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Abstract

:

Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.
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1. Introduction


Being sessile, plants are frequently confronted with various environmental stresses, resulting in considerable alternation in metabolism, which leads to a serious threat within the yield and crop production [1,2]. Among the key stress factors, salinity seriously affects the growth and development of plants [3,4,5]. Nowadays, at global levels, the problem of salinity, particularly in the arid and semiarid regions, is increasing, and the problem has been intensified due to the continuous usage of salt-rich water for irrigation purposes [6,7]. Such agricultural malpractices have to lead to the continuous addition of excess toxic salts to soil, rendering the productive lands a saline wasteland. It has been estimated that 5–7% of the global land and approximately 20% of irrigated land areas are affected by high salinity [8,9,10]. Salinity stress proved to be detrimental to the growth and development of existing crops through induction of aberrations in physiological and biochemical processes, including chlorophyll synthesis, photosynthesis, respiration, and ion homeostasis [11,12,13]. Moreover, salinity stress negatively affects the metabolism, particularly the nitrogen or carbon assimilatory pathway, which in turn reflects reduced growth and yield [14,15,16].



It has been reported that the availability of excess toxic salts at the subcellular level triggers the excessive generation of reactive oxygen species (ROS), resulting in the induction of oxidative stress [1,17,18]. These ROS include radicals such as superoxide, hydrogen peroxide, hydroxyl, and peroxide, which are injurious to plant metabolism and growth at higher concentrations [19,20,21]. The accumulation of ROS in plant tissue can result in the oxidation of lipids [22,23], proteins [20,24], nucleic acids [25,26], and chlorophyll [27,28], thereby disturbing the structural and functional integrity of cells. To avoid the deleterious impact of accumulated ROS and also prevent their further generation, several defensive mechanisms are being evolved to improve cellular functioning [29,30].



These mechanisms include the selective absorption of mineral ions for osmotic adjustment and up-regulation of antioxidant and osmoprotective agents accumulated in the cytoplasm and organelles [11,31]. Additionally, osmolytes such as proline, glycine betaine, and sugars accumulate to maintain cellular functioning by making the cells osmotically stable. This takes place through the maintenance of the cell water content and assists in scavenging ROS, hence maintaining the enzyme structure and functioning [32,33]. Furthermore, the antioxidant defense system contributes to the neutralization of toxic ROS for preventing oxidative damage effects [19,34].



Nitric oxide (NO) is an essential radical molecule implicated in several physiological and biochemical functions of plants [13,35]. NO is involved in growth and development, as well as in defense responses to a variety of abiotic stresses, including salinity [36,37]. Working with different plant species, researchers have considered NO as an endogenous signaling molecule implicated in the regulation and coordination of the signaling network [38,39]. NO is the leading molecule for several physiological and adaptive biochemical changes [40]. The resultant effects, whether beneficial or deleterious, have been shown depending on the concentration and the site of production [41,42].



Wheat (Triticum aestivum L.) is one of the most important and strategic cereal crops in temperate zones. It is one of the preferred meals that are being used by approximately 36% of the whole population. Worldwide, wheat supplies almost 55% of the carbohydrates and 20% of the food calories consumed globally [43]. During the last 20 centuries, the demand for wheat has doubled due to urbanization and industrialization century. Salinity stress directly affects wheat phenological aspects, root growth rate, root/shoot ratio, and total dry matter yield [44]. Therefore, exogenous application of NO can improve salinity tolerance by maintaining the antioxidant and osmolyte metabolism for better growth and yield in salt-exposed seedlings. With this hypothesis, the present investigation was aimed to analyze the possible involvement of exogenous NO in the regulation of growth of wheat through the regulation of physiological, biochemical, and molecular attributes under salt stress.




2. Results


2.1. Growth Parameters


Results depicting the influence of NaCl stress and NO application on growth parameters such as length and fresh and dry biomass in wheat are shown in (Table 1). Wheat seedlings treated with 100 mM of NaCl showed a significant decline in shoot height and fresh and dry weight, which was, however, mitigated by exogenous application of NO. Relative to control, the observed decline in length and fresh and dry weight of wheat was 36.70%, 38.88% and 41.13% due to 100 mM NaCl. NO application at 50 µM caused an enhancement of 14.25%, 4.82% and 12.98% in length and fresh and dry weight, respectively, while 100 µM NO caused a maximum increase of 22.52%, 24.63% and 40.70% over the control. Application of NO (50 and 100 µM) mitigated the effect of NaCl by 12.26% and 21.59% in shoot length, 16.30% and 32.29% in fresh weight, and 25.09% and 35.89% in dry weight over the NaCl-stressed plants (Table 1).




2.2. No Protects Chlorophyll and Photosynthetic Attributes in Salt-Stressed Wheat Plants


Salinity stress resulted in a considerable decline in the synthesis of chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoid, and total pigments reflecting in decreased photosynthetic rate and stomatal conductance (Figure 1A–F). Relative to control, NaCl treatment reduced the Chl ‘a’ by 31.1%, Chl ‘b’ by 32%, carotenoids by 26.56%, and total pigments by 38.7%. Application of NO at both concentrations improved the chlorophyll synthesis significantly over the control and also ameliorated the negative effects of salinity by 3.62%, 4.07%, 7.23% and 13.33% with 50 µM NO and by 5.42%, 15.2%, 13.23% and 28.1% with 100 µM NO over the NaCl-treated counterparts. At 100 µM, application of NO (100 mM NaCl + 100 µM NO) ameliorated the negative effect of NaCl on stomatal conductance and photosynthetic efficiency by 28.39% and 36.51%, respectively, over the NaCl-treated plants (Figure 1E,F).




