Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L.
Abstract
:1. Introduction
2. Results
2.1. Preparation and Charcterization of Waste-Derived Nano NPK Fertilizer
2.2. Growth and Yield Attributes of Treated C. annuum L.
2.3. Yield Quality
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Extraction and Preparation of Nanofertilizer from Solid Waste
- (a)
- Physical characteristics of the chitosans as bulk nitrogen-nutrient sources were measured as viscosity (η) and molecular weight (MW); MW was obtained by determining the viscosity [44] of CS solutions at 1% at 30 °C using a Brookfield digital viscometer [103], Mw was calculated using the Mark–Houwink equation: η = KMwa. In this CS-solvent system, K = 4.75 × 10−5 dL/g and a = 0.72. The degree of deacetylation (DDA) and crystallinity were determined by Fourier Transform Infrared Spectroscopy (FT-IR). The samples were dried and ground with KBr at a sample/KBr ratio of 1:60. Discs were compressed under vacuum. The spectra were recorded at room temperature using a 400 IR instrument (Nicolet, model Impact-410) from 4000 cm−1 to 400 cm−1. DDA was calculated from the spectra using the equation %DDA = 97.67 − [26.486(A1655/A3450)] [104], while the crystallinity was calculated by equation A1379/A2929 [105]. The pH was determined at the final wash after deacetylation, 1 min after the stirring was initiated. For solubility, 1 mg/mL CS-GAA 1% (v/v) solution stirred till a clear solution is attained [106]. The time required in seconds to attain a clear solution is calculated. %Ash and yield; 2 g CS was placed in dry clean crucible, heated in a muffle furnace at 650 °C for 4 h, the crucible was cooled in the furnace and the ash percentage was calculated; %Ash = 100 (weight of residue/sample weight) [107]. The CS yield was calculated per 100 g of dried solid waste [107]. The energy consumption and cost were calculated for each deacetylation process [108],E(kWh/day) = P(W) × t(h/day)/1000(W/kW)Cost(EGP/day) = E(kWh/day) × Cost(Qirsh/kWh)/100(qirsh/EGP)Energy (E) in (kW/h) per day, power (P) in watts (W), times number of usage hours per (t), and the cost was measured in cent.
- (b)
- Demineralized HAP (CaHPO4) as bulk phosphorous-nutrient source measured characteristics were described as follows: 1—FT-IR analysis: FT-IR spectrum of the HAP in the form of a disc with KBr was recorded using a Mattson 5000 FT-IR spectrophotometer (Unicam, UK) at 25 °C in the range of 400 to 4000 cm−1 [106,109]. 2—Yield and Solubility: the dry weight of the product extracted from 100 g of dried samples was applied in the yield equation. Solubility was tested in water, ethanol, 2% HCl and citric acid [110]. 3—Physical attributes: color, odor, state, stability and fire potential were observed and the energy consumption and cost were measured as discussed in part (a).
- (c)
- Potassium carbonate as a bulk potassium-nutrient source was characterized as follows: the carbonates of the ash were burnt at temperatures of 400 °C, 500 °C and 600 °C and ignition in the open air were estimated [111]. Color, odor, state, stability, solubility, fire potential were observed and FT-IR was determined [112]. In addition, the energy consumption and cost were measured as discussed in Part a.
- (d)
- Waste-derived NPK nano fertilizers were initially confirmed by UV-visible spectroscopy using a UV- spectrophotometer (UV-Visible Perkin Elmer Lamda) [112] followed by visualization with transmission electron microscope (TEM) (Jeol-jem-1011, Japan) to observe the morphology and particle size of dry ball-milled particles [113]. In addition, the particle size distribution was statistically studied [114].
4.3. Plant Material and Time Course Experiment
4.4. Measurements
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Do Espirito Santo Pereira, A.; Caixeta Oliveira, H.; Fernandes Fraceto, L.; Santaella, C. Nanotechnology Potential in Seed Priming for Sustainable Agriculture. Nanomaterials 2021, 11, 267. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Lowry, G.V.; Avellan, A.; Gilbertson, L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 2019, 14, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.R.; Chen, H.; Cui, H. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. J. Agric. Food Chem. 2018, 66, 6451–6456. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Chen, P.; Xie, Q.; Addy, M.; Zhou, W.; Liu, Y.; Wang, Y.; Cheng, Y.; Li, K.; Ruan, R. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresour. Technol. 2016, 215, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Riber, C.; Petersen, C.; Christensen, T.H. Chemical composition of material fractions in Danish household waste. Waste Manag. 2009, 29, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.; Datta, J.K.; Mondal, N.K. Recycling of municipal solid waste into valuable organic fertilizer towards rejuvenation of crop physiology, yield and soil health. Arch. Agron. Soil Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Yaseen, R.; Ahmed, A.I.S.; Mohamed, A.; Agha, M.K.M.; Emam, T.M. Nano-fertilizers: Bio-fabrication, application and biosafety. Nov. Res. Microbiol. J. 2020, 4, 884–900. [Google Scholar] [CrossRef]
