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Abstract: Extending over millennia, grapevine cultivation encompasses several thousand cultivars.
Cultivar (cultivated variety) identification is traditionally dealt by ampelography, requiring repeated
observations by experts along the growth cycle of fruiting plants. For on-time evaluations, molecular
genetics have been successfully performed, though in many instances, they are limited by the
lack of referable data or the cost element. This paper presents a convolutional neural network
(CNN) framework for automatic identification of grapevine cultivar by using leaf images in the
visible spectrum (400–700 nm). The VGG16 architecture was modified by a global average pooling
layer, dense layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate
visual features of diverse grapevine varieties, and recognizing them according to these features
was conceivable by the obtained model. A five-fold cross-validation was performed to evaluate the
uncertainty and predictive efficiency of the CNN model. The modified deep learning model was able
to recognize different grapevine varieties with an average classification accuracy of over 99%. The
obtained model offers a rapid, low-cost and high-throughput grapevine cultivar identification. The
ambition of the obtained tool is not to substitute but complement ampelography and quantitative
genetics, and in this way, assist cultivar identification services.

Keywords: convolutional neural network; image classification; ImageNet; VGGNet; VGG16;
Vitis vinifera

Highlights:

◦ A CNN approach for automatic identification of grapevine cultivar by leaf images.
◦ The VGG16 architecture was modified by adding four layers.
◦ An average classification accuracy of over 99% was obtained.
◦ Rapid, low-cost and high-throughput grapevine cultivar identification was feasible.
◦ The obtained tool complements existing methods, assisting cultivar

identification services.

1. Introduction

In a global perspective, grapevine is one of the most important fruit crops. For
Vitis vinifera L., the Vitis International Variety Catalogue (VIVC) includes 12,250 variety
names, with the actual variety number to be estimated nearly half than that owing to
excessive instances of synonyms and homonyms [1]. Ampelography is the science (also
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referred as art) of variety or cultivar (cultivated variety) identification and classification
based on leaf, shoot, and fruit morphological characteristics. Exercising ampelography
proficiently requires years of study and practice. The International Office of the Vine
and Wine (OIV), the International Union for the Protection of New Varieties of Plants
(UPOV) and the International Plant Genetic Resources Institute (IPGRI) have jointly pro-
vided the necessary morphological characteristics (Descriptors for Grapevine) for variety
identification. Notably, the number of characteristics varies depending on the organization
(OIV, UPOV or IPGRI) and the intended use (e.g., gene bank, protection, or systematic
classification); still dozens of complex traits across different tissues and epochs must be
collected in order to drive meaningful conclusions. Particularly, to achieve the generation of
sufficient descriptors, the plant must be grown till the fruiting stage. These characteristics
are not simultaneously available at a single phenological stage, necessitating repeated
observations along the growth cycle. Trait stability is also of the essence since many of the
studied characteristics are not always uniform due to edaphoclimatic discrepancies across
regions. Such instances can hamper the successful characterization of cultivars reflecting
a lower rate of cultivar registration in plant variety catalogues [2]. In this perspective,
the traditional phenotypic approach might be less suitable in instances where a rapid
identification is required, or large collections ought to be surveyed.

To counterbalance problematic morphological classification, molecular markers as
an alternative, rapid and highly reliable approach for variety identification has gained
popularity and is now widely adopted. Several techniques in molecular genetics have
been employed in identifying V. vinifera (V. vinifera subsp. vinifera and V. vinifera subsp.
sylvestris) varieties with a high degree of success. Genotyping mainly via the exploitation of
simple sequence repeats (SSRs) has been extensively used, as the marker of choice, in order
to discriminate accessions, synonyms, parentages and molecular profile delineation [3].
Nonetheless, for routine analysis of cultivar identification, a major limitation of many
molecular markers is the lack of universal referable data and harmonization of data (allele
sizes) across different laboratories and studies [4]. In many countries, especially in the
developing world, the adoption of these approaches is also hampered by the high purchase,
maintenance, and operating costs, as well as the need for training personnel to use genetic
analyzers and perform sophisticated data analyses.