2.3. No Maintains Leaf RWC by Improving the Proline and Sugar Content


Results showing the effect of NaCl and NO on the synthesis of proline, sugars, and RWC are depicted in (Figure 2A–C). NO application improved the proline and soluble sugar accumulation in both normal and NaCl-stressed wheat plants conditions, reflecting in increased RWC in them over the controls. RWC was declined in NaCl-stressed plants by 24.12% over control. However, an enhancement of 2.26% and 5.99% was observed with 50 µM and 100 µM NO, respectively. Application of NO to NaCl-stressed plants mitigated the negative effects on RWC by 3.25% at NaCl + 50 µM NO and by 8.27% at NaCl + 100 µM NO over the NaCl (100 mM)-stressed plants. NO-treated plants (100 mM NaCl + 100 µM NO) exhibited maximal accumulation of proline and soluble sugars with an increase of 36.78% and 52.66% over the control plants, resulting in maximal amelioration of salinity-induced decline in RWC (Figure 2A–C).




2.4. No Application Reduces Oxidative Damage by Preventing Lipid Peroxidation, Hydrogen Peroxide, and Improving Membrane Stability Index


Exogenous application of NO prevented the oxidative stress by reducing the formation of hydrogen peroxide (H2O2), and hence the lipid peroxidation resulting in an increased membrane stability index (Figure 3A–C). NaCl stress triggered the generation of H2O2 by 52.97% over control, causing an increase of 34.97% in lipid peroxidation and subsequently a decline of 27.27% in the membrane stability index in them. Exogenous application of NO at 50 and 100 µM proved significant in declining the NaCl-mediated generation of H2O2 and hence preventing lipid peroxidation and protecting membrane stability. Maximal protection to wheat seedlings was exhibited by seedlings treated with 100 µM NO, reducing the generation of H2O2 and lipid peroxidation by 21.35% and 17.24% over the control, and at 100 mM NaCl + 100 µM NO, H2O2 and lipid peroxidation was ameliorated by 21.14% and 17.19% over the NaCl-stressed plants. The naCl-mediated decline in the membrane stability index was assuaged by 4.2% and 7.62% in 50 µM and 100 µM NO-supplemented seedlings, respectively (Figure 3A–C).




2.5. Exogenous NO Up-Regulates Antioxidant System in Salinity-Stressed Wheat


In both normal and NaCl-exposed wheat seedlings, the activities of the antioxidant enzymes and the contents of non-enzymatic antioxidants studied (glutathione (GSH) and ascorbic acid (ASA)) were observed to increase with the application of NO, and obvious effects were observed with 100 µM NO (Figure 4A–F). Increase in the activities due to 100 mM NaCl was 34.86% in superoxide dismutase (SOD), 26.17% in catalase (CAT), 35.67% ascorbate peroxidase (APX), and 30.3% in glutathione reductase (GR) activity over the control plants. GSH increased by 28.04%, while ASA content decreased by 15.29% due to NaCl treatment. Application of NO increased the activity of SOD, CAT, APX, and GR by 5.54%, 8.83%, 22.22% and 7.45% at 50 µM and by 13.41%, 18.96%, 33.33% and 25.96% at 100 µM over the control plants. Relative to the NaCl-treated seedlings, NaCl + NO-treated ones showed a further increase in the activity of SOD, CAT, APX, and GR, with the increase being more obvious in 100 mM NaCl + 100 µM NO-treated plants showing a percentage increase of 8.27% for SOD, 13.39% for CAT, 5.44% for APX, and 20.9% for GR. ASA was increased by 7.77% and 17.2% by application of 50 µM and 100 µM NO, respectively, and amelioration of 5.88% and 13.6% in ASA content was observed when applied to NaCl-stressed plants. Accumulation of GSH was enhanced maximally in NO-supplemented plants with a percent increase of 29.44% and 33.33% with NaCl + 50 µM NO and NaCl + 100 µM NO, respectively, over the control (Figure 4A–F).




2.6. No Improves Uptake of N, K, and Ca under Salinity Stress


Mineral elements were estimated to assess the salt tolerance mediated by exogenous-applied NO. NaCl treatment declined the uptake of nitrogen (N), potassium (K), and calcium (Ca) while increased the accumulation of sodium both in the leaf as well as root (Table 2). Relative to control, N, K, and Ca were observed to decrease by 27.31%, 45.07% and 40.7% in leaf and 25.2%, 32.5% and 34.62% in root tissues, respectively. In leaf tissues, application of NO increased N, K, and Ca by 8.34%, 10.92% and 7.75% at 50 µM and by 19.04%, 25.33% and 28.63% at 100 µM concentrations, respectively. Such a positive influence of NO was also observed when applied to NaCl-treated plants, resulting in significant amelioration of decline in their uptake. Relative to salinity-stressed plants, uptake of N, K, and Ca increased by 23.2%, 33.76% and 32.2%, respectively, with NaCl + 100 µM reflecting in the mitigation of ill effects of salinity stress. In NaCl-treated plants, sodium accumulation increased by 54.06% and 43.58% in leaf and root over the control plants. However, a decline of 7.35% and 31.25% was observed in NO-treated plants at 50 µM and 100 µM, respectively, in leaf tissues, and a similar trend was maintained in root tissues. Application of NO to NaCl-treated plants limited the uptake of Na by 14.35% and 31.12% at NaCl + 50 µM and NaCl + 100 µM, respectively (Table 2).




2.7. NO Regulates the Expression of SOS1, NHX1, AQP, OSM-34, and D2-Protein


To further explore the protective effect of exogenous NO on the wheat plants under saline conditions, the relative gene expression of SOS1, NHX1, AQP, OSM-34, and D2 proteins was investigated by real-time (RT)-qPCR (Figure 5). Plants subjected to salt stress (100 mM NaCl) dramatically exhibited an obvious and significant (p ≤ 0.05) increase in the relative expression of SOS1, NHX1, AQP, and OSM-34 compared to the non-saline conditions (control). However, an opposite and significant trend was observed with respect to D2-protein.



