DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells
Abstract
:1. Introduction
2. Results
2.1. Micronuclei in the B. distachyon Cells
2.2. The Presence of 5 mC Signals in the Control and Mutagen-Treated B. distachyon Cells
2.3. The Level of 5 mC in the Control and Mutagen-Treated B. distachyon Cells
3. Discussion
4. Materials and Methods
4.1. Plant Material, Mutagenic Treatment and Slide Preparation
4.2. Immunostaining
4.3. Image Acquisition, Data Analysis and Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaposhnikov, S.; Frengen, E.; Collins, A.R. Increasing the resolution of the comet assay using fluorescent in situ hybridization-a review. Mutagenesis 2009, 24, 383–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkevich, I.G.; Patrushev, L.I. Genomic noncoding sequences and the size of eukaryotic cell nucleus as important factors of gene protection from chemical mutagens. Russ. J. Bioorg. Chem. 2007, 33, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Van Holde, K.; Zlatanova, J. Chromatin higher order structure: Chasing a mirage? J. Biol. Chem. 1995, 270, 8373–8376. [Google Scholar] [CrossRef] [Green Version]
- Kapazoglou, A.; Tsaftaris, A. Epigenetic chromatin regulators as mediators of abiotic stress responses in cereals. Abiotic Stress Plants Mech. Adapt. 2011, 395–414. [Google Scholar] [CrossRef] [Green Version]
- Chinnusamy, V.; Zhu, J.K. Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 2009, 12, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Cokus, S.J.; Schubert, V.; Zhai, J.; Pellegrini, M.; Jacobsen, S.E. Genome-wide Hi-C analyses in wild type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Mol. Cell 2014, 55, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Braszewska-Zalewska, A.; Tylikowska, M.; Kwasniewska, J.; Szymanowska-Pulka, J. Epigenetic chromatin modifications in barley after mutagenic treatment. J. Appl. Genet. 2014, 55, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Kovalchuk, I.; Abramov, V.; Pogribny, I.; Kovalchuk, O. Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol. 2004, 135, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002, 21, 5400–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, H.J.; Neary, G.J.; Williamson, F.S. The relative biological efficiency of single doses of fast neutrons and gamma-rays on Vicia faba roots and the effect of oxygen. Part II. Chromosome damage: The production of micronuclei. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1959, 1, 216–229. [Google Scholar] [CrossRef]
- Leme, D.M.; Marin-Morales, M.A. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—A case study. Mutat. Res. 2008, 650, 80–86. [Google Scholar] [CrossRef]
- Morales-Ramirez, P.; Vallarino-Kelly, T. Relationship between the kinetics of micronuclei induction and the mechanism of chromosome break formation by methylnitrosourea in mice in vivo. Mutat. Res. 1999, 427, 31–38. [Google Scholar] [CrossRef]
- Li, G.; Yun, Y.; Li, H.; Sang, N. Effect of landfill leachate on cell cycle, micronucleus, and sister chromatid exchange in Triticum aestivum. J. Hazard. Mat. 2008, 155, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Jovtchev, G.; Gateva, S.; Stergios, M.; Kulekova, S. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ. Tox. 2010, 25, 294–303. [Google Scholar] [CrossRef]
- Khadra, A.; Pinelli, E.; Lacroix, M.Z.; Bousquet-Mélou, A.; Hamdi, H.; Merlina, G.; Guiresse, M.; Hafidi, M. Assessment of the genotoxicity of quinolone and fluoroquinolones contaminated soil with the Vicia faba micronucleus test. Ecotox. Environ. Saf. 2012, 76, 187–192. [Google Scholar] [CrossRef]
