamočlija, Đ.; Ristić, M.; Dolijanović, Ž.; Dražić, M.; Pavlović, S.; Jaramaz, M.; Jaramaz, D. Effect of environment of the rutin content in leaves of Fagopyrum esculentum Moench. Plant Soil Environ. 2016, 62, 261–265. Available online: https://www.agriculturejournals.cz/publicFiles/187622.pdf (accessed on 5 January 2021). [CrossRef] [Green Version]
- Zielińska, D.; Turemko, M.; Kwiatkowski, J.; Zieliński, H. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules 2012, 17, 9668–9682. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Bystrowska, B.; Francik, R. Identification of polyphenolic compounds and determination of antioxidant in extracts and infusions of buckwheat leaves. Eur. Food Res. Technol. 2017, 244, 333–343. [Google Scholar] [CrossRef]
- Sytar, O.; Chrenková, M.; Ferencová, J.; Polačiková, M.; Rajský, M.; Brestič, M. Nutrient capacity of amino acids from buckwheat seeds and sprouts. J. Food Nutr. Res. 2018, 57, 38–47. [Google Scholar]
- Dzugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.; Tahir, I. Grain characteristics and composition of some buckwheat (Fagopyrum tataricum Gaertn.) cultivated in Kashmir. J. Econ. Taxon. Bot. 1982, 3, 877–881. [Google Scholar] [CrossRef]
- Sytar, O.; Borankulova, A.; Hemmerich, I.; Rauh, C.; Smetanska, I. Effect of chlorocholine chlorid on phenolic acid accumulation and polyphenols formation of buckwheat plants. Biol. Res. 2014, 47, 19. [Google Scholar] [CrossRef] [Green Version]
- Kiprovski, B.; Mikulic-Petkovšek, M.; Slatnar, A.; Veberič, R.; Štampar, F.; Malenčič, D.; Latković, D. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem. 2015, 185, 41–47. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, Z.; Huang, X.; Zou, Y.; Yang, T. Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. J. Food Sci. 2015, 80. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Pastucha, E.; Piątkowska, E.; Leszczyńska, T.; Pisulewska, E.; Witkowicz, R.; Francik, R. Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. J. Cereal Sci. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, C.; Yao, Y.; Xu, B. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and Tartary buckwheat produced in China upon thermal processing. J. Sci. Food Agric. 2019, 99, 5565–5576. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, S.; Yao, L.; Wang, L.; Li, C. Free and bound phenolics of buckwheat varieties: HPLC characterization, antioxidant activity, and inhibitory potency towards α-glucosidase with molecular docking analysis. Antioxidants 2019, 8, 606. [Google Scholar] [CrossRef] [Green Version]
- Mikulajová, A.; Šedivá, D.; Hybenová, E.; Mošovská, S. Buckwheat cultivars—Phenolic compounds profiles and antioxidant properties. Acta Chim. Slov. 2016, 9, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Keriene, I.; Mankevičienė, A.; Bliznikas, S.; Jablonskytė-Raščė, D.; Maikštėnienė, S.; Česnulevičienė, R. Biologically active phenolic compounds in buckwheat, oats and winter spelt wheat. Zemdirbyste 2015, 102, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Witkowicz, R.; Biel, W.; Chłopicka, J.; Galanty, A.; Gleń-Karolczyk, K.; Skrzypek, E.; Krupa, M. Biostimulants and microorganisms boost the nutritional composition of buckwheat (Fagopyrum esculentum Moench) sprouts. Agronomy 2019, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Witkowicz, R.; Biel, W.; Skrzypek, E.; Chłopicka, J.; Gleń-Karolczyk, K.; Krupa, M.; Prochownik, E.; Galanty, A. Microorganisms and biostimulants impact on the antioxidant activity of buckwheat (Fagopyrum esculentum Moench) sprouts. Antioxidants 2020, 9, 584. [Google Scholar] [CrossRef]
- Munck, L.; Rinnan, Å.; Khakimov, B.; Møller Jespersen, B.; Balling Engelsen, S. Physiological genetics reformed: Bridging the genome-to-phenome by by coherent chemical Fingerprints—The global coordinator. Trends Plant Sci. 2021, 26. [Google Scholar] [CrossRef]
- Lukšič, L.; Árvay, J.; Vollmannová, A.; Tóth, T.; Škrabanja, V.; Trček, J.; Germ, M.; Kreft, I. Hydrothermal treatment of Tartary buckwheat grains hinders the transformation of rutin to quercetin. J. Cereal Sci. 2016, 72, 131–134. [Google Scholar] [CrossRef]
- Germ, M.; Árvay, J.; Vollmannová, A.; Tóth, T.; Golob, A.; Luthar, Z.; Kreft, I. The temperature threshold for the transformation of rutin to quercetin in Tartary buckwheat dough. Food Chem. 2019, 283, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Addinsoft XLSTAT. Analyse de Donneés et Statistique avec MS Excel; Addinsoft: New York, NY, USA, 2014. [Google Scholar]
- RStudio Team. RStudio. Integrated Development for R.; RStudio Inc.: Boston, MA, USA, 2005; Available online: http://www.rstudio.com (accessed on 19 January 2021).