On the other hand, under salt-stress conditions, NO-treated plants (50 or 100 µM) showed a significant decrease in the relative gene expression of SOS1, NHX1, AQP, and OSM-34 compared to the salt-affected NO-untreated plants (100 mM NaCl), while the relative gene expression of D2-protein revealed an obvious and significant improvement with the treatments of NO at 50 or 100 µM compared to the NO-untreated plants under saline conditions. In this context, the treatment of 100 µM NO was more potent than the other treatment of 50 µM.





3. Discussion


Increased salinity levels in soils due to agricultural malpractices have led to the failure of net agricultural productivity and crop survival [45]. Salinity stress has resulted in a considerable decline in crop yields such as soybean [46] and tomato [47]. Hence, the need for the prevention of crop losses to meet the demands of ever-increasing human populations [48]. Accordingly, research investigations are needed to provide some better alternatives for improving the protection mechanisms against stress to enhance the yield. In this connection, we analyzed the efficiency of exogenously supplied NO in enhancing growth through its involvement in the regulation of key physiological and biochemical attributes. Increased salinity concentrations in soil solution potentially reduce the morphological parameters by restricting the cell division, leading to declined cellular elongation and growth [49]. NO has the potential to ameliorate such adverse effects and enhance the stress resilience of plants, which can be ascribed to the key role in stress mitigation [50,51]. Growth parameters showed an increase with increasing concentration of NO from 50 µM to 100 µM and also ameliorated the decline triggered by salinity (100 mM NaCl) to a considerable extent (Table 1). Our results are in corroboration with Fatma and Khan (2014) [41] for mustard, Ahmad et al. (2016) [52] for chickpea, and Fan et al. (2013) [53] for cucumber. The ameliorative impact of exogenous NO on the growth parameters is believed to be due to its cumulative effect on the uptake and accumulation of key mineral nutrients [54]. In the present study, exogenous application of NO prevented excess accumulation of Na in upper plant parts, preventing the intensity of NaCl-mediated generation of oxidative stress in wheat plants (Table 2). Exogenously sourced NO triggers the vacuolar H+-ATPase and increased Na+/H+ antiport activity, thereby reflecting inefficient compartmentalization of Na+ [55].



Similar to our observation, the positive implication of NO in improving the K+, Ca2+, and Mg2+ content and preventing salinity-triggered decline has been demonstrated in Gossypium hirsutum [56]. Exogenously sourced NO increased uptake of N, K, and Ca, reaching maximal values with 100 µM NO under normal conditions and also maintaining its salinity stress amelioration potential. Earlier, it has been demonstrated that NO improves the uptake of N, P, and K in wheat seedlings subjected to cadmium stress [57], reflecting improved photosynthesis. Exogenously applied NO may have led to the maintenance of cytosolic Na concentrations by improving the expression of Na+ transporters and H+ pumps [58]. In addition, NO application potentiates the Ca-mediated stress amelioration by improving its uptake and partitioning to cellular compartments, and in the present investigation, NO proved beneficial in improving the Ca and K uptake, causing a significant reduction in Na/K ratio [59,60]. Lowering the Na/K ratio strengthens the cellular metabolism and protects enzyme activity, synthesis of metabolites, and yields performance of crop plants [19,61]. Exogenous NO application restricted the uptake of deleterious sodium ions, resulting in a significant decrease in the Na/K ratio by way of increasing mineral uptake. In the present study, NO-mediated reduction in Na/K ratio contributes to reduced susceptibility of wheat plants by mediating the exclusion of the deleterious ions for the maintenance of the cellular osmotic potential [37,60]. NO application was advantageous in improving the chlorophyll and carotenoid pigments at both the concentrations and imparted a positive impact on the photosynthetic efficiency and stomatal conductance. Earlier reports detect the reduction in chlorophyll contents in NaCl-stressed plants [62,63]. Enhancement of photosynthetic capacity following NO treatment was observed in salt-stressed wheat plants by assisting in the synthesis of other pigments protecting components such as cysteine and reduced glutathione that protect the chlorophyll breakdown as well as up-regulation of the activity of enzymes involved in chlorophyll biosynthesis [64,65]. The optimal presence of NO modulates photosynthetic functioning by improving CO2 assimilation, photosynthetic rate, and chlorophyll fluorescence characteristic under normal and stressful conditions [66].



Similar to our finding, exposure to salinity stress triggers the accumulation of osmolytes for better protection of cellular functioning [19,67]. Moreover, NO application leads to the maintenance of relative water content by improving the accumulation of proline and soluble sugars to maintain the water potential below the external solution [68]. Overall physiologically, these osmoprotectants reduce cellular osmotic potential [69], and a reduction in the hydraulic conductivity of the membranes occurs, possibly by decreasing the number of water channels (aquaporins) [70]. NO application may have improved the expression of proteins involved in the biosynthesis of osmolytes, mainly proline, and be associated with a decrease in its catabolizing enzymes [71].



