Agronomic Performance in Low Phytic Acid Field Peas
Abstract
:1. Introduction
2. Results
2.1. Low Phytic Acid (lpa) Pea Breeding Lines: Agronomic and Seed Quality Performance
2.2. Low Phytic Acid (lpa) Pea Breeding Lines: Correlation Analysis of Agronomic and Seed Quality Traits
2.3. Evaluation of Low Phytic Acid (lpa) Pea Breeding Lines Arising from Independent Genetic Origins
3. Discussion
4. Materials and Methods
4.1. Low Phytic Acid (lpa) Breeding Lines
4.2. Field Trials
4.3. Assessment of Phytic Acid-Phosphorus by Wade’s Assay
4.4. Assessment of Iron Bioavailability by Caco-2 Cell Bioassay
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, N. Quality of Western Canadian Peas; Grain Research Laboratory, Ed.; Canadian Grain Commission: Winnipeg, MB, Canada, 2020; pp. 1–13. ISSN 1920-9053. [Google Scholar]
- Jha, A.B.; Warkentin, T.D. Biofortification of Pulse Crops: Status and Future Perspectives. Plants 2020, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.; Broadley, M. Biofortification of crops with seven mineral elements often lacking in human diets–Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and Human Health: Current Status and Future Needs. Air Soil Water Res. 2020, 13, 1178622120934441. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Guindon, M.F.; Cazzola, F.; Palacios, T.; Gatti, I.; Bermejo, C.; Cointry, E. Biofortification of pea (Pisum sativum L.): A review. J. Sci. Food Agric. 2021, 101, 3551–3563. [Google Scholar] [CrossRef]
- Posternak, M.S. Sur la matière phospho-organique de réserve des plantes à chlorophylle (On the phospho-organic reserve material of chlorophyll plants). Comptes Rendus Hebd. Séances Académie Sci. 1903, T137, 202–204. [Google Scholar]
- Raboy, V. Low phytic acid Crops: Observations Based on Four Decades of Research. Plants 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.O.; Bracarense, A.P. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef] [Green Version]
- Welch, R.M. Biotechnology, biofortification, and global health. Food Nutr. Bull. 2005, 26, 419–421. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Raboy, V.; Young, K.A.; Dorsch, J.A.; Cook, A. Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol. 2001, 158, 489–497. [Google Scholar] [CrossRef]
- Rehman, A.; Shunmugam, A.; Argañosa, G.; Bett, K.; Warkentin, T. Inheritance of the Low-Phytate Trait in Pea. Crop. Sci. 2012, 52, 1171–1175. [Google Scholar] [CrossRef]
- Shunmugam, A.S.K.; Bock, C.; Arganosa, G.C.; Georges, F.; Gray, G.R.; Warkentin, T.D. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants. Plants 2015, 4, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, F.; Paolo, D.; Cominelli, E.; Sparvoli, F.; Nielsen, E.; Pilu, R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. Front. Plant Sci. 2020, 11, 1301. [Google Scholar] [CrossRef] [PubMed]
