Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts
Abstract
:1. Introduction
2. Results
2.1. The Total Phenolic, Total Flavonoid, Total Tannins, Total Monomeric Anthocyanins and Lycopene Content
2.2. Antioxidant Properties
2.3. Lipid Peroxidation Assay
2.4. Advance Oxidation Protein Products (AOPP) Assay
2.5. Advance Glycation End Products (AGEs) Assay
2.6. High-Performance Liquid Chromatography (HPLC) Analysis
2.7. Sperm Viability
2.8. Antioxidant Properties in Sperm
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Collection and Extraction
4.3. Total Phenolic Contents
4.4. Total Flavonoids Contents
4.5. Total Tannins Content
4.6. Total Monomeric Anthocyanins
4.7. Lycopene Content Analysis
4.8. Antioxidant Properties
4.8.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Assay
4.8.2. 2,2′-Azino-di-[3-Ethylbenzthiazoline Sulfonate] (ABTS) Radical Scavenging Assay
4.8.3. Hydrogen Peroxide Scavenging Assay
4.8.4. Reducing Power Assay
4.9. Lipid Peroxidation Assay
4.10. Inhibition of Advance Oxidation Protein Products (AOPP) Formation
4.11. Inhibition of Advance Glycation End Products (AGEs) Formation
4.12. Analysis of Phytochemical Content by High-Performance Liquid Chromatography (HPLC)
4.13. Sperm Viability
4.14. Antioxidant Properties in Sperm
4.14.1. Lipid Peroxidation (LPO) Assay
4.14.2. Inhibition of Advance Oxidation Protein Products (AOPP) Formation
4.14.3. Inhibition of Advance Glycation End Products (AGEs) Formation
4.14.4. Ferric-Xylenol Orange (FOX1) Assay
4.14.5. Ferric Reducing Antioxidant Power (FRAP) Assay
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheikh, S.A. Ethno-medicinal uses and pharmacological activities of lotus (Nelumbo nucifera). J. Med. Plants Stud. 2014, 2, 42–46. [Google Scholar]
- Tungmunnithum, D.; Pinthong, D.; Hano, C. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: Uses in traditional medicine, phytochemistry and pharmacological activities. Medicines 2018, 5, 127. [Google Scholar] [CrossRef] [Green Version]
- Yadav, C.; Chaubey, S.; Singh, T.; Singh, D.C.; Kumari, S. A intact review on Nelumbo nucifera W.S.R to its therapeutic potential. Int. J. Ayurveda Pharm. Res. 2016, 4, 43–51. [Google Scholar]
- Chauhan, A.; Sharma, K.; Chauhan, S.; Agarwal, M. Pharmacological evaluation for the antifertility effect of the ethanolic seed extract of Nelumbo nucifera (Sacred Lotus). Pharmacologyonline 2009, 2, 636–643. [Google Scholar]
- Wethangkaboworn, Y.; Munglue, P. Effect of ethanolic seed extract of Nelumbo nucifera on male rat sexual behavior. Asia Pac. J. Sci. Technol. 2014, 19, 156–161. [Google Scholar]
- Bi, S.; Banumathi, V.; Anbu, J.; Anjana, A.; Kumar, M.P. Aphrodisiac activity of venthamarai magarantha chooranam (stamens of Nelumbo nucifera white variety) on healthy wister albino rats. Pharm. Sci. 2012, 2, 44–50. [Google Scholar]
- Laoung-on, J.; Sudwan, P. Effect of Nelumbo nucifera petal tea and Moringa oleifera leaf tea on rats sperm viability in vitro. In Proceedings of the 37th MST International Conference, Nakhonratchasima, Thailand, 25–28 February 2020; pp. 220–225. [Google Scholar]
- Ministry of Public Health. Thai Hercal Pharmacopoeia; Ministry of Public Health: Nontaburi, Thailand, 2019; Volume 1. [Google Scholar]
- Yamini, R.; Kannan, M.; Thamaraisevi, S.; Uma, D.; Santhi, R. Phytochemical screening and nutritional analysis of Nelumbo nucifera (Pink lotus) rhizomes to validate its edible value. Int. J. Pharmacogn. Phytochem. 2019, 8, 3612–3616. [Google Scholar]
- Prabsattroo, T.; Wattanathorn, J.; Iamsaard, S.; Somsapt, P.; Sritragool, O.; Thukhummee, W.; Muchimapura, S. Moringa oleifera extract enhances sexual performance in stressed rats. J. Zhejiang Univ. Sci. B 2015, 16, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, S.; Jeyabalan, G.; Ali, A. An overview on traditional medicinal plants as aphrodisiac agent. Int. J. Pharmacogn. Phytochem. 2012, 1, 43–56. [Google Scholar]
- Sedha, S.; Kumar, S.; Shukla, S. Role of oxidative stress in male reproductive dysfunctions with reference to phthalate compounds. Urol. J. 2015, 12, 2304–2316. [Google Scholar]
