Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature
Abstract
:1. Introduction
2. Results
2.1. The Autoimmunity Activated by Dual Overexpression of EDS1 and PAD4 Is Not Suppressed at Elevated Temperatures
2.2. Selection of Promoters That Are Induced at Elevated Temperature
2.3. Construction of Transgenic Lines Harboring Temperature-Inducible EDS1 and PAD4
2.4. Temperature-Controlled Expression of EDS1 and PAD4 Confers Enhanced Resistance to Bacterial Pathogens at Elevated Temperatures
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Growth Conditions and Pathogen Strains
4.2. Golden Gate Cloning and Generation of Arabidopsis Transgenic Lines
4.3. Pathogen Infection Assays
4.4. RNA Analysis
4.5. Protein Extraction and Immunoblotting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Feng, B.; Zhou, J.M.; Tang, D. Plant immune signaling: Advancing on two frontiers. J. Integr. Plant Biol. 2020, 62, 2–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Qiu, J.L. Genome editing for plant disease resistance: Applications and perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180322. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 2018, 19, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.F.; Nomura, K.; Aung, K.; Velasquez, A.C.; Yao, J.; Boutrot, F.; Chang, J.H.; Zipfel, C.; He, S.Y. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 2016, 539, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Huot, B.; Castroverde, C.D.M.; Velasquez, A.C.; Hubbard, E.; Pulman, J.A.; Yao, J.; Childs, K.L.; Tsuda, K.; Montgomery, B.L.; He, S.Y. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat. Commun. 2017, 8, 1808. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, X.; Feng, B.; Sheen, J.; Shan, L.; He, P. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 2013, 4, 2530. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.F.; He, S.Y. Pseudomonas syringae pv. tomato DC3000: A model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 2013, 51, 473–498. [Google Scholar] [CrossRef]
- Yang, S.; Hua, J. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 2004, 16, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Mang, H.G.; Qian, W.; Zhu, Y.; Qian, J.; Kang, H.G.; Klessig, D.F.; Hua, J. Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. Plant Cell 2012, 24, 1271–1284. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Qian, W.; Hua, J. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 2010, 6, e1000844. [Google Scholar] [CrossRef]
- Whitham, S.; Dinesh-Kumar, S.P.; Choi, D.; Hehl, R.; Corr, C.; Baker, B. The product of the Tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor. Cell 1994, 78, 1101–1115. [Google Scholar] [CrossRef]
- Lapin, D.; Bhandari, D.D.; Parker, J.E. Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 2020, 58, 253–276. [Google Scholar] [CrossRef]
- Feys, B.J.; Moisan, L.J.; Newman, M.A.; Parker, J.E. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J. 2001, 20, 5400–5411. [Google Scholar] [CrossRef]
- Feys, B.J.; Wiermer, M.; Bhat, R.A.; Moisan, L.J.; Medina-Escobar, N.; Neu, C.; Cabral, A.; Parker, J.E. Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell 2005, 17, 2601–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, S.; Stuttmann, J.; Rietz, S.; Guerois, R.; Brunstein, E.; Bautor, J.; Niefind, K.; Parker, J.E. Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe. 2013, 14, 619–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Gobbato, E.; Kracher, B.; Qiu, J.; Bautor, J.; Parker, J.E. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 2017, 213, 1802–1817. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Qiu, J.; Zhou, Y.; Bhandari, D.D.; Zhao, C.; Bautor, J.; Parker, J.E. Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity. Mol. Plant 2018, 11, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, K.; Tsuda, K.; Blanvillain-Baufume, S.; Wirthmueller, L.; Bautor, J.; Parker, J.E. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front. Plant Sci. 2013, 4, 403. [Google Scholar] [CrossRef] [Green Version]
- Jacob, F.; Kracher, B.; Mine, A.; Seyfferth, C.; Blanvillain-Baufume, S.; Parker, J.E.; Tsuda, K.; Schulze-Lefert, P.; Maekawa, T. A dominant-interfering camta3 mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in Arabidopsis thaliana. New Phytol. 2018, 217, 1667–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidrich, K.; Wirthmueller, L.; Tasset, C.; Pouzet, C.; Deslandes, L.; Parker, J.E. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 2011, 334, 1401–1404. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Halane, M.K.; Kim, S.H.; Gassmann, W. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 2011, 334, 1405–1408. [Google Scholar] [CrossRef]