- Guttieri, M.; Bowen, D.; Dorsch, J.; Raboy, V.; Souza, E. Identification and Characterization of a Low Phytic Acid Wheat. Crop Sci. 2004, 44, 418–424. [Google Scholar] [CrossRef]
- Pilu, R.; Landoni, M.; Cassani, E.; Doria, E.; Nielsen, E. The Maize lpa241 Mutation Causes a Remarkable Variability of Expression and Some Pleiotropic Effects. Crop Sci. 2005, 45, 2096–2105. [Google Scholar] [CrossRef]
- Bregitzer, P.; Raboy, V. Effects of Four Independent Low-Phytate Mutations on Barley Agronomic Performance. Crop Sci. 2006, 46, 1318–1322. [Google Scholar] [CrossRef]
- Meis, S.J.; Fehr, W.R.; Schnebly, S.R. Seed Source Effect on Field Emergence of Soybean Lines with Reduced Phytate and Raffinose Saccharides. Crop Sci. 2003, 43, 1336–1339. [Google Scholar] [CrossRef]
- Campion, B.; Sparvoli, F.; Doria, E.; Giovanni, T.; Galasso, I.; Fileppi, M.; Bollini, R.; Nielsen, E. Isolation and characterisation of an LPA (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). TAG Theor. Appl. Genet. Theor. Angew. Genet. 2009, 118, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Campion, B.; Glahn, R.; Tava, A.; Cecotti, R.; Perrone, D.; Doria, E.; Sparvoli, F.; Dani, V.; Nielsen, E. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crop. Res. 2013, 141, 27–37. [Google Scholar] [CrossRef]
- Liu, X.; Glahn, R.; Arganosa, G.; Warkentin, T. Iron Bioavailability in Low Phytate Pea. Crop Sci. 2015, 55, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Bangar, P.; Glahn, R.; Liu, Y.; Arganosa, G.; Whiting, S.; Warkentin, T. Iron Bioavailability in Field Pea Seeds: Correlations with Iron, Phytate, and Carotenoids. Crop Sci. 2017, 57, 891–902. [Google Scholar] [CrossRef] [Green Version]
- Wiesinger, J.A.; Glahn, R.P.; Cichy, K.A.; Kolba, N.; Hart, J.J.; Tako, E. An In Vivo (Gallus gallus) Feeding Trial Demonstrating the Enhanced Iron Bioavailability Properties of the Fast Cooking Manteca Yellow Bean (Phaseolus vulgaris L.). Nutrients 2019, 11, 1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesinger, J.A.; Osorno, J.M.; McClean, P.E.; Hart, J.J.; Glahn, R.P. Faster cooking times and improved iron bioavailability are associated with the down regulation of procyanidin synthesis in slow-darkening pinto beans (Phaseolus vulgaris L.). J. Funct. Foods 2021, 82, 104444. [Google Scholar] [CrossRef]
- DellaValle, D.M.; Thavarajah, D.; Thavarajah, P.; Vandenberg, A.; Glahn, R.P. Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic potential for iron bioavailability? Field Crop. Res. 2013, 144, 119–125. [Google Scholar] [CrossRef]