Cultivar | Neochlorogenic Acid | Chlorogenic Acid | Trans-Caffeic Acid | Trans-Coumaric Acid | Trans-Sinapic Acid | Trans-Ferulic Acid |
---|---|---|---|---|---|---|
Pyra (n = 4) | 0.666 ± 0.301 | 0.193 ± 0.003 | 0.102 ± 0.001 | 0.039 ± 0.001 | ND | 0.083 ± 0 |
Kasho-2 (n = 4) | 0.849 ± 0 | 0.280 ± 0.003 | 0.026 ± 0 | 0.110 ± 0 | ND | 0.054 ± 0 |
Hrusowska (n = 4) | 0.460 ± 0 | 0.222 ± 0 | 0.065 ± 0.005 | 0.164 ± 0 | ND | 0.079 ± 0 |
FAG 120/82 (n = 4) | 0.665 ± 0.012 | 0.236 ± 0.001 | 0.014 ± 0 | 0.103 ± 0 | 0.008 ± 0 | 0.040 ± 0 |
Pulawska (n = 4) | 0.310 ± 0.005 | 0.141 ± 0.006 | 0.019 ± 0 | 0.046 ± 0 | ND | 0.050 ± 0 |
Soldier Pond (n = 4) | 0.411 ± 0.009 | 0.116 ± 0 | ND | 0.103 ± 0.001 | 0.011 ± 0.001 | 0.013 ± 0.003 |
Pennline 10 (n = 4) | 0.661 ± 0.016 | 0.274 ± 0.017 | 0.049 ± 0 | 0.089 ± 0.005 | ND | 0.096 ± 0 |
Ballada (n = 4) | 0.489 ± 0.011 | 0.201 ± 0.001 | 0.052 ± 0.001 | 0.057 ± 0.001 | ND | 0.060 ± 0.001 |
Cultivar | Rutin | Vitexin | Quercetin | Kaempferol |
---|---|---|---|---|
Pyra (n = 4) | 28.211 ± 0.097 | 0.075 ± 0 | 0.461 ± 0.001 | ND |
Kasho-2 (n = 4) | 31.069 ± 0.007 | ND | 0.127 ± 0 | ND |
Hrusowska (n = 4) | 21.317 ± 0.021 | 0.050 ± 0 | 0.628 ± 0.002 | 0.018 ± 0.001 |
FAG 120/82 (n = 4) | 22.901 ± 0.067 | 0.055 ± 0.001 | 0.345 ± 0.001 | ND |
Pulawska (n = 4) | 17.742 ± 0.006 | ND | 0.234 ± 0 | ND |
Soldier Pond (n = 4) | 29.281 ± 16.906 | ND | 0.914 ± 0.528 | 0.031 ± 0.001 |
Pennline 10 (n = 4) | 29.665 ± 0.018 | 0.069 ± 0 | 0.664 ± 0.001 | ND |
Ballada (n = 4) | 22.292 ± 12.87 | 0.031 ± 0 | 0.421 ± 0.001 | ND |
Cultivar | Neochlorogenic Acid | Chlorogenic Acid | Trans-Caffeic Acid | Trans-Coumaric Acid | Trans-Sinapic Acid | Trans-Ferulic Acid |
---|---|---|---|---|---|---|
Pyra (n = 4) | 0.221 ± 0.007 | 0.381 ± 0.007 | 0.057 ± 0.001 | 0.031 ± 0 | 0.015 ± 0 | 0.011 ± 0 |
Kasho-2 (n = 4) | 0.190 ± 0.004 | 1.268 ± 0.004 | 0.047 ± 0 | 0.017 ± 0 | 0.015 ± 0 | 0.015 ± 0 |
Hrusowska (n = 4) | 0.144 ± 0 | 0.275 ± 0.001 | 0.037 ± 0.001 | 0.014 ± 0 | ND | 0.007 ± 0 |