- Wang, F.; Han, W.; Chen, S.; Dong, W.; Qiao, M.; Hu, C.; Liu, B. Fifteen-year application of manure and chemical fertilizers differently impacts soil ARGs and microbial community structure. Front. Microbiol. 2020, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; García-Estévez, I. Agricultural and Food Waste: Analysis, Characterization and Extraction of Bioactive Compounds and Their Possible Utilization. Foods 2020, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. Environ. Biodivers. Soil Secur. 2017, 1, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Tao, R.; Ling, N.; Chu, G. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil Tillage Res. 2017, 167, 30–38. [Google Scholar] [CrossRef]
- Tarafdar, J.; Raliya, R.; Mahawar, H.; Rathore, I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res. 2014, 3, 257–262. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 7. [Google Scholar] [CrossRef] [Green Version]
- Tapan, A.; Biswas, A.; Kundu, S. Nano-fertiliser-a new dimension in agriculture. Indian J. Fertil. 2010, 6, 22–24. [Google Scholar]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Achari, G.A.; Kowshik, M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [CrossRef]
- Morab, P.N.; Sumanth Kumar, G.; Akshay, K. Foliar nutrition of nano-fertilizers: A smart way to increase the growth and productivity of crops. J. Pharmacogn. Phytochem. 2021, 10, 1325–1330. [Google Scholar]
- Hussain, S.; Mumtaz, M.; Manzoor, S.; Shuxian, L.; Ahmed, I.; Skalicky, M.; Brestic, M.; Rastogi, A.; Ulhassan, Z.; Shafiq, I. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol. Biochem. 2021, 159, 43–52. [Google Scholar] [CrossRef]
- Malerba, M.; Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 2016, 17, 996. [Google Scholar] [CrossRef]
- Qureshi, A.; Singh, D.; Dwivedi, S. Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. Int. J. Curr. Microbiol. Appl. Sci 2018, 7, 3325–3335. [Google Scholar] [CrossRef] [Green Version]
- Arole, V.; Munde, S. Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J. Mater. Sci 2014, 1, 89–93. [Google Scholar]
- Satyanarayana, T.; Sudhakar, R. A Review on Chemical and Physical Synthesis Methods of Nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2321–9653. [Google Scholar] [CrossRef]
- Silva, Y.d.S.; Naval, L.P. Segregation of solid waste from a fish-processing industry: A sustainable action. Rev. Ambiente Água 2018, 13. [Google Scholar] [CrossRef]
- Cristóvao, R.O.; Botelho, C.M.; Martins, R.J.; Loureiro, J.M.; Boaventura, R.A. Fish canning industry wastewater treatment for water reuse–a case study. J. Clean. Prod. 2015, 87, 603–612. [Google Scholar] [CrossRef]
- Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 2010, 8, 1482–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; He, J.; Xie, H.; Wang, W.; Bose, S.K.; Sun, Y.; Hu, J.; Yin, H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int. J. Biol. Macromol. 2019, 126, 91–100. [Google Scholar] [CrossRef]
- Garcia, R.A.; Rosentrater, K.A. Concentration of key elements in North American meat & bone meal. Biomass Bioenergy 2008, 32, 887–891. [Google Scholar]
- Kivelä, J.; Chen, L.; Muurinen, S.; Kivijärvi, P.; Hintikainen, V.; Helenius, J. Effects of meat bone meal as fertilizer on yield and quality of sugar beet and carrot. Agric. Food Sci. 2015, 24, 68–83. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.d.; De Gracia, A.; Fernández, A. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Trinh, H.X.; Truong, N.X.; Van Dung, N.; Van Trinh, V. Production of dicalcium phosphate from lao cai second grade apatite ore leached by dilute hydrochloric acid. Vietnam. J. Sci. Technol. 2017, 55, 209. [Google Scholar] [CrossRef] [Green Version]
- Brennan, R.; Bolland, M. Effectiveness of dicalcium phosphate compared with superphosphate for wheat grown on acidic sandy soils. J. Plant Nutr. 2005, 28, 725–736. [Google Scholar] [CrossRef]
- Hussein, H.; Shaarawy, H.; Hussien, N.H.; Hawash, S. Preparation of nano-fertilizer blend from banana peels. Bull. Natl. Res. Cent. 2019, 43, 26. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, N.; Sulaiman, F.; Miskam, M.A.; Taib, R.M. Characterization of banana (Musa spp.) pseudo-stem and fruit-bunch-stem as a potential renewable energy resource. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 712–716. [Google Scholar]
- Liu, Q.; Meng, X.; Li, T.; Raza, W.; Liu, D.; Shen, Q. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: Possible role of increasing nutrient availabilities. Microorganisms 2020, 8, 1296. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, R.; Xue, C.; Zhang, S.; Li, S.; Zhang, N.; Shen, Q. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biol. Fertil. Soils 2012, 48, 807–816. [Google Scholar] [CrossRef]
- Sosulski, T.; Szara, E.; Szymańska, M.; Stępień, W. N2O emission and nitrogen and carbon leaching from the soil in relation to long-term and current mineral and organic fertilization-a laboratory study. Plant Soil Environ. 2017, 63, 97–104. [Google Scholar]
- Al-Juthery, H.; Ali, N.; Al-Taey, D.; Ali, E. The impact of foliar application of nanaofertilizer, seaweed and hypertonic on yield of potato. Plant Arch. 2018, 18, 2207–2212. [Google Scholar]