- Clarke, J.D.; Aarts, N.; Feys, B.J.; Dong, X.; Parker, J.E. Constitutive disease resistance requires EDS1 in the Arabidopsis mutants cpr1 and cpr6 and is partially EDS1-dependent in cpr5. Plant J. 2001, 26, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Carstens, M.; McCrindle, T.K.; Adams, N.; Diener, A.; Guzha, D.T.; Murray, S.L.; Parker, J.E.; Denby, K.J.; Ingle, R.A. Increased resistance to biotrophic pathogens in the Arabidopsis constitutive induced resistance 1 mutant is EDS1 and PAD4-dependent and modulated by environmental temperature. PLoS ONE 2014, 9, e109853. [Google Scholar]
- Li, X.; Clarke, J.D.; Zhang, Y.; Dong, X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol. Plant Microbe Interact 2001, 14, 1131–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chern, M.; Fitzgerald, H.A.; Canlas, P.E.; Navarre, D.A.; Ronald, P.C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant Microbe Interact 2005, 18, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Gurr, S.J.; Rushton, P.J. Engineering plants with increased disease resistance: How are we going to express it? Trends Biotechnol. 2005, 23, 283–290. [Google Scholar] [CrossRef]
- Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.M.; Werner, S.; Jones, J.D.; Patron, N.J.; Marillonnet, S. A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 2014, 3, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gantner, J.; Ordon, J.; Kretschmer, C.; Guerois, R.; Stuttmann, J. An EDS1-SAG101 Complex Is Essential for TNL-Mediated Immunity in Nicotiana benthamiana. Plant Cell 2019, 31, 2456–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene ID | 0 h-Average | 24 h-Average | 2 h-Average | 8 h-Average | 0 h vs. 24 h-FD | 0 h vs. 2 h-FD | 0 h vs. 8 h-FD |
---|---|---|---|---|---|---|---|
AT3G12580 | 3982.4 | 54.5 | 140.4 | 42.1 | 73.0 | 28.4 | 94.5 |
AT1G62510 | 3823.5 | 188.9 | 2727.7 | 52.1 | 20.2 | 1.4 | 73.4 |
AT5G12110 | 3711.1 | 186.1 | 551.7 | 87.9 | 19.9 | 6.7 | 42.2 |
AT3G28270 | 2741.2 | 130.0 | 595.2 | 57.4 | 21.1 | 4.6 | 47.8 |
AT5G48570 | 1333.9 | 17.8 | 69.0 | 15.2 | 74.9 | 19.3 | 87.8 |
AT5G12020 | 1093.1 | 14.9 | 128.0 | 12.5 | 73.4 | 8.5 | 87.6 |
AT5G52640 | 952.1 | 25.8 | 32.7 | 15.2 | 37.0 | 29.1 | 62.8 |
AT1G55260 | 833.1 | 114.6 | 619.2 | 404.2 | 7.3 | 1.3 | 2.1 |
AT1G60590 | 667.1 | 90.7 | 52.7 | 12.0 | 7.4 | 12.7 | 55.4 |
AT3G46230 | 512.1 | 17.1 | 52.4 | 12.5 | 29.9 | 9.8 | 40.8 |
AT1G17870 | 386.1 | 53.2 | 134.4 | 34.6 | 7.3 | 2.9 | 11.2 |
AT5G51440 | 372.0 | 10.3 | 14.1 | 9.7 | 36.1 | 26.3 | 38.2 |
AT4G26790 | 331.2 | 16.1 | 90.9 | 17.2 | 20.5 | 3.6 | 19.2 |
AT1G02205 | 304.0 | 15.4 | 478.5 | 39.6 | 19.7 | 0.6 | 7.7 |
AT2G29500 | 273.2 | 15.4 | 22.9 | 17.9 | 17.7 | 11.9 | 15.3 |
AT4G12400 | 270.0 | 11.4 | 15.6 | 10.4 | 23.8 | 17.3 | 26.0 |
AT1G72970 | 206.8 | 30.6 | 251.8 | 64.2 | 6.8 | 0.8 | 3.2 |
AT5G12030 | 200.2 | 9.7 | 9.8 | 9.2 | 20.6 | 20.3 | 21.7 |
AT1G07400 | 158.2 | 11.5 | 10.1 | 10.6 | 13.8 | 15.6 | 15.0 |
AT1G53540 | 120.0 | 13.5 | 22.2 | 14.1 | 8.9 | 5.4 | 8.5 |
Gene ID | 0 h-Average | 4 h-Average | 8 h-Average | 0 h vs. 4 h_FD | 0 h vs. 8 h_FD |
---|---|---|---|---|---|
AT5G48570 | 12139.3 | 1279.0 | 242.0 | 9.5 | 50.2 |
AT5G12110 | 11136.3 | 974.3 | 309.7 | 11.4 | 36.0 |
AT1G02205 | 3978.5 | 1111.8 | 608.7 | 3.6 | 6.5 |
AT3G12580 | 3647.3 | 368.7 | 14.0 | 9.9 | 260.5 |
AT5G52640 | 3336.3 | 218.3 | 22.7 | 15.3 | 147.2 |
AT4G12400 | 2415.5 | 114.3 | 22.7 | 21.1 | 106.6 |
AT1G60590 | 1182.2 | 260.0 | 27.5 | 4.5 | 43.0 |
AT1G17870 | 876.7 | 128.3 | 67.3 | 6.8 | 13.0 |
AT5G51440 | 620.3 | 82.7 | 6.0 | 7.5 | 103.4 |
AT4G26790 | 385.3 | 155.3 | 99.7 | 2.5 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, J.; Tu, W.; Hou, Y.; Cui, H. Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature. Plants 2021, 10, 1258. https://doi.org/10.3390/plants10061258
Leng J, Tu W, Hou Y, Cui H. Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature. Plants. 2021; 10(6):1258. https://doi.org/10.3390/plants10061258
Chicago/Turabian StyleLeng, Junchen, Weishan Tu, Yanbing Hou, and Haitao Cui. 2021. "Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature" Plants 10, no. 6: 1258. https://doi.org/10.3390/plants10061258
APA StyleLeng, J., Tu, W., Hou, Y., & Cui, H. (2021). Temperature-Inducible Transgenic EDS1 and PAD4 in Arabidopsis Confer an Enhanced Disease Resistance at Elevated Temperature. Plants, 10(6), 1258. https://doi.org/10.3390/plants10061258