- Bansal, A.; Bilaspuri, G. Effect of ferrous sulphate and ascorbic acid on motility, viability and lipid peroxidation of crossbred cattle bull spermatozoa. Animal 2008, 2, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of oxidative stress on male reproduction. World J. Mens. Health 2014, 32, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Darbandi, M.; Darbandi, S.; Agarwal, A.; Sengupta, P.; Durairajanayagam, D.; Henkel, R.; Sadeghi, M.R. Reactive oxygen species and male reproductive hormones. Reprod. Biol. Endocrin. 2018, 16, 87. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liang, P.; Yin, C.; Wang, T.; Li, H.; Li, Y.; Ye, Z. Effects of several Chinese herbal aqueous extracts on human sperm motility in vitro. Andrologia 2004, 36, 78–83. [Google Scholar] [CrossRef]
- Cocuzza, M.; Sikka, S.C.; Athayde, K.S.; Agarwal, A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: An evidence based analysis. Int. Braz. J. Urol. 2007, 33, 603–621. [Google Scholar] [CrossRef]
- Yotarlai, S.; Chaisuksunt, V.; Saenphet, K.; Sudwan, P. Effects of Boesenbergia rotunda juice on sperm qualities in male rats. J. Med. Plants Res. 2011, 5, 3861–3867. [Google Scholar]
- Mbah, C.; Orabueze, I.; Okorie, N. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological systems. Acta Sci. Pharm. Sci. 2019, 3, 28–42. [Google Scholar] [CrossRef]
- Lee, B.M.; Park, K.-K. Beneficial and adverse effects of chemopreventive agents. Mutat. Res. 2003, 523, 265–278. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Haminiuk, C.W.; Plata-Oviedo, M.S.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. [Google Scholar] [CrossRef] [Green Version]
- Thavamoney, N.; Sivanadian, L.; Tee, L.H.; Khoo, H.E.; Prasad, K.N.; Kong, K.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents. J. Food Sci. Technol. 2018, 55, 2523–2532. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. 2006, 41, 1523–1542. [Google Scholar] [CrossRef] [PubMed]
- Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Obiero, D.K. Comparative analysis of total tannins in Plectranthus barbatus Andrews water, acetone and methanolic extracts in Kenya. J. Phytopharmacol. 2017, 7, 293–296. [Google Scholar]
- Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 2003, 417, 12–17. [Google Scholar] [CrossRef]
- Oancea, S.; Stoia, M.; Coman, D. Effects of extraction conditions on bioactive anthocyanin content of Vaccinium corymbosum in the perspective of food applications. Proc. Eng. 2012, 42, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Limwachiranon, J.; Huang, H.; Shi, Z.; Li, L.; Luo, Z. Lotus flavonoids and phenolic acids: Health promotion and safe consumption dosages. Compr. Rev. Food Sci. Food Saf. 2018, 17, 458–471. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radic. Res. 1997, 26, 195–199. [Google Scholar] [CrossRef]
- Piwowar, A.; Rorbach-Dolata, A.; Fecka, I. The antiglycoxidative ability of selected phenolic compounds—An in vitro study. Molecules 2019, 24, 2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouitrakul, S.; Sukprasert, M.; Treetampinich, C.; Choktanasiri, W.; Sakda Arj-Ong, V. The effect of different timing after ejaculation on sperm motility and viability in semen analysis at room temperature. J. Med. Assoc. Thai. 2018, 101, 26–32. [Google Scholar]
- Fénichel, P.; Gharib, A.; Emiliozzi, C.; Donzeau, M.; Ménézo, Y. Stimulation of human sperm during capacitation in vitro by an adenosine agonist with specificity for A2 receptors. Biol. Reprod. 1996, 54, 1405–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khachitpongpanit, S.; Singhatong, S.; Sastraruji, T.; Jaikang, C. Phytochemical study of Ruellia tuberosa chloroform extract: Antioxidant and anticholinesterase activities. Der. Pharm. 2016, 8, 238–244. [Google Scholar]
- Haile, M.; Kang, W.H. Antioxidant activity, total polyphenol, flavonoid and tannin contents of fermented green coffee beans with selected yeasts. Fermentation 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Kopjar, M.; Orsolic, M.; Pilizota, V. Anthocyanins, phenols, and antioxidant activity of sour cherry puree extracts and their stability during storage. Int. J. Food Prop. 2014, 17, 1393–1405. [Google Scholar] [CrossRef]
- Suwanaruang, T. Analyzing lycopene content in fruits. Agric. Agric. Sci. Proc. 2016, 11, 46–48. [Google Scholar] [CrossRef]
- Cavallo, P.; Dini, I.; Sepe, I.; Galasso, G.; Fedele, F.L.; Sicari, A.; Bolletti Censi, S.; Gaspari, A.; Ritieni, A.; Lorito, M. An innovative olive pâté with nutraceutical properties. Antioxidants 2020, 9, 581. [Google Scholar] [CrossRef]