- Elemike, E.E.; Uzoh, I.M.; Onwudiwe, D.C.; Babalola, O.O. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl. Sci. 2019, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Zhao, Y. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydr. Res. 2011, 346, 1876–1884. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Wu, Y.-C.; Mi, F.-L.; Lin, Y.-H.; Yu, L.-C.; Sung, H.-W. A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 2004, 96, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Das, R.; Gaur, P. Preparation of chitosan nanoparticles and their in-vitro characterization. Int. J. Life Sci. Sci. Res. 2018, 4, 1713–1720. [Google Scholar] [CrossRef]
- Heidari, F.; Razavi, M.; Bahrololoom, M.E.; Tahriri, M.; Rasoulianboroujeni, M.; Koturi, H.; Tayebi, L. Preparation of natural chitosan from shrimp shell with different deacetylation degree. Mater. Res. Innov. 2018, 22, 177–181. [Google Scholar] [CrossRef]
- Czechowska, J.; Zima, A.; Paszkiewicz, Z.; Lis, J.; Ślósarczyk, A. Physicochemical properties and biomimetic behaviour of α-TCP-chitosan based materials. Ceram. Int. 2014, 40, 5523–5532. [Google Scholar] [CrossRef]
- Zhao, Y.; Ju, W.-T.; Jo, G.-H.; Jung, W.-J.; Park, R.-D. Perspectives of chitin deacetylase research. In Biotechnology of Biopolymers; Elnashar, M., Ed.; InTech: Rijeka, Crotia, 2011; pp. 131–144. [Google Scholar]
- El-Sayed, S.M.; El-Beltagy, A.E. Effect of extraction processing sequences on the physicochemical and functional properties of shrimp chitosans. Assiut J. Agric. Sci. 2011, 42, 17–30. [Google Scholar]
- Cho, Y.I.; No, H.K.; Meyers, S.P. Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem. 1998, 46, 3839–3843. [Google Scholar] [CrossRef]
- de Alvarenga, E.S. Characterization and properties of chitosan. Biotechnol. Biopolym. 2011, 91, 48–53. [Google Scholar]
- Labuda, M.; Saeid, A.; Chojnacka, K.; Górecki, H. Zastosowanie Bacillus megaterium w solubilizacji fosforu. Przemysł Chem. 2012, 91, 837–840. [Google Scholar]
- Edmeades, D. The agronomic effectiveness of lime-reverted and dicalcic superphosphates: A review. N. Zeal. J. Agric. Res. 2000, 43, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hagin, J.; Katz, S. Effectiveness of partially acidulated phosphate rock as a source to plants in calcareous soils. Fertil. Res. 1985, 8, 117–127. [Google Scholar] [CrossRef]
- Vecbiskena, L.; Gross, K.A.; Riekstina, U.; Yang, T.C.-K. Crystallized nano-sized alpha-tricalcium phosphate from amorphous calcium phosphate: Microstructure, cementation and cell response. Biomed. Mater. 2015, 10, 025009. [Google Scholar] [CrossRef] [PubMed]
- Deka, D.C.; Talukdar, N.N. Chemical and spectroscopic investigation of Kolakhar and its commercial importance. Ind. J. Tradit. Knowl. 2007, 6, 72–78. [Google Scholar]
- Dhewa, T. Nanotechnology applications in agriculture: An update. Octa J. Environ. Res. 2015, 3, 204–211. [Google Scholar]
- Das, D.; Bhutia, Z.T.; Chatterjee, A.; Banerjee, M. Mechanochemical Pd (II)-catalyzed direct and C-2-selective arylation of indoles. J. Org. Chem. 2019, 84, 10764–10774. [Google Scholar] [CrossRef]
- Rahman, M.; Halim, G.; Chowdhury, M.; Hossain, M.; Rahman, M. Changes in physicochemical attributes of sweet pepper (Capsicum annum L.) during fruit growth and development. Bangladesh J. Agric. Res. 2014, 39, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Nerdy, N. Determination of vitamin C in various colours of bell pepper (Capsicum annuum L.) by Titration Method. Alchemy J. Penelit. Kim. 2018, 14, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Stewart, W.; Dibb, D.; Johnston, A.; Smyth, T. The contribution of commercial fertilizer nutrients to food production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Naderi, M.; Danesh-Shahraki, A. Nanofertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 2013, 5, 2229–2232. [Google Scholar]
- Rajasekar, M.; Udhaya Nandhini, D.; Suganthi, S. Supplementation of mineral nutrients through foliar spray-A review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2504–2513. [Google Scholar]
- Elshamy, M.T.; Husseiny, S.M.; Farroh, K.Y. Application of nano-chitosan NPK fertilizer on growth and productivity of potato plant. J. Sci. Res. Sci. 2019, 36, 424–441. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.J.; Bahadur, V.; Prasad, V.; Mishra, S.; Shukla, P. Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2440–2445. [Google Scholar] [CrossRef]
- Elizabath, A.; Bahadur, V.; Misra, P.; Prasad, V.M.; Thomas, T. Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). J. Pharmacogn. Phytochem. 2017, 6, 1266–1269. [Google Scholar]
- Madkour, L.H. Nanotoxicity, Cytotoxicity, and Genotoxicity Mechanisms of Nanomaterials. In Nanoparticles Induce Oxidative and Endoplasmic Reticulum Stresses; Springer: Berlin/Heidelberg, Germany, 2020; pp. 47–98. [Google Scholar]
- Abu-Zahra, T.; Al-Ismail, K.; Shatat, F. Effect of organic and conventional systems on fruit quality of strawberry (fragaria× ananassa duch) grown under plastic house conditions in the Jordan Valley. In Proceedings of the I International Symposium on Fresh Food Quality Standards: Better Food by Quality and Assurance 741; 2006; pp. 159–171. Available online: https://www.ishs.org/ishs-article/741_18 (accessed on 1 April 2021).