- Warkentin, T.; Kolba, N.; Tako, E. Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane Functionality In Vivo (Gallus gallus). Nutrients 2020, 12, 2563. [Google Scholar] [CrossRef]
- Warkentin, T.; Vandenberg, A.; Banniza, S.; Slinkard, A. CDC Bronco field pea. Can. J. Plant Sci. 2005, 85, 649–650. [Google Scholar] [CrossRef] [Green Version]
- Warkentin, T.D.; Delgerjav, O.; Arganosa, G.; Rehman, A.U.; Bett, K.E.; Anbessa, Y.; Rossnagel, B.; Raboy, V. Development and Characterization of Low-Phytate Pea. Crop Sci. 2012, 52, 74–78. [Google Scholar] [CrossRef]
- Warkentin, T.D.; Vandenberg, A.; Tar’an, B.; Banniza, S.; Arganosa, G.; Barlow, B.; Ife, S.; Horner, J.; de Silva, D.; Thompson, M.; et al. CDC Raezer green field pea. Can. J. Plant Sci. 2014, 94, 1535–1537. [Google Scholar] [CrossRef]
- Warkentin, T.D.; Vandenberg, A.; Tar’an, B.; Banniza, S.; Arganosa, G.; Barlow, B.; Ife, S.; Horner, J.; de Silva, D.; Thompson, M.; et al. CDC Limerick green field pea. Can. J. Plant Sci. 2014, 94, 1547–1549. [Google Scholar] [CrossRef]
- Arganosa, G.C.; Warkentin, T.D.; Racz, V.J.; Blade, S.; Hsu, H.; Philips, C. Prediction of Crude Protein Content in Field Peas Grown in Saskatchewan Using Near Infrared Reflectance Spectroscopy. Can. J. Plant Sci. 2006, 86, 157–159. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, C.; Maroof, M.A.S.; Biyashev, R.M.; Grabau, E.A.; Kwanyuen, P.; Burton, J.W.; Buss, G.R. A Modified Colorimetric Method for Phytic Acid Analysis in Soybean. Crop Sci. 2007, 47, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Glahn, R. 13—The use of Caco-2 cells in defining nutrient bioavailability: Application to iron bioavailability of foods. In Designing Functional Foods; McClements, D.J., Decker, E.A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 340–361. [Google Scholar] [CrossRef] [Green Version]
- Glahn, R.P.; Lee, O.A.; Yeung, A.; Goldman, M.I.; Miller, D.D. Caco-2 Cell Ferritin Formation Predicts Nonradiolabeled Food Iron Availability in an In Vitro Digestion/Caco-2 Cell Culture Model. J. Nutr. 1998, 128, 1555–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Magrini, M.-B.; Anton, M.; Chardigny, J.-M.; Duc, G.; Duru, M.; Jeuffroy, M.-H.; Meynard, J.-M.; Micard, V.; Walrand, S. Pulses for Sustainability: Breaking Agriculture and Food Sectors Out of Lock-In. Front. Sustain. Food Syst. 2018, 2, 64. [Google Scholar] [CrossRef]
Line Name | St Den | HT | Lodg | Mat | Yield | %Check | SDWT | Protein | P | Zn | Fe | mg PA-P /g Sample | ng Ferritin /mg Protein |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 to 9 | cm | 1 to 9 | 1 to 3 | kg/ha | Mean | g/1000 | % | µg/g | µg/g | µg/g | |||