Salinity treatment was observed to increase the generation of free radical H2O2, causing more significant damage to membrane lipids and loss of membrane stability index [72]. For preventing the oxidative damage that is triggered by ROS, plants intensify the ROS-scavenging mechanisms [73]. In the present study, 100 mM NaCl stress raised the hydrogen peroxide and lipid peroxidation level, and NO supplementation in salt-stressed plants maintained higher activity of an antioxidant system (SOD, CAT, APX, and GR) than untreated plants. These results were in accordance with Elkahoui et al. (2005) [74] in Catharanthus roseus, Hernandez et al. (2010) [75] in Brassica oleracea, and Carrasco-Ríos and Pinto (2014) [76] in Zea mays. Earlier evidence from Lamattina et al. (2003) and Corpas and Barroso (2015) [77,78] showed that NO mediated better growth and significant amelioration of the oxidative damage due to increased stabilization of macromolecules such as lipids, proteins, and nucleic acids. Moreover, exogenously supplied NO controlled the production of antioxidants and accumulation of ROS and directly interacted with lipid alkoxyl and peroxyl radicals, leading to preventing the propagation of radical-mediated lipid oxidation [79]. NO-treated plants significantly up-regulated the antioxidant system in imparted quick elimination of excess accumulated free radicals, resulting in the stability of structural and functional aspects of cellular membranes [52,76]. Greater activity of SOD, CAT, APX, and GR has been correlated with improved stress tolerance, and NO-mediated enhancement in their activities will lead to a further reduction in the intensity of oxidative stress [54].



Under saline conditions, achieving ion homeostasis and conserving water status and photosynthesis are the most important challenges for plant growth and development. Therefore, different plant species develop a wide array of defensive mechanisms that can protect them from the destructive effect of salt stress. In the current study, activation of the signaling pathways of the plasma membrane (SOS1) and vacuolar (NHX1) Na+/H+ antiporters were observed by increasing the relative gene expression of the salt-stressed plants compared to the unstressed ones (Figure 5). These two proteins have been found to be responsible for excluding Na+ ions from the cytosol to outside plasma membrane or inside vacuole, respectively. These responses enable plants to survive under salt stress by avoiding Na+ toxicity on different plant metabolisms and maintain ion homeostasis in the cytoplasmic matrix [80]. Aquaporins (AQPs) are well-known membrane channel proteins that are responsible for water, metal ions, gasses, and small neutral solutes transport during biotic and abiotic stresses [81]. Similarly, osmotin (OSM-34) is a cysteine-rich protein synthesized in vacuoles to function as an osmoregulator under low water potential [82]. It can also control the oxidative damage induced by ROS, specifically H2O2, and isolate Na+ in the vacuoles during salt stress [83]. Furthermore, overexpression of OSM-34 has been found to reduce lipid peroxidation and increase the proline content under different stresses [83]. In this study, the overexpression of aquaporin and OSM-34 in the salt-affected plants reveals the importance of both proteins in the regulation of osmotic potential and keeping plant–water relations under saline conditions. Conversely, exposing plants to salt stress led to diminishing the relative expression of D2-protein, which is considered one of the core proteins in the photosystem II center reaction. This protein is vulnerable to the oxidative damage and photoinhibition process during stress conditions [84].



Applied NO has been found to counteract the detrimental effects of osmotic stressors, i.e., drought [13] and salinity [85,86]. These effects may be due to enhancing the antioxidant capacity, osmotic potential, nutrient homeostasis, and gas exchange [13,86]. In the present investigation, exogenous NO, particularly at 100 µM, led to a significant downregulation in the relative expression of SOS1, NHX1, AQP, and OSM-34 of the salt-affected plants compared to the salt-stressed NO-untreated plants, while an obvious improvement in the expression of D2- protein was observed by the treatments of NO (50 µM and 100 µM) in the salt-stressed plants compared to the NO-untreated plants. These responses may imply that applied NO can preserve photosynthesis, osmotic potential and minimize Na+ toxicity in the salt-stressed plants, as there is no need to activate the ionic homeostasis (SOS1/NHX1) or osmotic (AQP/OSM-34)-related proteins with enhancing the photosynthetic efficiency (D2-protein) of the NO-treated plants under salt stress conditions.




4. Materials and Methods


4.1. Experimental Design and Treatment


Seeds of Triticum aestivum L. were surface-sterilized using 0.5% sodium hypochlorite for 3 min and were repeatedly washed with distilled water and sown in earthen pots having a diameter of 27 cm filled with peat, compost, and sand (4:1:1). At the time of sowing, pots were supplied with 250 mL of full-strength Hoagland’s solution [87]. After seedling growth for 10 days, pots were divided into two groups, and one set was supplied with modified Hoagland’s solution containing 100 mM NaCl, and another set was given normal Hoagland’s solution every alternate day. NO (in the form of sodium nitroprusside as NO donor) at the concentration of 50 µM and 100 µM (10 mL per pot) was applied foliarly to both normal and NaCl-treated sets, and the control was supplied with an equal amount of distilled water and was also maintained. Seedlings were allowed to grow for another 20 days. After 1 month, plants were analyzed for different parameters such as chlorophyll pigments, photosynthetic functioning, oxidative damage attributes, osmolytes, and antioxidant system. The pot was laid in a complete randomized block design with five replications.




4.2. Estimation of Photosynthetic Pigments and Measurement of Stomatal Conductance and Photosynthetic Efficiency


Photosynthetic pigments were quantified in fresh leaves after extracting in dimethyl sulfoxide (DMSO), and the optical density of the supernatant was measured by spectrophotometer at 480, 510, 645, 663 nm against DMSO [88]. Photosynthetic efficiency and stomatal conductance were measured in upper fully expanded leaves at 13:00 by using the infrared gas analyzer (CID-340, Photosynthesis System, Bio-Science, Pullman, WA USA).