- Al-Antary, T.M.; Kahlel, A.-M.S.; Ghidan, A.Y.; Asoufi, H.M. Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (vicia faba L.). Fresen. Environ. Bull 2020, 29, 4794–4798. [Google Scholar]
- Ghidan, A.Y.; Al-Antary, T.M.; Awwad, A.M.; Ayad, J.Y. Physiological effect of some nanomaterials on pepper (Capsicum annuum L.) plants. Fresenius Environ. Bull. 2018, 27, 7872–7878. [Google Scholar]
- Ciccarese, A.; Stellacci, A.M.; Gentilesco, G.; Rubino, P. Effectiveness of pre-and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biol. Technol. 2013, 75, 135–141. [Google Scholar] [CrossRef]
- Hazard, B.; Zhang, X.; Colasuonno, P.; Uauy, C.; Beckles, D.M.; Dubcovsky, J. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat. Crop. Sci. 2012, 52, 1754–1766. [Google Scholar] [PubMed]
- Kalbani, F.O.S.A.; Salem, M.A.; Cheruth, A.J.; Kurup, S.S.; Senthilkumar, A. Effect of some organic fertilizers on growth, yield and quality of tomato (Solanum lycopersicum). Int. Lett. Nat. Sci. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Hegazi, A.M.; El-Shraiy, A.M.; Ghoname, A. Growth, yield and nutritional quality of sweet pepper plants as affected by potassium and phosphate fertilizers varying in source and solubility. Curr. Sci. Int. 2017, 6, 445–457. [Google Scholar]
- Navarro, J.; Garrido, C.; Carvajal, M.; Martinez, V. Yield and fruit quality of pepper plants under sulphate and chloride salinity. J. Hortic. Sci. Biotechnol. 2002, 77, 52–57. [Google Scholar] [CrossRef]
- Esayas, K.; Shimelis, A.; Ashebir, F.; Negussie, R.; Tilahun, B.; Gulelat, D. Proximate composition, mineral content and antinutritional factors of some capsicum (Capsicum annum) varieties grown in Ethiopia. Bull. Chem. Soc. Ethiop. 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Aletan, U.; Kwazo, H. Analysis of the Proximate Composition, Anti-Nutrients and Mineral Content of Maerua Crassifolia Leaves. Niger. J. Basic Appl. Sci. 2019, 27, 89–96. [Google Scholar] [CrossRef]
- Ukam, N.U. The potentials of some lesser known vegetables. Niger. J. Nutr. Sci. 2008, 29, 299–305. [Google Scholar]
- Bernardo, A.; Martinez, S.; Alvarez, M.; Fernandez, A.; Lopez, M. The composition of two Spanish pepper varieties (Fresno de la Vega and Benavente-Los Valles) in different ripening stages. J. Food Qual. 2008, 31, 701–716. [Google Scholar] [CrossRef]
- Martínez, S.; Curros, A.; Bermúdez, J.; Carballo, J.; Franco, I. The composition of Arnoia peppers (Capsicum annuum L.) at different stages of maturity. Int. J. Food Sci. Nutr. 2007, 58, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel-Ikpeme, C.; Henry, P.; Okiri, O.A. Comparative evaluation of the nutritional, phytochemical and microbiological quality of three pepper varieties. J. Food Nutr. Sci. 2014, 2, 74–80. [Google Scholar] [CrossRef]
- Aremu, M.; Nweze, C.; Alade, P. Evaluation of protein and amino acid composition of selected spices grown in the middle belt region of Nigeria. Pak. J. Nutr. 2011, 10, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Anthon, G.E.; Barrett, D.M. Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem. 2012, 132, 915–920. [Google Scholar] [CrossRef]
- Garcia, E.; Barrett, D.M. Evaluation of processing tomatoes from two consecutive growing seasons: Quality attributes, peelability and yield. J. Food Process. Preserv. 2006, 30, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Akbudak, B. Effects of harvest time on the quality attributes of processed and non-processed tomato varieties. Int. J. Food Sci. Technol. 2010, 45, 334–343. [Google Scholar] [CrossRef]
- Estrada, B.; Bernal, M.A.; Díaz, J.; Pomar, F.; Merino, F. Fruit development in capsicum a nnuum: Changes in capsaicin, lignin, free phenolics, and peroxidase patterns. J. Agric. Food Chem. 2000, 48, 6234–6239. [Google Scholar] [CrossRef]