FAG 120/82 (n = 4) | 0.200 ± 0.007 | 0.513 ± 0.002 | 0.053 ± 0.001 | 0.020 ± 0 | 0.023 ± 0 | 0.016 ± 0 |
Pulawska (n = 4) | 0.121 ± 0.003 | 0.121 ± 0 | 0.010 ± 0 | 0.012 ± 0 | ND | ND |
Soldier Pond (n = 4) | 0.188 ± 0 | 0.146 ± 0 | ND | 0.093 ± 0 | 0.028 ± 0.001 | ND |
Pennline 10 (n = 4) | 0.124 ± 0.003 | 0.146 ± 0.01 | 0.025 ± 0 | 0.013 ± 0.004 | ND | ND |
Ballada (n = 4) | 0.109 ± 0.489 | 0.209 ± 0.001 | 0.050 ± 0.001 | 0.011 ± 0 | ND | ND |
Cultivar | Rutin | Vitexin | Quercetin | Kaempferol |
---|---|---|---|---|
Pyra (n = 4) | 12.756 ± 0.005 | 0.488 ± 0.001 | 0.161 ± 0 | ND |
Kasho-2 (n = 4) | 21.255 ± 0.003 | 0.237 ± 0 | 0.260 ± 0.001 | ND |
Hrusowska (n = 4) | 12.406 ± 0.006 | 0.314 ± 0.001 | 0.142 ± 0 | ND |
FAG 120/82 (n = 4) | 18.917 ± 0.002 | 0.258 ± 0.005 | 0.215 ± 0 | ND |
Pulawska (n = 4) | 7.410 ± 0.015 | 0.056 ± 0.293 | 0.089 ± 0 | ND |
Soldier Pond (n = 4) | 20.847 ± 0.036 | ND | 1.680 ± 0.001 | 0.054 ± 0.001 |
Pennline 10 (n = 4) | 9.264 ± 0.008 | 0.172 ± 0 | 0.122 ± 0 | ND |
Ballada (n = 4) | 9.208 ± 5.316 | 0.354 ± 0.205 | 0.117 ± 0.068 | ND |
Cultivar | Neochlorogenic Acid | Chlorogenic Acid | Trans-Caffeic Acid | Trans-Coumaric Acid | Trans-Sinapic Acid | Trans-Ferulic Acid |
---|---|---|---|---|---|---|
Pyra (n = 4) | 0.117 ± 0.002 | 0.075 ± 0.001 | 0.017 ± 0 | 0.011 ± 0.001 | 0.005 ± 0 | 0.004 ± 0 |
Kasho-2 (n = 4) | 0.120 ± 0 | 0.087 ± 0 | 0.022 ± 0 | 0.012 ± 0 | 0.006 ± 0 | 0.003 ± 0 |
Hrusowska (n = 4) | 0.111 ± 0.002 | 0.050 ± 0 | 0.012 ± 0 | 0.007 ± 0 | 0.008 ± 0 | 0.003 ± 0 |
FAG 120/82 (n = 4) | 0.074 ± 0 | 0.047 ± 0.001 | 0.012 ± 0 | 0.009 ± 0 | 0.006 ± 0 | 0.003 ± 0 |
Pulawska (n = 4) | 0.092 ± 0 | 0.027 ± 0 | 0.006 ± 0 | 0.006 ± 0.025 | 0.005 ± 0.025 | ND |
Soldier Pond (n = 4) | 0.141 ± 0 | 0.090 ± 0.002 | 0.014 ± 0 | 0.013 ± 0.006 | 0.008 ± 0 | 0.003 ± 0 |
Pennline 10 (n = 4) | 0.108 ± 0.001 | 0.054 ± 0 | 0.014 ± 0 | 0.007 ± 0 | ND | ND |
Ballada (n = 4) | 0.216 ± 0.001 | 0.027 ± 0 | ND | 0.132 ± 0 | 0.011 ± 0 | 0.005 ± 0 |
Cultivar | Rutin | Vitexin | Quercetin | Kaempferol |
---|---|---|---|---|