4.3. Determination of Leaf Water Content, Proline, and Soluble Sugars


Relative water content (RWC) was determined by punching leaf discs from fresh treated and normal plants, and their fresh weights were determined. After that, the same leaf discs were kept in Petri dishes containing distilled water for 1 h to gain turgidity. After recording turgid weight, the leaf discs were oven-dried at 80 °C for 24 h to record the dry weight [89]. Calculations were completed using the following formula:


RWC (%) = Fresh weight − Dry weight/Turgid weight − dry weight × 100



(1)







For proline, 0.5 g of leaf sample was extracted in 3% (w/v) sulphosalicylic acid and was subjected to centrifugation at 3000× g for 20 min. A total of 2 mL of the supernatant was reacted with 2 mL of glacial acetic acid and 2 mL of ninhydrin reagent at boiling temperature for 1 h. Subsequently, the samples were kept on an ice bath, and the content of proline was separated using toluene, and absorbance was read spectrophotometrically at 520 nm [90]. Using the data obtained from the standard curve prepared at known concentrations, linear regression is completed (comparing absorbance vs. proline concentration).



For estimation of sugar content, dry plant sample was extracted in boiling ethanol (80 v/v) and centrifuged for 20 min at 5000× g. The concentration of soluble sugars was measured by reacting the extract with anthrone reagent, and optical density was recorded at 585 nm. A standard curve of glucose was used to determine the soluble sugar content [91].




4.4. Measurement of Membrane Stability Index, Lipid Peroxidation, and Hydrogen Peroxide


Membrane stability index (MSI) was determined by chopping 0.1 g fresh leaf tissue in test tubes containing 10 mL distilled water. After that, tubes were boiled at 40 °C for recording the electric conductivity (EC1), and same tubes were boiled at 100 °C, and again EC (EC2) was recorded [92]. Percent MSI was calculated using the formula:


(MSI) = [1 − (EC1/EC2)] × 100



(2)







Lipid peroxidation was measured by estimating the formation of malonaldehyde (MDA) content. For lipid peroxidation determination, fresh leaves were extracted in trichloroacetic acid (1%, w/v, TCA). After centrifugation at 10,000× g for 5 min, 1.0 mL supernatant was mixed with 0.5% thiobarbituric acid, and mixture was boiled at 95 °C for half an hour. After that, tubes were kept on ice bath followed by centrifugation for 5 min at 5000× g for clarification, and optical density was read at 532 nm and 600 nm [93]. The MDA concentration was determined by dividing the difference in absorbance (A532–A600) by its molar extinction coefficient (155 mM−1 cm−1), and results expressed as mmol g−1 fresh weight.



The concentration of hydrogen peroxide (H2O2) was estimated by extracting fresh leaf samples in 0.1% (w/v) TCA using pestle mortar. After centrifugation at 12,000× g for 15 min, a known volume of the supernatant was mixed with 0.5 mL of 10 mM potassium phosphate buffer (pH 7.0) and 1 M potassium iodide (1 mL). Subsequently, the optical density of the mixture was taken at 390 nm [94], and computation was completed using a standard curve of H2O2.




4.5. Assay of Antioxidant Enzymes


Antioxidant enzymes were extracted by homogenizing 5.0 g fresh leaves in chilled pestle and mortar using 50 mM sodium phosphate buffer (pH 7.0) containing 1% (w/v) polyvinyl pyrrolidine. The resulting homogenate was used as the enzyme source after centrifugation at 15,000× g for 20 min at 4 °C, and the protein content was determined by following [95].



The activity of superoxide dismutase (SOD, EC 1.15.1.1) was determined by adopting the method of [96]. Briefly, enzyme aliquot was incubated under light and dark to monitor the photoreduction of nitroblue tetrazolium (NBT) at 560 nm, and the activity of SOD was expressed as enzyme unit (EU) mg−1 protein. One unit of enzyme activity represents the amount of enzyme required for 50% inhibition of NBT reduction at 560 nm. For assaying activity of catalase (CAT, EC 1.11.1.6), [97]’s method was adopted, and change in optical density was recorded at 240 nm. An extinction coefficient of 36 × 103 mM−l cm−l was used for calculation and expressed as EU mg−1 protein. For determination of ascorbic peroxidase (APX) activity, 0.1 mL enzyme was added to 1 mL potassium phosphate buffer (100 mM, pH 7.0), 0.1 mM EDTA, 0.5 mM ascorbate, and 0.1 mM H2O2. The disappearance of H2O2 was observed as a change in absorbance at 290 nm [98]. The reaction was initiated by addition of hydrogen peroxide, and oxidation of ascorbate was followed by the decrease in absorbance at 290 nm at 30 s interval for 5 min. One unit of APX activity is defined as the amount of enzyme that oxidizes 1 µM of ascorbate per min at room temperature. For determination of glutathione reductase (GR, EC 1.6.4.2), activity change in absorbance was recorded at 340 nm for 3 min following [99]. For calculation of activity, an extinction coefficient of 6.2 mM−1 cm−1 was used.




4.6. Determination of Ascorbate and Reduced Glutathione


For determination of ascorbic acid, fresh leaf samples were macerated in 5% (w/v) TCA, and to the extract, 2% (w/v) dinitrophenyl-hydrazine and 10% (w/v) thiourea were added. The resultant mixture was kept in a boiling-water bath for 15 min and brought to room temperature followed by centrifugation at 1000× g for 10 min. For dissolving the resulting pellet, 80% (v/v) H2SO4 was added, and optical density was taken at 530 nm [100]. A standard curve of ascorbic acid was used for calculation.



Reduced glutathione (GSH) was estimated by homogenizing 500 mg fresh leaf tissue in a phosphate buffer. After centrifugation at 3000× g for 15 min, 40 µL of 5, 5-dithiobis-2-nitrobenzoic acid was added to 500 µL supernatant and allowed to stand for 10 min. Absorbance was taken at 412 nm [101]. A standard curve of GSH was used for calculation.




4.7. Estimation of Mineral Ions


Estimation of mineral ions, including Na, K, and Ca, was completed using the flame photometer after acid digesting the dried tissue [102]. For determining the nitrogen content in treated and untreated tissues, the method of Subbiah and Asija [103] was adopted.