- Igwemmar, N.; Kolawole, S.; Imran, I. Effect of heating on vitamin C content of some selected vegetables. Int. J. Sci. Technol. Res. 2013, 2, 209–212. [Google Scholar]
- Li, Y.; Schellhorn, H.E. New developments and novel therapeutic perspectives for vitamin C. J. Nutr. 2007, 137, 2171–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Juárez, L.Á.; Molina-Quijada, D.M.; Sánchez, C.L.D.T.; González-Aguilar, G.A.; Gámez-Meza, N. Antioxidant activity of peppers (Capsicum annuum L.) extracts and characterization of their phenolic constituents. Interciencia 2012, 37, 588–593. [Google Scholar]
- Osuna-García, J.A.; Wall, M.M.; Waddell, C.A. Endogenous levels of tocopherols and ascorbic acid during fruit ripening of New Mexican-type chile (Capsicum annuum L.) cultivars. J. Agric. Food Chem. 1998, 46, 5093–5096. [Google Scholar] [CrossRef]
- Howard, L.; Talcott, S.; Brenes, C.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Aćamović-Đoković, G.; Pavlović, R.; Mladenović, J.; Đurić, M. Vitamin C content of different types of lettuce varieties. Acta Agric. Serbica 2011, 16, 83–89. [Google Scholar]
- Dong, W.; Zhang, X.; Wang, H.; Dai, X.; Sun, X.; Qiu, W.; Yang, F. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS ONE 2012, 7, e44504. [Google Scholar] [CrossRef] [Green Version]
- Obalum, S.; Chibuike, G.; Peth, S.; Ouyang, Y. Soil organic matter as sole indicator of soil degradation. Environ. Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef]
- Lee, S.B.; Lee, C.H.; Jung, K.Y.; Do Park, K.; Lee, D.; Kim, P.J. Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res. 2009, 104, 227–232. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin. Sci. Bull. 2006, 51, 1785–1803. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Mažeika, R.; Arbačiauskas, J.; Masevičienė, A.; Narutytė, I.; Šumskis, D.; Žičkienė, L.; Rainys, K.; Drapanauskaite, D.; Staugaitis, G.; Baltrusaitis, J. Nutrient Dynamics and Plant Response in Soil to Organic Chicken Manure-Based Fertilizers. Waste Biomass Valorization 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Farhat, N.; Vrouwenvelder, J.S.; Van Loosdrecht, M.C.; Bucs, S.S.; Staal, M. Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water Res. 2016, 103, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, M.; Mahmoud, A.E.D.; Fawzy, M.; Radwan, A. Artificial intelligence modeling of cadmium (II) biosorption using rice straw. Appl. Water Sci. 2017, 7, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Toan, N.V. Production of chitin and chitosan from partially autolyzed shrimp shell materials. Open Biomater. J. 2009, 1, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.H.; Cacace, J.E.; Mazza, G. Extraction of lignans, proteins and carbohydrates from flaxseed meal with pressurized low polarity water. LWT Food Sci. Technol. 2007, 40, 1637–1647. [Google Scholar] [CrossRef]
- Abdel-Aziz, H.; Hasaneen, M.N.; Omar, A. Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt. J. Bot. 2018, 58, 87–95. [Google Scholar] [CrossRef]
- Mirzadeh, H.; Yaghoubi, N.; Amanpour, S.; Ahmadi, H.; Mohagheghi, S.; Hormozi, F. Preparation of chitosan derived from shrimp’s shell of Persian Gulf as a blood hemostasis agent. Iran. Polym. J. 2002, 11, 63–68. [Google Scholar]
- Monteiro, O.A., Jr.; Airoldi, C. The influence of chitosans with defined degrees of acetylation on the thermodynamic data for copper coordination. J. Colloid Interface Sci. 2005, 282, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Gaur, P. A simple and effective method for preparation of chitosan from chitin. Int. J. Life. Sci. Sci. Res 2018, 41, 721–1728. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Hassan, A.M.; Nour, M.H. Utilization of chitosan extracted from shrimp shell waste in wastewater treatment as low cost biosorbent. Egypt. J. Chem. 2021, 64, 981–988. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Shah, N.; Ha, J.H.; Park, J.K. Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J. Chem. Eng. 2011, 28, 1736–1743. [Google Scholar] [CrossRef]