Instead, imaging in the visible portion of the electromagnetic spectrum (400–700 nm)
is not only attainable at low cost, but also easily operated by non-experts [5,6]. In this basis,
visible imaging has been increasingly adopted in phenotyping community, including breed-
ers, agricultural industry, and academia [7]. Unlike other organs, leaves can be sampled
during most of the growth cycle, have a relatively conserved pattern, while imaging them
is a convenient process given their approximately two-dimensional structure. They are
characterized by a range of features (e.g., shape, color, texture, edge and venation patterns
specific for each cultivar/species [8], which can be employed for identification and classifi-
cation. Indeed, plant species characterization has been previously performed by features
extracted from leaf images through image processing techniques and machine vision [9].

Indeed, indirect, nondestructive methods using regression models for estimating
leaves’ dimensions (width and/or length) have recently resolved agronomic and physio-
logic dilemmas. Such procedures have increasingly found implementation on leaf analysis
across several plants such as cacao [10], chestnut [11], fava bean [12], hazelnut [13], gin-
ger [14], maize [15], onion [16] and pepper [17].

Nonetheless, most of the literature has been focused on plant taxon identification,
whereas only a handful of studies has addressed (within-species) cultivar identification.
In one example of grapevine cultivar identification, leaf red, green and blue (RGB) im-
ages were processed to compute 13 features [18]. An artificial neural network (ANN)
employing these components successfully performed grapevine cultivar identification [18].
Similar work has been performed in citrus [19]. Despite their proven efficiency, the above-
mentioned protocols are based on manual feature engineering in the classification tasks,
requiring distinct sections (i.e., feature extraction, selection, and learning). In this per-
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spective, there is a need for new approaches that can automatically handle these distinct
sections in a user-friendly manner.

In recent years, deep learning has been effectively employed in many machine vision
applications. It uniquely integrates the learning of extracted features and the classification,
which are two critical image processing steps. Since features are automatically extracted
from raw images in deep learning, manual (hand-crafted) feature extraction is not re-
quired. The convolutional neural network (CNN) is a particular class in deep learning.
It has been associated with excellent efficiency in object detection, image segmentation,
and pattern recognition. In this perspective, the CNNs have been widely employed in
addressing complex systems. For instance, CNNs have been successfully employed on
plant taxon identification [9].

CNN has many types of layers, which are specifically designed to extract features
from images. The two main types are the convolutional and the fully connected layers.
The convolutional layer produces an image from another image as input and extracts the
specific template from the initial image. For the fully connected layer, the input and output
data are transformed vectors.

The initial training process of CNNs requires a large dataset and extensive compu-
tational resources. These limitations are commonly overcome by the concept of transfer
learning. The transfer learning concept may be employed on CNNs by using the pre-trained
CNNs with the learnt weights to extract features. In this method, a selected pre-trained
CNN model is applied to extract features from a new dataset, and then a new classifier is
used to categorize the extracted features. This type of model is characterized as frozen,
meaning that none of the layers within the model can be trained. Alternatively, the transfer
learning concept may be employed on CNNs by fine-tuning of the weights in the pre-
trained CNN by using a new dataset. In this method, some top model layers must be
trained (thus being trainable, also referred to as unfrozen). The method of employing
the transfer learning concept on CNNs is determined by (1) the difference in size and
(2) the level of similarity between the original data used for pre-training the model and
the new dataset.

Despite the significant contribution of Iranian grapevines to the overall global pro-
duction (accounting approximately for the 5% of global fresh grape crop production; FAO,
2016), misidentification of varieties hampers the full spectra exploitation of the industry’s
capacity. The aim of the current study was to employ CNNs for Iranian grapevine cultivar
identification. With the aim of being a rapid, low-cost and high-throughput tool, it relies
solely on visible leaf images. The objective of the project is not to substitute but complement
ampelographic and molecular genetics approaches. The proposed CNN model combined
with the traditional phenotypic approach and quantitative genetics can potentially en-
hance cultivar identification services, and delineate hybrids. For the first time, CNNs are
employed for a very fine-grained real-life classification problem.