CDC Amarillo | 8.4 | 74 | 3.1 | 1.8 | 4181 | 111 | 225 | 24.3 | 3428 | 27.9 | 45.3 | 1.29 | 67.74 |
CDC Raezer | 8.3 | 70 | 4.1 | 1.4 | 3522 | 93 | 206 | 24.7 | 4174 | 31.3 | 49.8 | 1.95 | 54.60 |
CDC Limerick | 8.0 | 70 | 3.9 | 1.8 | 3748 | 99 | 198 | 27.0 | 3828 | 32.8 | 49.7 | 1.65 | 61.02 |
CDC Bronco | 8.3 | 68 | 4.4 | 1.8 | 4080 | 108 | 213 | 25.6 | 3684 | 31.9 | 49.1 | 1.48 | 53.87 |
1-2347-144 | 8.3 | 61 | 4.3 | 1.8 | 3548 | 94 | 196 | 25.8 | 3678 | 30.0 | 49.2 | 0.85 | 61.96 |
4802-8-60G-L | 8.3 | 71 | 3.2 | 2.0 | 3356 | 89 | 232 | 25.5 | 3967 | 30.3 | 47.1 | 0.96 | 75.70 |
4802-8-4G-L | 8.4 | 76 | 3.3 | 2.5 | 3872 | 102 | 202 | 26.7 | 4008 | 29.7 | 51.7 | 0.76 | 61.77 |
4802-8-163G-L | 8.7 | 81 | 3.4 | 2.5 | 3854 | 102 | 177 | 25.8 | 3768 | 30.8 | 50.3 | 0.88 | 67.65 |
4802-8-46Y-L | 8.2 | 72 | 4.0 | 1.1 | 3292 | 87 | 225 | 25.2 | 3801 | 30.5 | 50.9 | 1.02 | 87.43 |
4802-8-87Y-L | 8.3 | 83 | 4.2 | 1.9 | 3621 | 96 | 211 | 26.0 | 3819 | 32.7 | 47.6 | 0.86 | 72.90 |
4802-8-1Y-L | 8.4 | 70 | 4.4 | 1.6 | 3766 | 100 | 195 | 27.0 | 3985 | 31.2 | 52.4 | 0.92 | 81.03 |
4802-8-85Y-L | 8.4 | 80 | 3.9 | 2.4 | 3872 | 102 | 192 | 26.1 | 3882 | 31.9 | 50.6 | 0.93 | 74.45 |
4803-4-78G-L | 8.6 | 78 | 3.6 | 2.1 | 3657 | 97 | 224 | 28.3 | 3936 | 32.8 | 51.1 | 1.14 | 67.61 |
4803-4-29G-L | 8.8 | 76 | 3.4 | 2.1 | 3882 | 103 | 216 | 28.1 | 4141 | 35.2 | 54.8 | 1.13 | 70.76 |
4803-4-70G-L | 8.8 | 75 | 3.2 | 2.0 | 3846 | 102 | 216 | 27.5 | 4046 | 36.4 | 52.7 | 1.06 | 71.27 |
4803-4-26G-L | 8.2 | 67 | 3.9 | 2.3 | 4008 | 106 | 207 | 25.6 | 3914 | 31.5 | 46.8 | 1.24 | 66.99 |
4803-4-74G-L | 8.8 | 76 | 3.2 | 1.9 | 3686 | 97 | 226 | 27.9 | 4228 | 34.1 | 52.8 | 1.07 | 69.94 |
4803-4-30G-L | 8.6 | 74 | 3.3 | 2.1 | 3763 | 99 | 225 | 28.1 | 4087 | 33.2 | 51.4 | 1.06 | 66.59 |
4803-4-31G-L | 8.7 | 73 | 3.6 | 2.1 | 3857 | 102 | 204 | 26.1 | 3980 | 34.3 | 50.7 | 1.00 | 65.07 |
4803-4-9Y-L | 8.4 | 67 | 3.9 | 1.8 | 3865 | 102 | 221 | 27.5 | 3653 | 31.3 | 50.2 | 1.08 | 59.08 |
4803-4-43Y-L | 8.6 | 71 | 3.7 | 2.4 | 4257 | 113 | 207 | 25.9 | 3479 | 29.4 | 48.1 | 1.10 | 53.26 |
4803-4-27Y-L | 8.4 | 72 | 3.6 | 1.9 | 3834 | 101 | 220 | 27.4 | 3665 | 31.2 | 48.4 | 1.12 | 57.08 |
4803-4-92Y-L | 8.2 | 69 | 4.1 | 1.9 | 3868 | 102 | 217 | 27.2 | 3963 | 33.6 | 51.5 | 1.02 | 59.24 |
4803-4-71Y-L | 8.8 | 76 | 3.3 | 2.1 | 3745 | 99 | 210 | 27.3 | 3819 | 32.9 | 51.2 | 1.11 | 62.83 |
Environment | 8 | 3 | 9 | 8 | 10 | 4 | 7 | 5 | 5 | 4 | 5 | 2 | |
Variety | *** (12%) | * (10%) | *** (9%) | *** (18%) | *** (5%) | *** (10%) | *** (42%) | *** (6%) | ns (2%) | *** (8%) | *** (29%) | *** (28%) | |
Environment | *** (9%) | *** (38%) | *** (43%) | *** (41%) | *** (78%) | *** (47%) | *** (26%) | *** (52%) | *** (81%) | *** (43%) | *** (8%) | *** (16%) | |