- Mukherjee, S.K. Energy policy and planning in India. Energy 1981, 6, 823–851. [Google Scholar] [CrossRef]
- Zhang, J.; Kamdem, D.P. FTIR characterization of copper ethanolamine—wood interaction for wood preservation. Holzforschung 2000, 54, 119–122. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [Google Scholar] [CrossRef]
- Sadek, M. Impact of the Invasive Ipomoea carnea Jacq. on Plant Diversity Along the Canal and Drain Banks of Nile Delta, Egypt. Catrina: Int. J. Environ. Sci. 2015, 11, 33–40. [Google Scholar]
- Stanienda-Pilecki, K.J. The importance of fourier transform infrared spectroscopy in the identification of carbonate phases differentiated in magnesium content. Spectroscopy 2019, 34, 32–42. [Google Scholar]
- Estrada-Urbina, J.; Cruz-Alonso, A.; Santander-González, M.; Méndez-Albores, A.; Vázquez-Durán, A. Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials 2018, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Caputo, F.; Clogston, J.; Calzolai, L.; Rösslein, M.; Prina-Mello, A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 2019, 299, 31–43. [Google Scholar] [CrossRef]
- Thakur, G.; Singh, A.; Maurya, P.K.; Patel, P.; Kumar, U. Effect of plant spacing on growth, flowering, fruiting and yield of Capsicum (Capsicum annuum L) hybrid buffalo under natural ventilated polyhouse. J. Pharmaco. Phytochem 2018, 1, 78–81. [Google Scholar]
- Kalra, Y.P. Determination of pH of soils by different methods: Collaborative study. J. Aoac Int. 1995, 78, 310–324. [Google Scholar] [CrossRef]
- Sohair, E.E.; Abdall, A.A.; Amany, A.M.; Houda, R.A. Effect of nitrogen, phosphorus and potassium nano fertilizers with different application times, methods and rates on some growth parameters of Egyptian cotton (Gossypium barbadense L.). Bioscience Research 2018, 15, 549–564. [Google Scholar]
- Turhan, A.; Ozmen, N.; Serbeci, M.; Seniz, V. Effects of grafting on different rootstocks on tomato fruit yield and quality. Hortic. Sci. 2011, 38, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Cottenie, A. Soil and Plant Testing as a Basis of Fertilizer Recommendations. FAO Soils Bull. 1980, 83, 118. [Google Scholar]
- Chapman, H.; Pratt, P. Methods of Plant Analysis. I. Methods of Analysis for Soils, Plants and Water; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1982. [Google Scholar]
- FAO/UNDP Study Tour to the People’s Republic of China. China: The Agricultural Training System: Report on an FAO/UNDP Study Tour to the People’s Republic of China 5 October to 2 November 1978; Food & Agriculture Organization: Quebec City, QC, Canada, 1980; Volume 11. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Blackwell Scientific Publications: Oxford, UK, 1974. [Google Scholar]
- Mannan, M. Foliar and soil fertilization effect on seed yield and protein content of soybean. Bangladesh Agron. J. 2014, 17, 67–72. [Google Scholar] [CrossRef]
- Peach, K.; Tracey, M.V. Modern Methods of Plant Analysis; Springer: Berlin/Heidelberg, Germany, 1955; Volume III and IV, pp. 258–261. [Google Scholar]
%DD | Crystallinity | %Ash | Solubility Time | % Yield | Energy Consumption (kW/h) | Energy Cost (Cent) | |
---|---|---|---|---|---|---|---|
α-CS1 | 81.46 a | 1.18 c | 0.9 c | 817 d | 26.51 c | 16 c | 43.30 c |
α-CS2 | 84.92 b | 1.12 bc | 0.48 b | 722 c | 24.33 a | 0.3 a | 0.76 a |
α-CS3 | 86.75 c | 0.96 a | 0.41 a | 580 a | 26.65 d | 2.3 b | 5.60 b |
α-CS4 | 85.48 b | 1.05 b | 0.45 b | 624 b | 25.70 b | 2.3 b | 5.60 b |
β-CS1 | 87.98 a | 1.55 c | 0.79 c | 547 c | 33.33 a | 12 c | 28.99 c |
β-CS2 | 91.35 b | 0.57 a | 0.35 a | 441 a | 40.07 c | 0.3 a | 0.76 a |
β-CS3 | 90.67 b | 0.88 b | 0.54 b | 469 b | 36.47 b | 4.4 b | 10.64 b |