2. Materials and Methods
2.1. Plant Material and Sampling Protocol

The six commercially most important grapevine (V. vinifera subsp. vinifera) cultivars
in Iran (Asgari, Fakhri, Keshmeshi, Mirzaei, Shirazi, and Siyah) were employed for the
observations. The cultivar collection has been characterized using ampelographic criteria
and refers to registered varieties. Vines employed are clones and part of a comprehensive
and ongoing research project coordinated by the Research Institute for Grapes and Raisin
(RIGR) of Malayer University (Malayer, Iran; latitude 34◦, longitude 48◦, altitude 1550 m).

Samples were collected in the morning (08:00–10:00 h; 18–20 ◦C during harvest) in
July 2018. Fully expanded leaves from three-year old plants without obvious symptoms of
nutrient deficiency, pathogen infection or insect infestation, were sampled from the fifth
node (counting from the apex). To retain turgidity, excised leaves were enclosed in plastic
envelopes immediately after excision, which were continuously kept under shade [5]. In
all cases, the time between sampling and imaging (described below) did not exceed 30 min.
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Replicate leaves were randomly collected from three separate plants of similar architecture.
In total, fifty leaves were sampled per cultivar.

2.2. Image Acquisition

Leaves’ images were obtained by using a charge-coupled device (CCD) digital camera
(CANON, SX260 HS, 12.1MP, Made in Japan, specifications in Table S1). The samples were
manually moved to the image capture station (Figure S1). The imaging station included
four lighting units (halogen tubes; Pars Shahab Lamp Co., Tehran, Iran), located at the
corners. The camera-to-sample distance was maintained at 0.3 m. During image acquisition,
lighting conditions and image capture settings were fixed. One image (RGB) was obtained
per sample. Representative leaf images of different cultivars are shown in Figure 1.

The images were acquired in the RGB color space, and saved in JPEG format as
matrices with dimensions of 3000 × 4000 pixels (Table S1). During the training pro-
cess (described below), the size of the original images was automatically converted
to 224 × 224 × 3 (3 = RGB (8 bits each)).

2.3. Deep Convolutional Neural Network-Based Model

CNN is an improved version of the traditional ANN. Critical CNN features include
local connections, shared weights, pooling process, and the use of multiple layers. In
CNN, the learning of abstract features is based on convolutional and pooling layers.
Convolutional layer neurons are organized in feature maps. Each neuron is connected
to the feature maps of the previous layer through weights matrix (the so-called filter
banks). The task of a convolutional layer is to detect local continuities of features from the
previous layer. Instead, the task of a pooling layer is to elide similar features into a single
feature. Several baseline CNN structures have been developed for image recognition tasks,
including Visual Geometry Group network (VGGNet), AlexNet and GoogLeNet.

2.3.1. VGGNet-Based CNN Model

CNN depth affects the classification accuracy. CNN depth is inversely related to
classification error. In this perspective, deeper CNN architectures are being explored to
improve classification accuracy. To use the advantage of increasing CNN depth, VGGNet
proposed a homogeneous convolutional neural network. Although initially intended for
object classification tasks, the VGG structure is now widely used as a high-performance
CNN. VGGNet has a low structural complexity, while generated features outperform other
baseline CNN structures (e.g., AlexNet, GoogLeNet).

VGG16 is one of the two VGGNet structures. It contains 16 weighted layers with
138 million trainable parameters. The homogeneous VGG16 architecture consists of five
convolutional blocks. The input of each block is the output of the previous block. Through
this structure, VGG16 can extract strong features (e.g., shape, color, and texture) from
input images. The first two blocks are constructed by two convolutional layers, while
the last three blocks by three convolutional layers. The stride and padding of these
13 convolutional layers with 3 × 3 kernels equal to 1 pixel, while for each of them, the
Rectified Linear Unit (ReLU) function is utilized. Every block is followed by a 2 × 2
max-pooling layer with stride 2. This layer is applied as a sub-sampling layer to decrease
the feature map dimension. A total of 64 filters are used for the convolutional layers of the
first block, and then the number of filters is augmented by a factor of 2 for each consecutive
block. The network ends with three dense layers. The first two layers have 4096 channels,
and the final layer has a SoftMax activation function with 1000 channels.
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Figure 1. Representative true-to-type leaf images of the six grapevine cultivars under study.