- Pesnya, D.S.; Romanovsky, A.V. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat. Res. 2013, 750, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Kus, A.; Kwasniewska, J.; Hasterok, R. Brachypodium distachyon—A useful model in the qualification of mutagen- induced micronuclei using multicolor FISH. PLoS ONE 2017, 12, e0170618. [Google Scholar] [CrossRef] [Green Version]
- Kus, A.; Kwasniewska, J.; Szymanowska-Pulka, J.; Hasterok, R. Dissecting the chromosomal composition of mutagen- induced micronuclei in Brachypodium distachyon using multicolour FISH. Ann. Bot. 2018, 122, 1161–1171. [Google Scholar] [CrossRef] [Green Version]
- Kus, A.; Szymanowska-Pulka, J.; Kwasniewska, J.; Hasterok, R. Detecting Brachypodium distachyon Chromosomes Bd4 and Bd5 in MH- and X-Ray-Induced Micronuclei Using mcFISH. Int. J. Mol. Sci. 2019, 20, 2848. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M. The in vitro micronucleus technique. Mutat. Res. 2000, 455, 81–95. [Google Scholar] [CrossRef]
- Jovtchev, G.; Stergios, M.; Schubert, I. A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutat. Res. 2002, 517, 47–51. [Google Scholar] [CrossRef]
- Juchimiuk, J.; Hering, B.; Maluszynska, J. Multicolor FISH in analysis of chromosome aberrations in barley cells induced by MH and MNU. J. Appl. Genet. 2007, 48, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Juchimiuk-Kwasniewska, J.; Brodziak, L.; Maluszynska, J. FISH in analysis of gamma ray-induced micronuclei formation in barley. J. Appl. Genet. 2011, 52, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Maluszynska, J.; Juchimiuk, J.; Wolny, E. Chromosomal aberrations in Crepis capillaris cells detected by FISH. Folia Histochem. Cytobiol. 2003, 41, 101–104. [Google Scholar] [PubMed]
- International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 2010, 463, 763–768. [Google Scholar] [CrossRef] [PubMed]
- International Brachypodium Initiative. Update on the genomics and basic biology of Brachypodium. Trends Plant Sci. 2014, 19, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a mediterranean biodiversity hot spot (Gargano–Italy). Biosystems 2013, 147, 1006–1028. [Google Scholar] [CrossRef]
- European Commission DG Environment. Interpretation Manual of European Union Habitats (version EUR27); European Commission DG Environment: Brussels, Belgium, 2007. [Google Scholar]
- Vogel, J.; Hill, T. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep. 2008, 27, 471–478. [Google Scholar] [CrossRef]
- Dalmais, M.; Antelme, S.; Ho-Yue-Kuang, S.; Wang, Y.; Darracq, O.; d’Yvoire, M.B.; Cezard, L.; Légée, F.; Blondet, E.; Oria, N.; et al. A TILLING platform for functional genomics in Brachypodium distachyon. PLoS ONE 2013, 8, e65503. [Google Scholar] [CrossRef] [Green Version]
- Engvild, K.C. Mutagenesis of the Model Grass Brachypodium distachyon with Sodium Azide; Report. 26; Risø DTU-National Laboratory for Sustainable Energy: Roskilde, Denmark, 2005. [Google Scholar]
- Derbyshire, P.; Byrne, M.E. MORE SPIKELETS1 Is required for spikelet fate in the inflorescence of Brachypodium. Plant Physiol. 2013, 161, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.B.K.D.; Jeon, W.B.; Hong, M.J.; Lee, Y.J.; Bold, O.; Jang, J.H.; Kim, Y.J.; Kang, S.Y.; Kim, D.S.; Kim, J.B.; et al. Effect of gamma radiation on growth and lignin content in Brachypodium distachyon. J. Crop Sci. Biotech. 2013, 16, 105–110. [Google Scholar] [CrossRef]
- Puerto, S.; Surralles, J.; Ramirez, M.J.; Creus, A.; Marcos, R. Equal induction and persistence of chromosome aberrations involving chromosomes with heterogeneous lengths and gene densities. Cytogenet. Cell Gen. 1999, 87, 62–68. [Google Scholar] [CrossRef]
- Leach, N.T.; Jackson-Cook, C. The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei. Mutat. Res. 2001, 495, 11–19. [Google Scholar] [CrossRef]