T | FT | FN | FST | %FS | FHT | MHT | 6FW | FWav | PDP | Yg | Yf | Ys |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 39.00 f | 8.80 abc | 47.00 d | 51.33 b | 28.00 c | 68.00 d | 179.00 b | 28.25 a | 25.81 f | 175.17 e | 6.20 d | 97.35 a |
α-nano NPK10 | 35.00 de | 9.20 abc | 39.00 c | 53.67 b | 24.00 b | 60.00 c | 184.33 c | 29.73 b | 8.00 c | 148.66 d | 5.00 c | 263.24 d |
α-nano NPK25 | 31.00 a | 10.80 c | 34.00 a | 55.71 b | 24.00 b | 55.00 a | 412.67 h | 50.84 i | 5.13 b | 396.52 j | 7.80 e | 313.33 e |
α-nano NPK50 | 33.00 bc | 9.60 abc | 37.00 b | 58.43 b | 24.00 b | 58.00 b | 315.33 f | 46.30 g | 2.78 a | 333.38 i | 7.20 de | 186.79 b |
α-nano NPK100 | 36.00 e | 8.40 abc | 40.00 c | 38.00 ab | 24.00 b | 61.00 c | 178.00 b | 30.94 c | 15.00 e | 123.77 c | 4.00 bc | 175.07 b |
β-nano NPK10 | 34.00 cd | 7.60 ab | 37.00 b | 52.00 b | 23.00 b | 58.00 b | 259.00 d | 40.42 e | 2.86 a | 282.91 h | 7.00 de | 230.43 c |
β-nano NPK25 | 33.00 bc | 10.00 bc | 33.00 a | 57.57 b | 22.00 a | 54.00 a | 277.00 e | 43.16 f | 3.13 a | 276.24 g | 6.40 d | 272.23 d |
β-nano NPK50 | 45.00 g | 6.80 a | 58.00 e | 23.33 a | 39.00 e | 79.00 e | 178.00 b | 31.55 d | 11.77 d | 107.29 b | 3.40 ab | 107.25 a |
β-nano NPK100 | 46.00 g | 6.80 a | 58.00 e | 25.00 a | 33.00 d | 79.00 e | 170.33 a | 30.80 c | 15.39 e | 80.077 a | 2.60 a | 200.12 b |
CF | 36.00 e | 9.60 abc | 39.00 c | 31.33 a | 25.00 b | 60.00 c | 334.66 g | 47.94 h | 15.79 e | 210.94 f | 3.80 b | 325.66 e |
T | BN | RL | RFW | RDW | RWC | |
---|---|---|---|---|---|---|
C | 2.25 a | 22.20 a | 2.53 a | 1.37 a | 36.95 a | |
α-nano NPK10 | 3.00 ab | 28.20 ab | 5.59 bc | 2.58 ab | 35.07 a | |
α-nano NPK25 | 2.75 ab | 29.10 b | 6.05 bc | 2.37 ab | 52.43 ab | |
α-nano NPK50 | 2.50 ab | 27.00 ab | 5.14 ab | 2.88 b | 42.53 ab | |
α-nano NPK100 | 2.75 ab | 22.00 a | 3.32 ab | 1.78 ab | 28.97 a | |
β-nano NPK10 | 3.25 ab | 25.40 ab | 4.75 ab | 2.33 ab | 33.53 a | |
β-nano NPK25 | 2.75 ab | 30.80 b | 8.32 c | 2.98 b | 73.13 b | |
β-nano NPK50 | 3.50 ab | 26.30 ab | 4.26 ab | 1.88 ab | 44.62 ab | |
β-nano NPK100 | 3.00 ab | 25.80 ab | 3.58 ab | 1.62 a | 33.40 a | |
CF | 3.75 b | 22.30 a | 3.75 ab | 2.14 ab | 27.29 a | |
T | SFW | SDW | RWC | LFW | LDW | RWC |
C | 8.20 a | 4.63 a | 31.33 a | 14.59 a | 4.30ab | 18.79 a |
α-nano NPK10 | 13.80 ab | 5.74 abc | 56.45 ab | 23.92 ab | 5.58 ab | 25.11 c |
α-nano NPK25 | 19.60 b | 6.37 c | 108.67 b | 33.47 b | 6.34 b | 18.19 a |
α-nano NPK50 | 15.60 ab | 6.31 c | 62.02 ab | 18.30 ab | 3.90 a | 19.61 ab |
α-nano NPK100 | 8.40 a | 5.07 abc | 37.46 a | 15.05 a | 4.28 ab | 18.73 a |
β-nano NPK10 | 16.00 ab | 6.35 c | 66.39 ab | 25.41 ab | 5.73 ab | 18.86 a |
β-nano NPK25 | 16.60 ab | 6.26 bc | 69.45 ab | 28.82 ab | 5.62 ab | 41.63 d |
β-nano NPK50 | 9.40 a | 4.68 ab | 48.55 a | 15.07 a | 3.83 a | 20.44 abc |
β-nano NPK100 | 8.80 a | 4.27 a | 47.98 a | 15.37 a | 3.88 a | 24.41 bc |
CF | 10.00 a | 5.62 abc | 35.60 a | 14.85 a | 4.90 ab | 19.97 abc |
T | Physical Properties | Chemical Properties (mg/100 g DW) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FL | FW | FSI | N | P | K+ | Ca2+ | Cu | Fe | Zn | Mn | ||
C | 7.88 a | 9.76 a | 0.81 bc | 138.05 a | 28.02 a | 203.01 a | 87.20 a | 0.470 a | 1.040 a | 1.306 b | 1.001 a | |
α-nano NPK10 | 8.38 ab | 12.56 b | 0.67 ab | 377.46 c | 29.47 a | 308.41 b | 109.75 ab | 0.765 b | 2.110 b | 2.908 e | 1.071 a | |
α-nano NPK25 | 14.81 d | 16.48 e | 0.90 c | 486.40 e | 50.40 c | 325.67 b | 163.70 de | 1.826 d | 3.685 cd | 3.173 f | 1.100 ab | |
α-nano NPK50 | 9.54 bc | 14.60 bcde | 0.65 a | 422.76 d | 37.18 b | 320.75 b | 134.13 bc | 1.387 c | 4.002 d | 2.194 d | 1.106 ab | |
α-nano NPK100 | 8.88 ab | 12.48 b | 0.71 ab | 390.37 cd | 44.10 c | 323.40 b | 100.73 a | 1.364 c | 3.497 c | 2.271 d | 1.099 ab | |
β-nano NPK10 | 8.71 ab | 13.14 bc | 0.66 ab | 489.38 e | 58.71 d | 361.31 c | 144.35 cd | 1.803 d | 4.030 d | 2.909 e | 1.106 ab | |
β-nano NPK25 | 10.82 c | 15.42 de | 0.70 ab | 502.12 e | 84.01 e | 358.86 c | 172.82 e | 1.777 d | 4.113 d | 3.112 f | 1.095 ab | |