4.8. Gene Expression


Total mRNA was isolated from 0.5 g shoot parts of wheat plant of all treatments after 2 weeks of salinity and NO foliar application using Total RNA extraction kit (Sigma-Aldrich) according to the manufacturer’s protocol. The purified RNA was quantitated spectrophotometrically and analyzed on 1% (w/v) agarose gel. Reverse transcription of RNA was performed. The reaction mixture contained 10 as oligo dT primer (10 pml/μL), 2.5 μL 5 × buffer, 2.5 μL MgCl2, 2.5 μL 2.5 mM dNTPs, 4 μL oligo (dT), 0.2 μL (5 Unit/μL) reverse transcriptase (Promega, Walldorf, Germany), and 2.5 μL RNA. RT-PCR amplification was performed in a thermal cycler PCR, programmed at 42 °C for 1 h and 72 °C for 20 min. Quantitative real-time PCR for Gene expression analysis used a SYBR® Green-based method. Primers of 5 specific genes and housekeeping gene (reference gene) were used in real-time analysis using (Rotor-Gene, Düsseldorf, Germany). A total reaction volume of 20 µL was used. Reactions included 2 µL of template, 10 µL of SYBR Green Master Mix, 2 µL of reverse primer, 2 µL of forward primer, and sterile distilled water for a total volume of 20 µL. PCR assays were performed using the following conditions: 95 °C for 15 min followed by 40 cycles of 95 °C for 30 s and 58 °C for 30 s. The CT of each sample was used to calculate ΔCT values (target gene CT subtracted from β-Actin and tubulin gene CT). The relative gene expression was determined using the 2−ΔΔCt method [104].




4.9. Statistical Analysis


Data are mean (±SE) of three replicates, and for testing significance of data, Duncan’s Multiple Range Test was performed using One-Way ANOVA, and the least significant difference (LSD) was calculated at p < 0.05.





5. Conclusions


Conclusively, it can be said that salinity reduces the growth of wheat through alterations in the physiological and biochemical parameters studied. NaCl treatment increased the lipid peroxidation inducing membrane dysfunction, hence leading to impeding the uptake of important mineral elements. However, the application of NO effectively lessened the negative impact of salinity on growth and physio-biochemical parameters by improving osmolytes and antioxidant metabolism. NO treatment dispelled the salt-stress-mediated ravage by restricting the excess accumulation of Na+ and better scavenging of ROS through the up-regulated antioxidant system (enzymatic and non-enzymatic). NO-mediated osmoregulation in wheat plants directly affected the ROS scavenging and the mineral nutrients uptake in wheat, leading to significantly alleviated NaCl stress. This protective effect of NO extended to the molecular level by affecting the relative gene expression of the ionic homeostasis (SOS1/NHX1), osmotic (AQP/OSM-34), and photosystem II (D2-protein)-related proteins. We recommend that future works focus on how the responses of wheat genotypes contrast in salt tolerance to NO treatment under both normal and salt-stress conditions (in different stages of wheat ontogenesis).







Author Contributions


Conceptualization, M.H.S. and G.S.H.A.; methodology, S.H.Q., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., M.E. and N.E.; software, S.H.Q., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., M.E., Y.S.A.M., K.A. and N.E.; validation, S.H.Q., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., M.E. and N.E.; formal analysis, S.H.Q., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., M.E. and N.E.; investigation, G.S.H.A., S.H.Q., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., Y.S.A.M., K.A., M.E. and N.E.; resources, G.S.H.A., A.A.E., M.H.S., G.A.E.-S., M.F.M.I., M.E., Y.S.A.M., K.A. and N.E.; data curation, A.A.E., M.H.S., M.F.M.I. and N.E.; writing—original draft preparation A.A.E., M.H.S., M.F.M.I. and N.E.; writing—review and editing, S.H.Q., A.A.E., M.H.S., Y.S.A.M., K.A., G.A.E.-S., M.F.M.I., M.E. and N.E.; visualization, S.H.Q., M.E., Y.S.A.M., K.A. and N.E. All authors have read and agreed to the published version of the manuscript.




Funding


The authors acknowledge the Deanship of Scientific Research at King Khalid University for funding this work through the Program of Research Groups under grant number (RGP 01/258/42).




Data Availability Statement


Not applicable.




Acknowledgments


The authors strongly acknowledge the Deanship of Scientific Research at King Khalid University for funding this work through the Program of Research Groups under grant number (RGP 01/258/42). Y.S.A.M. and K.A. would like to extend their appreciation to the Graduate Studies and Research Affairs Sector of Kafrelsheikh University and Tanta University, Egypt. We also thank all staff members of our laboratories for their helpful discussions and comments.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Ibrahim, M.F.M.; Elbar, O.H.A.; Farag, R.; Hikal, M.; El-Kelish, A.; El-Yazied, A.A.; Alkahtani, J.; El-Gawad, H.G.A. Melatonin Counteracts Drought Induced Oxidative Damage and Stimulates Growth, Productivity and Fruit Quality Properties of Tomato Plants. Plants 2020, 9, 1276. [Google Scholar] [CrossRef]

	



Abd Elhady, S.A.; El-Gawad, H.G.A.; Ibrahim, M.F.M.; Mukherjee, S.; Elkelish, A.; Azab, E.; Gobouri, A.A.; Farag, R.; Ibrahim, H.A.; El-Azm, N.A. Hydrogen Peroxide Supplementation in Irrigation Water Alleviates Drought Stress and Boosts Growth and Productivity of Potato Plants. Sustainability 2021, 13, 899. [Google Scholar] [CrossRef]

	