The original VGG16 was modified by replacing the last three dense layers with a
classifier block. The classifier block included (1) a global average pooling layer, (2) a dense
layer with the ReLU function as the activation function, (3) batch normalization to hold
the inputs of layers on the same range, (4) dropout as regularization method to reduce the
overfitting risk of training, and (5) a final dense layer with SoftMax classifier. The last layer
had six neurons to adapt the network to our case study. Various combinations of the dense
layers were investigated to obtain the best structure of the classifier block.

Figure 2 denotes the structure of the VGG16-based CNN model. The brackets of
convolutional blocks illustrate the type and number of used layers. The second column of
the brackets shows the kernel size used in each layer, while the third column represents
the number of filters. The brackets of the classifier block indicate the input and output
size of layers.
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evaluated in the current research.

The global average pooling layer minimizes overfitting via reducing the number of
parameters. This layer reduces the spatial dimensions of an h × w × d tensor to a tensor
with dimensions of 1 × 1 × d. Every h × w feature map is converted to a single number
by taking the mean of values of the h × w matrix. The ReLU function performed the
mathematical operation (Equation (1)) on every input data, and the SoftMax function
calculated the normalized probability value of each neuron (pi) by using Equation (2).

f (x) =
{

x i f x > 0
0 otherwise

(1)

pi =
exp(ai)

∑n
j=1 exp

(
aj
) (2)

Parameter ai is the softmax input for node i (class i) and i, j ∈ {1, 2, . . . , n}.

2.3.2. CNN Model Training

In instances where the training dataset is not extensive, it is not advisable to train the
CNN model from scratch. In these instances, it is recommended to utilize a pre-trained
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CNN model. Fine-tuning was applied for the VGG16-based model through training with
the ImageNet dataset. In this way, the knowledge created from ImageNet was transferred
to the current case study. Initially, the VGG16 was trained by using the ImageNet. Next,
the last fully connected layers were replaced with a new classifier block. This block
was trained with random weights for 10 epochs, while all the convolutional blocks were
frozen. Finally, the VGG16-based model was trained from scratch with the obtained
leaf image dataset. The training process was performed using the cross-entropy loss
function and the Adam optimizer with a learning rate and learning rate decay of 1 × 10−4

and 2 × 10−6, respectively.
The VGG16-based model had more than 14 million trainable parameters. Due to the

high number of parameters, the overfitting risk of the network would be increased. Owing
to the great number of parameters, the network overfitting risk was considered. In order to
develop the robustness and generalizability of the network, image processing techniques,
a slight distortion (comprised of rotation, height and width shifts), and scaling changes
were applied to augment the training of a given image. Representative augmented images
of different cultivars are shown in Figure 3.
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2.3.3. k-Fold Cross-Validation and Assessment of Classification Accuracy

The image dataset was divided into training and test sets. A five-fold cross-validation
was carried out to appraise the predictive performance and uncertainty of the CNN model.
To do this, the training dataset was separated into five disjoint equal segments. The CNN
model was trained using four (out of five) subsets as the training sets, while the remaining
one was used as the validation set. Next, a confusion matrix was calculated to appraise
the classification performance on the independent test set. The values of a confusion
matrix illustrate the actual and predicted class. This strategy was iterated five times by
shifting the validation set. The efficiency of the CNN classifier was expressed by statistical
parameters measured based on the values of the confusion matrix in each iteration. These
parameters were accuracy, precision, specificity, sensitivity, and area under the curve (AUC).
Finally, the average of the five performances was considered as the total performance of
the CNN model.