β-nano NPK50 | 9.33 abc | 13.68 bcd | 0.68 ab | 288.76 b | 27.67 a | 311.51 b | 88.91 a | 0.632 ab | 2.094 b | 1.822 c | 1.094 ab | |
β-nano NPK100 | 9.02 ab | 12.58 b | 0.72 ab | 281.28 b | 29.15 a | 207.93 a | 88.21 a | 0.456 a | 1.277 a | 0.924 a | 1.059 a | |
CF | 9.47 bc | 15.19 cde | 0.62 a | 404.72 cd | 60.78 d | 361.52 c | 114.50 ab | 1.164 c | 4.072 d | 2.965 e | 1.229 b | |
Soil | ||||||||||||
Physical Properties | Chemical Properties | |||||||||||
(ds.m−1) | % | ppm | Ions mequ./100 g dry soil | mg/kg dry soil | ||||||||
pH | E.C. | SOM. | CO32− | N | P | K+ | Ca2+ | Cu | Fe | Zn | Mn | |
Before cropping | 6.01 f | 2.64 b | 6.33 k | 0.009 g | 168.07 k | 63.93 k | 0.560 i | 2.55 k | 1.444 i | 5.33 g | 9.111 d | 5.787 k |
C | 7.34 k | 1.54 a | 3.20 j | 0.010 h | 18.10 a | 8.05 a | 0.114 a | 1.49 d | 0.005 a | 0.681 a | 0.091 a | 1.005 b |
α-nano NPK10 | 5.82 c | 3.85 g | 1.96 a | 0.003 b | 33.02 b | 17.04 b | 0.215 b | 1.62 f | 0.052 f | 1.408 d | 0.542 c | 1.956 j |
α-nano NPK25 | 5.67 a | 4.60 i | 2.00 b | 0.002 a | 37.03 d | 22.09 g | 0.260 c | 1.08 a | 0.064 h | 1.372 d | 0.565 c | 1.815 i |
α-nano NPK50 | 5.86 d | 4.62 j | 2.08 c | 0.005 c | 39.07 e | 19.11 d | 0.292 e | 1.28 b | 0.052 f | 1.687 e | 0.421 b | 1.768 h |
α-nanoNPK100 | 7.09 j | 3.63 e | 3.02 i | 0.008 f | 56.70 f | 19.81 e | 0.336 f | 1.89 j | 0.047 d | 1.097 c | 0.069 a | 1.008 c |
β-nano NPK10 | 5.97 e | 4.33 h | 2.17 e | 0.005 d | 58.01 g | 20.45 f | 0.341 f | 1.74 g | 0.056 g | 1.741 f | 0.334 b | 1.415 g |
β-nano NPK25 | 5.80 b | 4.73 k | 2.13 d | 0.005 d | 72.70 j | 31.78 h | 0.350 g | 1.61 e | 0.052 f | 1.400 d | 0.618 c | 1.398 f |
β-nano NPK50 | 7.01 h | 3.71 f | 2.37 g | 0.010 h | 72.08 i | 38.11 i | 0.376 h | 1.83 h | 0.042 c | 1.001 b | 0.087 a | 1.003 a |
β-nano NPK100 | 7.03 i | 3.53 d | 2.45 h | 0.009 g | 72.02 h | 44.56 j | 0.376 h | 1.87 i | 0.041 b | 1.003 b | 0.071 a | 1.074 e |
CF | 6.65 g | 2.98 c | 1.02 b | 0.007 e | 35.01 c | 17.71 c | 0.281 d | 1.43 c | 0.049 e | 1.754 f | 0.612 c | 1.017 d |
T | %Moisture | %Ash | Crude Fats | Crude Fibers | Total Carbohydrates | Total Protein | Vit. C |
---|---|---|---|---|---|---|---|
C | 93.58 i | 0.93 a | 0.69 a | 3.03 a | 0.86 a | 0.91 a | 49.75 a |
α-nano NPK10 | 83.86 e | 4.12 d | 1.38 c | 5.57 c | 2.59 de | 2.49 c | 49.75 a |
α-nano NPK25 | 78.94 b | 6.63 i | 1.64 e | 7.11 d | 2.48 de | 3.21 e | 76.00 f |
α-nano NPK50 | 78.11 a | 5.21 f | 2.77 g | 9.36 e | 1.76 bc | 2.79 d | 64.65 e |
α-nano NPK100 | 83.30 d | 5.19 f | 1.99 f | 5.27 c | 1.67 bc | 2.58 cd | 61.97 d |
β-nano NPK10 | 79.85 c | 5.85 g | 1.07 b | 7.36 d | 2.64 de | 3.23 e | 53.52 b |
β-nano NPK25 | 78.90 b | 6.05 h | 1.475 d | 7.43 d | 2.83 e | 3.31 e | 61.97 d |
β-nano NPK50 | 87.10 g | 3.57 c | 1.68 e | 4.19 b | 1.55 b | 1.91 b | 56.34 c |
β-nano NPK100 | 87.60 h | 3.20 b | 1.65 e | 4.18 b | 1.52 b | 1.86 b | 49.75 a |
CF | 84.81 f | 4.34 e | 1.98 f | 4.06 b | 2.13 cd | 2.67 cd | 87.00 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Aziz, H.M.M.; Soliman, M.I.; Abo Al-Saoud, A.M.; El-Sherbeny, G.A. Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L. Plants 2021, 10, 1144. https://doi.org/10.3390/plants10061144
Abdel-Aziz HMM, Soliman MI, Abo Al-Saoud AM, El-Sherbeny GA. Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L. Plants. 2021; 10(6):1144. https://doi.org/10.3390/plants10061144
Chicago/Turabian StyleAbdel-Aziz, Heba M. M., Magda I. Soliman, Aml M. Abo Al-Saoud, and Ghada A. El-Sherbeny. 2021. "Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L." Plants 10, no. 6: 1144. https://doi.org/10.3390/plants10061144
APA StyleAbdel-Aziz, H. M. M., Soliman, M. I., Abo Al-Saoud, A. M., & El-Sherbeny, G. A. (2021). Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L. Plants, 10(6), 1144. https://doi.org/10.3390/plants10061144