Eid, A.M.; Fouda, A.; Abdel-Rahman, M.A.; Salem, S.S.; Elsaied, A.; Oelmüller, R.; Hijri, M.; Bhowmik, A.; Elkelish, A.; Hassan, S.E.-D. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. Plants 2021, 10, 935. [Google Scholar] [CrossRef] [PubMed]

	



Ismail, M.A.; Amin, M.A.; Eid, A.M.; Hassan, S.E.-D.; Mahgoub, H.A.; Lashin, I.; Abdelwahab, A.T.; Azab, E.; Gobouri, A.A.; Elkelish, A.; et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus Vulgaris L. Cells 2021, 10, 1059. [Google Scholar] [CrossRef] [PubMed]

	



Nahhas, N.E.; Abdelaal, K.A.; AlKahtani, M.D.; Al Husnain, L.; AlGwaiz, H.I.; Hafez, Y.M.; Attia, K.A.; El-Esawi, M.A.; Ibrahim, M.F.; Elkelish, A. Biochar and Jasmonic Acid Application Attenuate Antioxidative Systems and Improves Growth, Physiology, Nutrient Uptake and Productivity of Faba Bean (Vicia Faba L.) Irrigated with Saline Water. Plant Physiol. Biochem. 2021, 166, 807–817. [Google Scholar] [CrossRef] [PubMed]

	



Khalil, A.M.A.; Hassan, S.E.-D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.-D.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra Pachyclada as Plant Growth-Promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef] [PubMed]

	



Elsaeed, S.M.; Zaki, E.G.; Ibrahim, T.M.; Ibrahim Talha, N.; Saad, H.A.; Gobouri, A.A.; Elkelish, A.; Mohamed el-kousy, S. Biochar Grafted on CMC-Terpolymer by Green Microwave Route for Sustainable Agriculture. Agriculture 2021, 11, 350. [Google Scholar] [CrossRef]

	



Kibria, M.G.; Hossain, M.; Murata, Y.; Hoque, M.A. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Sci. 2017, 24, 155–162. [Google Scholar] [CrossRef]

	



Ibrahim, M.F.M.; Ibrahim, H.A.; Abd El-Gawad, H.G. Folic acid as a protective agent in snap bean plants under water deficit conditions. J. Hortic. Sci. Biotechnol. 2021, 96, 94–109. [Google Scholar] [CrossRef]

	



Abd El-Gawad, H.G.; Mukherjee, S.; Farag, R.; Abd Elbar, O.H.; Hikal, M.; Abou El-Yazied, A.; Abd Elhady, S.A.; Helal, N.; ElKelish, A.; El Nahhas, N.; et al. Exogenous γ-Aminobutyric Acid (GABA)-Induced Signaling Events and Field Performance Associated with Mitigation of Drought Stress in Phaseolus Vulgaris L. Plant Signal. Behav. 2021, 16, 1853384. [Google Scholar] [CrossRef]

	



Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of Salinity and Water Content on Soil Microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]

	



Hashim, A.M.; Elkelish, A.; Alhaithloul, H.A.; El-hadidy, S.M.; Farouk, H. Environmental Monitoring and Prediction of Land Use and Land Cover Spatio-Temporal Changes: A Case Study from El-Omayed Biosphere Reserve, Egypt. Environ. Sci. Pollut. Res. 2020, 27, 42881–42897. [Google Scholar] [CrossRef] [PubMed]

	



Bin-Jumah, M.; Abdel-Fattah, A.-F.M.; Saied, E.M.; El-Seedi, H.R.; Abdel-Daim, M.M. Acrylamide-Induced Peripheral Neuropathy: Manifestations, Mechanisms, and Potential Treatment Modalities. Environ. Sci. Pollut. Res. 2021, 28, 13031–13046. [Google Scholar] [CrossRef]

	



Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]

	



Azab, E.; Hegazy, A.K.; Gobouri, A.A.; Elkelish, A. Impact of Transgenic Arabidopsis Thaliana Plants on Herbicide Isoproturon Phytoremediation through Expressing Human Cytochrome P450-1A2. Biology 2020, 9, 362. [Google Scholar] [CrossRef]

	



Din, A.F.; Ibrahim, M.F.; Farag, R.; El-Gawad, H.G.A.; El-Banhawy, A.; Alaraidh, I.A.; Rashad, Y.M.; Lashin, I.; El-Yazied, A.A.; Elkelish, A.; et al. Influence of Polyethylene Glycol on Leaf Anatomy, Stomatal Behavior, Water Loss, and some Physiological Traits of Date Palm Plantlets Grown In Vitro and Ex Vitro. Plants 2020, 9, 1440. [Google Scholar] [CrossRef]

	



Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]

	



Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.-D.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef]

	



Ahanger, M.A.; Agarwal, R.M. Salinity Stress Induced Alterations in Antioxidant Metabolism and Nitrogen Assimilation in Wheat (Triticum Aestivum L.) as Influenced by Potassium Supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef]

	



Ibrahim, M.F.; El-Samad, A.; Ashour, H.; El-Sawy, A.M.; Hikal, M.; Elkelish, A.; El-Gawad, H.A.; El-Yazied, A.A.; Hozzein, W.N.; Farag, R. Regulation of Agronomic Traits, Nutrient Uptake, Osmolytes and Antioxidants of Maize as Influenced by Exogenous Potassium Silicate under Deficit Irrigation and Semiarid Conditions. Agronomy 2020, 10, 1212. [Google Scholar] [CrossRef]

	



Hashim, A.M.; Alharbi, B.M.; Abdulmajeed, A.M.; Elkelish, A.; Hozzein, W.N.; Hassan, H.M. Oxidative Stress Responses of Some Endemic Plants to High Altitudes by Intensifying Antioxidants and Secondary Metabolites Content. Plants 2020, 9, 869. [Google Scholar] [CrossRef]