For the training and testing processes, 240 and 60 images were employed, respectively.
Based on the number of epochs, k-fold cross-validation method, and the total number of
sample batches per training iteration, data augmentation generated 500 new images from
each training image. In this way, the training image dataset was 501 times larger than the
original one.

3. Results and Discussion

Vitis vinifera L. (the common grapevine) is widely spread mainly across Eurasia and
represents a significant source of revenue to the regional economy [20]. The absence of
regulation of reproductive material and the control of grapevine planting encouraged a
wide spreading of grapevine types across the years; thus, leading into a surge of novel
cultivars [21]. Historically, the certification process is painstakingly conducted by experts
using a sophisticated morphological characterization via ampelography [22]. This subject
emphasizes on the classification and identification of grapevine cultivars relying on the
morphometrics and the features of the grapevine plant; mainly focusing on the form and
color of leaves, branches, grape clusters or seeds. Specialists (capable to correctly classify
thousands of varieties) are infrequent and the time in order to train professionals is an
extremely long investment. To manage this problem, it is vital to technically develop novel
and unattended approaches for the correct classification of grapevine varieties, at a quicker
frequency, and without elevated expenses when related with ampelography [23].

Nowadays, acquisition of images, image processing, computer visualization and
machine learning procedures have been broadly implemented for agricultural purposes.
Specifically in the ‘art and science’ of viticulture, significant progress has been made in
plant disease classification [24–26], nutrient assessment and the berry maturation stage
evaluation [27]. Specifically, technical progresses allowed the evaluation of fertilization
status of grapevines by using spatial and temporal resolution via unmanned aerial ve-
hicles [28]. Additionally, a two dimensional bud detection scheme by using a CNN for
grapevines has been recently established [29]. Grapevine diseases caused by phytoplasmas
have also been successfully resolved via CNNs on proximal RGB images [30], while fungal
symptoms were earlier detected and successfully classified by using machine learning [31].
Ampatzidis and coworkers [32] also illustrated an innovative grapevine viral disease de-
tection system by combining artificial intelligence and machine learning. Special efforts
have focused on applying CNNs and deep learning to the delineation of severe disease
such as Esca. Since Esca symptoms can be virtually readily visually evaluated via com-
puter vision and machine learning systems, deep convolutional neural networks can be
suitably applied to identify this grapevine disease [33–36]. Additionally, recognition of
grapevine yellow indicators in grapevines via artificial intelligence has been successfully
accomplished [37]. Still, such instances are quite straightforward due to the fact that symp-
tomatic leaves develop characteristic alterations in shape (i.e., wilting, leaf rolling) and
color (i.e., browning, yellowing) hence, despite challenges, deep CNNs can be readily and
successfully applied. Unfortunately, the implementation of deep learning and CNNs is
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rather limited when it comes to Vitis spp. cultivar identification; as a result, reports on this
pivotal issue remain infrequent [23].

In the current study, it was attempted to develop a procedure and implement deep
learning in a proof-of-concept study in order to efficiently classify the most prominent
Iranian grapevine cultivars. In a similar investigation, Fuentes and colleagues successfully
classified 16 grapevine cultivars in Spain, via machine learning and near-infrared spec-
troscopy parameters [18], while Su et al. employed a diverse grapevine dataset for varietal
delineation [38]. Recently, real-time on-farm hyperspectral imaging and machine learning
were used in order to characterize grapevine varieties using a moving vertical photo sys-
tem [39]. Such studies are state of the art investigations and have optimal recognition rates.
Nonetheless, there is a necessity of expensive equipment (thus not easily attainable across
laboratories), while the optimization of sophisticated procedures is required. In order
to achieve a robust classification scheme at a fraction of the cost, we selected a common
affordable digital camera and an easy to manipulate platform (without sacrificing the
classification quality).