- Chung, H.W.; Kang, S.J.; Kim, S.Y. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol. Mutat. Res. 2002, 516, 49–56. [Google Scholar] [CrossRef]
- Norppa, H.; Falck, G.C. What do human micronuclei contain? Mutagenesis 2003, 18, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Marcano, L.; Carruyo, I.; Del Campo, A.; Montiel, X. Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environ. Res. 2004, 94, 221–226. [Google Scholar] [CrossRef]
- Maluszynska, J.; Maluszynski, M. The influence of MNUA and MH on the cell cycle and DNA contents in meristematic cells of barley. Acta Biol. 1983, 11, 227–237. [Google Scholar]
- Vandegehuchte, M.B.; Janssen, C.R. Epigenetics in an ecotoxicological context. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 764, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodge, J.E.; Okano, M.; Tsujimoto, N.; Chen, T.; Wang, S.; Ueda, Y.; Dyson, N.; Li, E. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J. Biol. Chem. 2005, 280, 17986–17991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eden, A.; Gaudet, F.; Waghmare, A.; Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypometylation. Science 2003, 300, 455. [Google Scholar] [CrossRef] [PubMed]
- Escargueil, A.E.; Soares, D.G.; Salvador, M.; Larsen, A.K.; Henriques, J.A.P. What histone code for DNA repair? Mutat. Res. 2008, 658, 259–270. [Google Scholar] [CrossRef]
- Campi, M.; D’Andrea, L.; Emiliani, J.; Casati, P. Participation of chromatin-remodeling proteins in the repair of ultraviolet-B-damaged DNA. Plant Physiol. 2012, 158, 981–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Macías, M.I.; Córdoba-Cañero, D.; Ariza, R.R.; Roldán-Arjona, T. The DNA repair protein XRCC1 functions in the plant DNA demethylation pathway by stimulating cytosine methylation (5-meC) excision, gap tailoring, and DNA ligation. J. Biol. Chem. 2013, 288, 5496–5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolarek, M.; Gruszka, D.; Braszewska-Zalewska, A.; Maluszynski, M. Alleles of newly identified barley gene HvPARP3 exhibit changes in efficiency of DNA repair. DNA Repair 2015, 28, 116–130. [Google Scholar] [CrossRef]
- Kim, J.H. Chromatin Remodeling and Epigenetic Regulation in Plant DNA Damage Repair. Int. J. Mol. Sci. 2019, 220, 4093. [Google Scholar] [CrossRef] [Green Version]
- Casati, P.; Sol Gomez, M. Chromatin dynamics during DNA damage and repair in plants: New roles for old players. J. Exp. Bot. 2020, 72, 4119–4131. [Google Scholar] [CrossRef]
- Manova, V.; Gruszka, D. DNA damage and repair in plants—from models to crops. Front. Plant Sci. 2015, 23, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ege, T.; Krondahl, U.; Ringertz, N.R. Introduction of nuclei and micronuclei into cells and enucleated cytoplasms by Sendai virus induced fusion. Exp. Cell Res. 1974, 88, 428–432. [Google Scholar] [CrossRef]
- Rao, X.; Zhang, Y.; Yi, Q.; Hou, H.; Xu, B.; Chu, I.; Huang, Y.; Zhang, W.; Fenech, M.; Shi, Q. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidencefrom long-term live cell imaging. Mutat. Res. 2008, 646, 41–49. [Google Scholar] [CrossRef]
- Gravina, S.; Dong, X.; Yu, B.; Vijg, J. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol. 2016, 17, 150. [Google Scholar] [CrossRef] [Green Version]
- Horvath, R.; Laenen, B.; Takuno, S.; Slotte, T. Single-cell expression noise and gene-body methylation in Arabidopsis thaliana. Heredity 2019, 123, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Efroni, I.; Ip, P.L.; Nawy, T.; Mello, A.; Birnbaum, K.D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 2015, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Watters, G.P.; Smart, D.J.; Harvey, J.S.; Austin, C.A. H2AX phosphorylation as a genotoxicity endpoint. Mutat. Res. Genet. Toxicol. Environ. Mut. 2009, 679, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.H.; Huang, Y.; Jiang, C.; Si, J.P. Chromatin-based regulation of plant root development. Front. Plant Sci. 2018, 9, 1509. [Google Scholar] [CrossRef]