Pyra (n = 4) | 4.017 ± 0.005 | 0.153 ± 0.001 | 0.036 ± 0 | 0.004 ± 0.001 |
Kasho-2 (n = 4) | 5.900 ± 0.004 | 0.212 ± 0.1 | 0.055 ± 0 | 0.005 ± 0 |
Hrusowska (n = 4) | 6.263 ± 0.001 | 0.063 ± 0 | 0.080 ± 0 | 0.011 ± 0.003 |
FAG 120/82 (n = 4) | 5.019 ± 0.003 | 0.054 ± 0 | 0.052 ± 0 | 0.007 ± 0.001 |
Pulawska (n = 4) | 2.791 ± 0.002 | 0.044 ± 0 | 0.036 ± 0 | ND |
Soldier Pond (n = 4) | 7.510 ± 0.002 | 0.153 ± 0 | 0.062 ± 0 | ND |
Pennline 10 (n = 4) | 4.069 ± 0 | 0.100 ± 0 | 0.034 ± 0 | ND |
Ballada (n = 4) | 13.236 ± 0.009 | 0.010 ± 0 | 1.438 ± 0 | 0.063 ± 0 |
Cultivar Name | Country of Origin |
---|---|
Pyra | Czech Republic |
Kasho-2 | Japan |
Hrusowska | Poland |
FAG 120/82 | Germany |
Pulawska | Poland |
Soldier Pond | USA |
Pennline 10 | USA |
Ballada | Russia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vollmannová, A.; Musilová, J.; Lidiková, J.; Árvay, J.; Šnirc, M.; Tóth, T.; Bojňanská, T.; Čičová, I.; Kreft, I.; Germ, M. Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat (Fagopyrum esculentum Moench). Plants 2021, 10, 1142. https://doi.org/10.3390/plants10061142
Vollmannová A, Musilová J, Lidiková J, Árvay J, Šnirc M, Tóth T, Bojňanská T, Čičová I, Kreft I, Germ M. Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat (Fagopyrum esculentum Moench). Plants. 2021; 10(6):1142. https://doi.org/10.3390/plants10061142
Chicago/Turabian StyleVollmannová, Alena, Janette Musilová, Judita Lidiková, Július Árvay, Marek Šnirc, Tomáš Tóth, Tatiana Bojňanská, Iveta Čičová, Ivan Kreft, and Mateja Germ. 2021. "Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat (Fagopyrum esculentum Moench)" Plants 10, no. 6: 1142. https://doi.org/10.3390/plants10061142
APA StyleVollmannová, A., Musilová, J., Lidiková, J., Árvay, J., Šnirc, M., Tóth, T., Bojňanská, T., Čičová, I., Kreft, I., & Germ, M. (2021). Concentrations of Phenolic Acids Are Differently Genetically Determined in Leaves, Flowers, and Grain of Common Buckwheat (Fagopyrum esculentum Moench). Plants, 10(6), 1142. https://doi.org/10.3390/plants10061142