The identification of varieties was performed by using a VGG16-based model, which
was followed by a classifier block. Several classifier blocks were tested to achieve the best
CNN model (Table 1). These were constructed from the global average-pooling layer, by
adjusting the number of dense layers. In all cases, these included batch normalization
and dropout layers. These networks were trained for 50 epochs in every five folds. The
weight matrix of the model was saved based on the lowest loss function value without
any over-fitting. The VGG16-based model with three dense layers (including 512, 512,
and 256 neurons) provided the best classification outcome and outperformed the others
(Table 2). For the training dataset, the average classification accuracy and cross-entropy
loss values were 92.72% and 0.2564 (Table 2). For the validation dataset, these parameters
were 95.22% and 0.11818, respectively (Table 2). For the validation dataset, these were
97.34% and 0.1203, respectively (Table 2).

Table 1. Structure of the classifier blocks tested in this study. Brackets show the number of the dense
layers and their neurons.

Model

Layer Name

Global Average
Pooling Dense (ReLU) Batch

Normalization Dropout Dense (Softmax)

1 [256] [6]
2 [512] [6]
3 [512, 512] [6]
4 [512, 512, 256] [6]

The used layer in the model construction.

Table 2. Comparison of the proposed convolutional neural networks performance in various layer combinations provided
from Table 1.

Model
Training Validation Test

Accuracy Loss Accuracy Loss Accuracy Loss

Average STD Average STD Average STD Average STD Average STD Average STD

1 0.84 0.05 0.49 0.09 0.9 0.05 0.43 0.18 0.93 0.04 0.25 0.08
2 0.87 0.04 0.41 0.08 0.91 0.05 0.33 0.15 0.98 0.02 0.17 0.08
3 0.91 0.03 0.3 0.11 0.93 0.05 0.26 0.17 0.97 0.03 0.12 0.08
4 0.93 0.02 0.26 0.07 0.95 0.04 0.18 0.12 0.97 0.02 0.12 0.06

For that model, the classification accuracy and the cross-entropy loss values of the
training and validation dataset are provided in Figure 4. During the training process in
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each fold, these values were obtained based on the lowest loss function value. The best
model efficiency was achieved in the last fold (Figure 4).
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The proposed framework for grapevine cultivar identification is summarized in
Figure 5. The convolutional base of the VGG16 is followed by the developed classifier
block. This block contained a global average pooling layer, three dense layers (with 512,
512, and 256 neurons as well as ReLU function), batch normalization layer, dropout layer,
and last dense layer with SoftMax classifier. The input and output shape of each layer is
also depicted in the figure.

Overall, the recognition model of ANN was successfully applied to varietal leaf
classification, and the recognition effect was satisfactory. It was shown that this process
can be functional across a wide range of diverse leaf types (shape of blade, number of
lobes, shape of teeth petiole sinus etc., as shown in Figure 1), without the utilization of
rigorous experimental equipment. In a parallel manner, the model was unattended since it
does not need experts’ interference to calibrate the characteristic features, nor did it require
background striping of the input images to detect/highlight the main leaf area, more fitting
for the scene. Moreover, the training and verification process was self-learning, and highly
autonomous having a highly successful recognition rate.

3.1. Evaluation of Quantitative Classification

Few samples were misclassified by the selected VGG16-based model (Figure 6). This
was noted for one (cvs. Keshmeshi and Shirazi), two (cv. Fakhri) or four (cv. Siyah)
predicted samples (Figure 6). Mirzaei and Asgari samples were correctly identified and
classified across all tests. This can probably be attributed to discrete features of leaf
shapes, since Mirzaei cultivars have small curves and overlaying lobes, while Asgari
cultivars discretely display widely angular veins; hence, a clear distinction from other
types was established.

In each fold, the performance analysis of the selected VGG16-based model was carried
out by the confusion matrix and statistical parameters on the independent test dataset. The
total performance of the CNN model was evaluated by calculating the average of all five
folds in a range of statistical parameters (accuracy, precision, specificity, sensitivity, and
AUC). Finally, the average of the five performances was considered as the total performance
of the CNN model (Table 3). The selected VGG16-based model achieved an average overall
accuracy of 99.11 ± 0.74% (Table 3). Similarly high values were obtained for the remaining
statistical parameters (Table 3).
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Figure 6. The sum of confusion matrices evaluated from the proposed convolutional neural network
model with six classes.