- Kwasniewska, J.; Zubrzycka, K.; Kus, A. Impact of mutagens on DNA replication in barley chromosomes. Int. J. Mol. Sci. 2018, 19, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, A.; Utani, K.; Shimizu, N. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei. Mutagenesis 2012, 27, 323–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, H.; Takarabe, T.; Kanai, Y.; Yakashi, F.; Hirohashi, S. Correlation of DNA Hypomethylation at Pericentromeric Heterochromatin Regions of Chromosomes 16 and 1 with Histological Features and Chromosomal Abnormalities of Human Breast Carcinomas. Am. J. Pathol. 2002, 161, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Arabidopsis Genome Initiative. Analysis of the genome sequence of the fowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar] [CrossRef] [Green Version]
- Borowska, N.; Idziak, D.; Hasterok, R. DNA methylation patterns of Brachypodium distachyon chromosomes and theri alteration by 5-azacytydine treatment. Chromosome Res. 2011, 19, 955–967. [Google Scholar] [CrossRef] [Green Version]
- Terradas, M.; Martin, M.; Tusell, L.; Genesca, A. Genetic activities in micronuclei: Is the DNA entrapped in micronuclei lost for the cell? Mutat. Res. Rev. Mutat. Res. 2010, 705, 6067. [Google Scholar] [CrossRef]
- Bull, C.F.; Mayrhofer, G.; Zeegers, D.; Mun, G.L.; Hande, M.P.; Fenech, M.F. Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay. Environ. Mol. Mutagen. 2012, 53, 311–323. [Google Scholar] [CrossRef]
- Luzhna, L.; Kathiria, P.; Kovalchuk, O. Micronuclei in genotoxicity assessment: From genetics to epigenetics and beyond. Front. Gen. 2013, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedelnikova, O.A.; Nakamura, A.; Kovalchuk, O.; Koturbash, I.; Mitchell, S.A.; Marino, S.A.; Brenner, D.J.; Bonner, W.M. DNA double-strand breaks form in bystander cells after microbeam irradiation of threedimensional human tissue models. Cancer Res. 2007, 1, 4295–4302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potocki, L.; Lewinska, A.; Klukowska-Rötzler, J.; Bugno-Poniewierska, M.; Koch, C.; Mählmann, K.; Janda, J.; Wnuk, M. DNA hypomethylation and oxidative stress-mediated increase in genomic instability in equine sarcoid-derived fibroblasts. Biochimie 2012, 94, 2013–2024. [Google Scholar] [CrossRef] [Green Version]
- Cowell, I.G.; Sunter, N.J.; Singh, P.B.; Austin, C.A.; Durkacz, B.W.; Tilby, M.J. gamma H2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2007, 2, e1057. [Google Scholar] [CrossRef]
- Braszewska-Zalewska, A.J.; Wolny, E.A.; Smialek, L.; Hasterok, R. Tissue-specific epigenetic modifications in root apical meristem cells of Hordeum vulgare. PLoS ONE 2013, 8, e69204. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bara, A.W.; Braszewska, A.; Kwasniewska, J. DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. Plants 2021, 10, 1408. https://doi.org/10.3390/plants10071408
Bara AW, Braszewska A, Kwasniewska J. DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. Plants. 2021; 10(7):1408. https://doi.org/10.3390/plants10071408
Chicago/Turabian StyleBara, Adrianna Wiktoria, Agnieszka Braszewska, and Jolanta Kwasniewska. 2021. "DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells" Plants 10, no. 7: 1408. https://doi.org/10.3390/plants10071408
APA StyleBara, A. W., Braszewska, A., & Kwasniewska, J. (2021). DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. Plants, 10(7), 1408. https://doi.org/10.3390/plants10071408