- Fernando, C.; Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX 2015, 18, 283–291. [Google Scholar] [CrossRef]
- Dhouibi, N.; Manuguerra, S.; Arena, R.; Madhi, A.; Messina, C.M.; Santulli, A.; Dhaouadi, H. Screening of antioxidant potentials and bioactive properties of the extracts obtained from two Centaurea L. Species (C. kroumirensis Coss. and C. sicula L. subsp sicula). Appl. Sci. 2020, 10, 2267. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.; Chaurasia, J.K.; Tiwari, K.N.; Singh, K. Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, E.L.; Armstrong, K.R.; Perrett, D.; Hattersley, A.T.; Winyard, P.G. Optimisation of an advanced oxidation protein products assay: Its application to studies of oxidative stress in diabetes mellitus. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Tupe, R.S.; Kemse, N.G.; Khaire, A.A.; Shaikh, S.A. Attenuation of glycation-induced multiple protein modifications by Indian antidiabetic plant extracts. Pharm. Biol. 2017, 55, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Lu, Y.; Inbaraj, B.S.; Chen, B. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. J. Funct. Foods 2015, 12, 498–508. [Google Scholar] [CrossRef]
- Nooin, R.; Pitchakarn, P.; Kanchai, C.; Jaikang, C. Assessments of antioxidant, antilipid peroxidation, and in-vitro safety of Derris scandens vine extracts from southern Thailand. Pharmacogn. Res. 2019, 11, 60. [Google Scholar]
- Laoung-on, J.; Sudwan, P.; Saenphet, K. Effect of Moringa oleifera Lam. leaf tea on sperm concentration and sperm viability in male rats. In Proceedings of the 36th MST International Conference, Bangkok, Thailand, 26–29 March 2019; pp. 207–211. [Google Scholar]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Csepregi, K.; Neugart, S.; Schreiner, M.; Hideg, É. Comparative evaluation of total antioxidant capacities of plant polyphenols. Molecules 2016, 21, 208. [Google Scholar] [CrossRef] [Green Version]
Sample | Extraction | Total Phenolic (µg GAE/g Dried Weight) | Total Tannins (µg TAE/g Dried Weight) | Total Flavonoid (µg QE/g Dried Weight) | Total Monomeric Anthocyanins (µg Cyanidin-3-Glucoside E/g Dried Weight) |
---|---|---|---|---|---|
Red | Aqueous | 20.67 ± 1.65 a | 17.16 ± 3.01 a | 10.61 ± 1.25 a | 49.75±11.42 a |
95% ethanol | 0.37 ± 0.44 b | 1.05 ± 0.21 b | 19.74 ± 0.77 b | ND b | |
White | Aqueous | 24.15 ± 1.32 c | 20.52 ± 1.07 c | 7.83 ± 0.37 c | ND b |
95% ethanol | 0.67 ± 0.45 b | 1.43 ± 0.49 b | 21.59 ± 1.00 d | ND b |
Sample | Extraction | IC50 (µg/mL) | |||
---|---|---|---|---|---|
DPPH | ABTS | H2O2 | Reducing Power | ||
Red N. nucifera | Aqueous | 14.60 ± 1.55 a | 13.47 ± 2.58 a | 160.38 ± 6.72 a | 90.84 ± 12.34 a |
95% ethanol | 634.79 ± 21.65 b | 173.89 ± 25.52 b | 1391.22 ± 62.99 b | 398.75 ± 43.13 b | |
White N. nucifera | Aqueous | 13.31 ± 1.96 a | 10.95 ± 0.56 a | 134.02 ± 2.29 c | 59.30 ± 11.08 c |
95% ethanol | 481.41 ± 18.53 c | 127.45 ± 22.84 c | 1014.98 ± 16.94 d | 483.85 ± 66.38 b | |
Gallic acid | 14.95 ± 0.18 a | 0.45 ± 0.03 d | 1965.88 ± 4.48 e | 224.91 ± 3.14 e |
Sample | Extraction | IC50 (µg/mL) | ||
---|---|---|---|---|
LPO | AOPP | AGEs | ||
Red | Aqueous | 0.10 ± 0.00 a | 2.66 ± 0.49 a | 0.55 ± 0.24 |
95% ethanol | 0.17 ± 0.10 a | 11.88 ± 0.80 b | 1.00 ± 0.70 | |
White | Aqueous | 0.05 ± 0.01 b | 0.35 ± 0.07 c | 1.07 ± 0.93 |
95% ethanol | 1.35 ± 0.60 c | 27.19 ± 6.00 d | 1.23 ± 1.35 | |
Gallic acid | 0.11 ± 0.01 a | 4.21 ± 0.07 e | 1.05 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laoung-on, J.; Jaikang, C.; Saenphet, K.; Sudwan, P. Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts. Plants 2021, 10, 1375. https://doi.org/10.3390/plants10071375
Laoung-on J, Jaikang C, Saenphet K, Sudwan P. Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts. Plants. 2021; 10(7):1375. https://doi.org/10.3390/plants10071375
Chicago/Turabian StyleLaoung-on, Jiraporn, Churdsak Jaikang, Kanokporn Saenphet, and Paiwan Sudwan. 2021. "Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts" Plants 10, no. 7: 1375. https://doi.org/10.3390/plants10071375
APA StyleLaoung-on, J., Jaikang, C., Saenphet, K., & Sudwan, P. (2021). Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts. Plants, 10(7), 1375. https://doi.org/10.3390/plants10071375