Table 3. Average statistical parameters and deviations of the selected convolutional neural network model. AUC = area
under the curve.

Class Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) AUC (%)

Average STD Average STD Average STD Average STD Average STD

Asgari 99.34 1.49 96.67 7.45 100 0 99.2 1.79 99.6 0.89
Siyah 98.67 2.17 100 0 92 13.03 100 0 96 6.52
Fakhri 99 0.91 98.18 4.06 96 5.47 99.6 0.89 97.8 2.58

Keshmeshi 99 0.91 96.36 4.98 98 4.47 99 1.09 98.6 2.07
Mirzaie 99.34 0.91 96.36 4.98 100 0 99.2 1.09 99.6 0.54
Shirazi 99.34 0.91 98.18 4.06 98 4.47 99.6 0.89 98.8 2.17

Average
per class 99.11 0.74 97.62 1.96 97.33 2.23 99.47 0.44 98.4 1.34

The prediction efficiency recorded in this study was at the highest end of the range,
when considering previous reports assessing cultivar identification by using other meth-
ods [18,19]. On top of this, the segmentation, feature extraction, selection, and classification
stages were conducted by the model. Instead, in previously published approaches, manual
feature engineering is required.

3.2. Analysis of Qualitative

The training process of CNN models involves the feed-forward and back-propagation
steps. In the back-propagation step, CNN models learn how to optimize their kernels
(filters). These optimized kernels extract low- and high-level features and illustrate the most
important regions to identify each class (in this case grapevine cultivar). Hence, kernels
determine the accuracy of CNN models, and their visualization is needed to evaluate the
model performance.

Some kernels (filters) employed in the two convolutional layers (first dual panel)
and feature visualization (the so-called feature map; second dual panel) are depicted in
Figure 7. The color of specific lamina areas represents some of the learned kernels in the
primary layers (first dual panel in Figure 7). These primary layers tended to extract low-
level features (e.g., color, edge, polka dot patterns). In the primary layers, the feature map
illustrates the active neurons on the leaf blade and edge. The activation of these neurons is
possibly associated with the kernels’ focus on color. Notably, the whole leaf boundary is
apparent. The neurons activated on the leaf outline are a set of gradient operators, which
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detected and extracted the leaf silhouette at various orientations. At deeper layers (second
dual panel in Figure 7), features at more complex levels were extracted. At these layers,
activated neurons included primary and secondary veins.

Plants 2021, 10, x FOR PEER REVIEW 14 of 18 
 

 

The prediction efficiency recorded in this study was at the highest end of the range, 
when considering previous reports assessing cultivar identification by using other meth-
ods [18,19]. On top of this, the segmentation, feature extraction, selection, and classifica-
tion stages were conducted by the model. Instead, in previously published approaches, 
manual feature engineering is required. 

3.2. Analysis of Qualitative 
The training process of CNN models involves the feed-forward and back-propaga-

tion steps. In the back-propagation step, CNN models learn how to optimize their kernels 
(filters). These optimized kernels extract low- and high-level features and illustrate the 
most important regions to identify each class (in this case grapevine cultivar). Hence, ker-
nels determine the accuracy of CNN models, and their visualization is needed to evaluate 
the model performance. 

Some kernels (filters) employed in the two convolutional layers (first dual panel) and 
feature visualization (the so-called feature map; second dual panel) are depicted in Figure 
7. The color of specific lamina areas represents some of the learned kernels in the primary 
layers (first dual panel in Figure 7). These primary layers tended to extract low-level fea-
tures (e.g., color, edge, polka dot patterns). In the primary layers, the feature map illus-
trates the active neurons on the leaf blade and edge. The activation of these neurons is 
possibly associated with the kernels’ focus on color. Notably, the whole leaf boundary is 
apparent. The neurons activated on the leaf outline are a set of gradient operators, which 
detected and extracted the leaf silhouette at various orientations. At deeper layers (second 
dual panel in Figure 7), features at more complex levels were extracted. At these layers, 
activated neurons included primary and secondary veins. 