Variety x Environment | ** (14%) | ns (0%) | ** (9%) | ** (9%) | * (2%) | ns(0%) | **(6%) | ns(0%) | ns(0%) | ns(0%) | ns(0%) | ns(2%) | |
Minimum | 7.0 | 38 | 2.0 | 1.0 | 2052 | 133 | 22.1 | 2642.3 | 15.4 | 39.8 | 0.5 | 32.8 | |
Maximum | 9.0 | 95 | 7.0 | 3.0 | 7222 | 267 | 31.4 | 5094.2 | 55.5 | 66.3 | 2.5 | 99.2 | |
Overall Mean | 8.4 | 73 | 3.7 | 2.0 | 3792 | 211 | 26.5 | 3791.8 | 32.3 | 49.7 | 1.11 | 66.24 | |
SD | 0.5 | 11.5 | 1.1 | 0.7 | 890.6 | 33.1 | 1.6 | 607.2 | 10.0 | 5.5 | 0.4 | 12.4 | |
CV | 6,4 | 15.8 | 30.5 | 36.6 | 23.5 | 15.7 | 6.2 | 16.0 | 30.9 | 11.0 | 37.6 | 18.7 | |
LSD0.05 | 0.31 | 11.0 | 0.47 | 0.29 | 226.1 | 25.7 | 0.63 | 212.1 | 6.0 | 2.8 | 0.34 | 13.51 |
Characteristic | Stand Density | Lodging | Maturity | Height | Yield | SDWT | Protein | P | Zn | Fe | Phytic Acid-P |
---|---|---|---|---|---|---|---|---|---|---|---|
Lodging | −0.69 *** | ||||||||||
Maturity | 0.43 * | −0.41 * | |||||||||
Height | 0.55 ** | −0.48 * | 0.42 * | ||||||||
Yield | 0.29 ns | −0.13 ns | 0.52 ** | 0.00 ns | |||||||
SDWT | 0.04 ns | −0.36 ns | −0.35 ns | −0.06 ns | −0.19 ns | ||||||
Protein | 0.52 ** | −0.23 ns | 0.26 ns | 0.20 ns | 0.00 ns | 0.21 ns | |||||
P | 0.24 ns | −0.16 ns | 0.00 ns | 0.22 ns | −0.43 * | 0.09 ns | 0.42 * | ||||
Zn | 0.48 * | −0.14 ns | 0.09 ns | 0.27 ns | −0.09 ns | 0.13 ns | 0.65 *** | 0.65 *** | |||
Fe | 0.51 * | −0.09 ns | 0.05 ns | 0.21 ns | −0.17 ns | −0.08 ns | 0.69 *** | 0.66 *** | 0.66 *** | ||
Phytic acid-P | −0.14 ns | 0.16 ns | −0.40 * | −0.27 ns | 0.08 ns | 0.09 ns | −0.24 ns | 0.05 ns | 0.03 ns | −0.18 ns | |
Iron bioavailability | 0.02 ns | −0.08 ns | −0.23 ns | 0.35 ns | −0.49 * | 0.11 ns | −0.01 ns | 0.27 ns | 0.09 ns | 0.21 ns | −0.45 * |
Cross Number | mgPA-P/g Sample | ng Ferritin/mg Protein |
---|---|---|
4802 | 0.9 | 74.4 |
4803 | 1.1 | 64.1 |
*** | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsay, D.L.; Jha, A.B.; Arganosa, G.; Glahn, R.; Warkentin, T.D. Agronomic Performance in Low Phytic Acid Field Peas. Plants 2021, 10, 1589. https://doi.org/10.3390/plants10081589
Lindsay DL, Jha AB, Arganosa G, Glahn R, Warkentin TD. Agronomic Performance in Low Phytic Acid Field Peas. Plants. 2021; 10(8):1589. https://doi.org/10.3390/plants10081589
Chicago/Turabian StyleLindsay, Donna L., Ambuj B. Jha, Gene Arganosa, Raymond Glahn, and Thomas D. Warkentin. 2021. "Agronomic Performance in Low Phytic Acid Field Peas" Plants 10, no. 8: 1589. https://doi.org/10.3390/plants10081589
APA StyleLindsay, D. L., Jha, A. B., Arganosa, G., Glahn, R., & Warkentin, T. D. (2021). Agronomic Performance in Low Phytic Acid Field Peas. Plants, 10(8), 1589. https://doi.org/10.3390/plants10081589