 
Figure 7. Filter response visualization in a representative leaf of one grapevine cultivar. Convolutional blocks with some 
filter banks (first dual panel), some channels of the activation layer (second dual panel), and class saliency maps (third 
and fourth dual panels). 

The class saliency map in two convolutional layers is presented (third and fourth 
dual panels in Figure 7 as well as Figure 8). The class saliency map visualizes the image 
pixels which contribute to the classification process. For an input image with m rows and 
n columns, the derivative of class score function was first calculated by back-propagation. 
The class score function is a linear function of the given image, which can be approximated 
by the first-order Taylor expansion. Then, the saliency map was computed by rearranging 

Figure 7. Filter response visualization in a representative leaf of one grapevine cultivar. Convolutional blocks with some
filter banks (first dual panel), some channels of the activation layer (second dual panel), and class saliency maps (third and
fourth dual panels).

The class saliency map in two convolutional layers is presented (third and fourth
dual panels in Figure 7 as well as Figure 8). The class saliency map visualizes the image
pixels which contribute to the classification process. For an input image with m rows and n
columns, the derivative of class score function was first calculated by back-propagation.
The class score function is a linear function of the given image, which can be approximated
by the first-order Taylor expansion. Then, the saliency map was computed by rearranging
the elements of the calculated derivative. In the RGB image, each component of the saliency
map is the maximum value of the computed derivative across the three-color channels.

From both feature (second dual panel in Figure 7) and saliency (third and fourth dual
panels in Figure 7 as well as Figure 8) maps, a hierarchy of self-learned features from low to
higher levels was observed. Low-level features (e.g., gradient variations along the leaf edge
in different directions) were correlated with the higher-level features (e.g., venation-like
patterns). This correlation is based on the fact that the higher-level features are built on the
low-level ones, and in this way, CNN is capable of constructing robust leaf features. These
hierarchical features include color, edge, shape, texture, and venation patterns. Despite
the limited cultivar number under study, we were able to show that CNN models are able
to realize the complex (visual) leaf features of different grapevine cultivars and, based on
these features, distinguish them.
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4. Conclusions

Thousands of grapevine cultivars are in use today. Their identification is traditionally
exercised through the science of ampelography, involving repeated expert observations
across the plant growth cycle. On-time grapevine cultivar characterization is currently
performed through molecular genetics. However, in several instances, these are limited by
the lack of referable data, the involved costs, or the complexed/sophisticated analyses. This
study introduced a proof-of-concept convolutional neural network (CNN) framework for
automatic identification of grapevine variety by using leaf images in the visible spectrum
(400–700 nm). In this perspective, low-cost devices may be employed for unattended image
acquisition. The VGG16 architecture was modified by a global average pooling layer, dense
layers, a batch normalization layer, and a dropout layer. Distinguishing the intricate visual
features of the diverse grapevine varieties, and identifying them based on these features
was feasible by the obtained model. A five-fold cross-validation was conducted to assess
the uncertainty and predictive efficiency of the CNN model. The obtained model was
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able to recognize and cluster different grapevine varieties with an average classification
accuracy of over 99%. This sets it as a rapid, low-cost and high-throughput technique
for grapevine variety identification. The objective of the obtained methodology is not to
replace but complement current methods (ampelography and molecular genetics), and, in
this way, reinforce cultivar identification services.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10081628/s1, Figure S1: The image capture station employed in the current study,
Table S1: Camera specifications employed in this study.
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ANN artificial neural network
AUC area under the curve
CCD charged-coupled device
CNN convolutional neural network
IPGRI International Plant Genetic Resources Institute
OIV International Office of the Vine and Wine
ReLU Rectified Linear Unit
RGB red, green and blue
RIGR Research Institute for Grapes and Raisin
UPOV International Union for the Protection of New Varieties of Plants
VGGNet Visual Geometry Group network
VIVC Vitis International Variety Catalogue
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