	



Farmer, E.E.; Mueller, M.J. ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annu. Rev. Plant Biol. 2013, 64, 429–450. [Google Scholar] [CrossRef]

	



Soliman, M.; Qari, S.H.; Abu-Elsaoud, A.; El-Esawi, M.; Alhaithloul, H.; Elkelish, A. Rapid Green Synthesis of Silver Nanoparticles from Blue Gum Augment Growth and Performance of Maize, Fenugreek, and Onion by Modulating Plants Cellular Antioxidant Machinery and Genes Expression. Acta Physiol. Plant. 2020, 42, 148. [Google Scholar] [CrossRef]

	



Krishnamurthy, A.; Rathinasabapathi, B. Oxidative Stress Tolerance in Plants. Plant Signal. Behav. 2013, 8, e25761. [Google Scholar] [CrossRef] [PubMed]

	



Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, e217037. [Google Scholar] [CrossRef]

	



Rashad, Y.; Aseel, D.; Hammad, S.; Elkelish, A. Rhizophagus Irregularis and Rhizoctonia Solani Differentially Elicit Systemic Transcriptional Expression of Polyphenol Biosynthetic Pathways Genes in Sunflower. Biomolecules 2020, 10, 379. [Google Scholar] [CrossRef]

	



Tripathy, B.C.; Oelmüller, R. Reactive Oxygen Species Generation and Signaling in Plants. Plant Signal. Behav. 2012, 7, 1621–1633. [Google Scholar] [CrossRef] [PubMed]

	



Soliman, M.H.; Abdulmajeed, A.M.; Alhaithloul, H.; Alharbi, B.M.; El-Esawi, M.A.; Hasanuzzaman, M.; Elkelish, A. Saponin Biopriming Positively Stimulates Antioxidants Defense, Osmolytes Metabolism and Ionic Status to Confer Salt Stress Tolerance in Soybean. Acta Physiol. Plant. 2020, 42, 114. [Google Scholar] [CrossRef]

	



Panieri, E.; Santoro, M.M. ROS Homeostasis and Metabolism: A Dangerous Liason in Cancer Cells. Cell Death Dis. 2016, 7, e2253. [Google Scholar] [CrossRef]

	



Soliman, M.; Elkelish, A.; Souad, T.; Alhaithloul, H.; Farooq, M. Brassinosteroid Seed Priming with Nitrogen Supplementation Improves Salt Tolerance in Soybean. Physiol. Mol. Biol. Plants 2020, 26, 501–511. [Google Scholar] [CrossRef]

	



Elkelish, A.A.; Alhaithloul, H.A.S.; Qari, S.H.; Soliman, M.H.; Hasanuzzaman, M. Pretreatment with Trichoderma Harzianum Alleviates Waterlogging-Induced Growth Alterations in Tomato Seedlings by Modulating Physiological, Biochemical, and Molecular Mechanisms. Environ. Exp. Bot. 2020, 171, 103946. [Google Scholar] [CrossRef]

	



Soliman, M.H.; Alayafi, A.A.M.; El Kelish, A.A.; Abu-Elsaoud, A.M. Acetylsalicylic Acid Enhance Tolerance of Phaseolus Vulgaris, L. to Chilling Stress, Improving Photosynthesis, Antioxidants and Expression of Cold Stress Responsive Genes. Bot. Stud. 2018, 59, 6. [Google Scholar] [CrossRef] [PubMed]

	



Baghour, M.; Gálvez, F.J.; Sánchez, M.E.; Aranda, M.N.; Venema, K.; Rodríguez-Rosales, M.P. Overexpression of LeNHX2 and SlSOS2 Increases Salt Tolerance and Fruit Production in Double Transgenic Tomato Plants. Plant Physiol. Biochem. 2019, 135, 77–86. [Google Scholar] [CrossRef]

	



Ismail, H.; Maksimović, J.D.; Maksimović, V.; Shabala, L.; Živanović, B.D.; Tian, Y.; Jacobsen, S.-E.; Shabala, S.; Ismail, H.; Maksimović, J.D.; et al. Rutin, a Flavonoid with Antioxidant Activity, Improves Plant Salinity Tolerance by Regulating K+ Retention and Na+ Exclusion from Leaf Mesophyll in Quinoa and Broad Beans. Funct. Plant Biol. 2015, 43, 75–86. [Google Scholar] [CrossRef] [PubMed]

	



Falahi, H.; Sharifi, M.; Ahmadian Chashmi, N.; Zare Maivan, H. Water Stress Alleviation by Polyamines and Phenolic Compounds in Scrophularia Striata Is Mediated by NO and H2O2. Plant Physiol. Biochem. 2018, 130, 139–147. [Google Scholar] [CrossRef] [PubMed]

	



Du, S.-T.; Liu, Y.; Zhang, P.; Liu, H.-J.; Zhang, X.-Q.; Zhang, R.-R. Atmospheric Application of Trace Amounts of Nitric Oxide Enhances Tolerance to Salt Stress and Improves Nutritional Quality in Spinach (Spinacia oleracea L.). Food Chem. 2015, 173, 905–911. [Google Scholar] [CrossRef]

	



Floryszak-Wieczorek, J.; Arasimowicz-Jelonek, M.; Izbiańska, K. The Combined Nitrate Reductase and Nitrite-Dependent Route of NO Synthesis in Potato Immunity to Phytophthora Infestans. Plant Physiol. Biochem. 2016, 108, 468–477. [Google Scholar] [CrossRef]

	



Freschi, L. Nitric Oxide and Phytohormone Interactions: Current Status and Perspectives. Front. Plant Sci. 2013, 4, 398. [Google Scholar] [CrossRef]

	



Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef]

	



Ali, Q.; Daud, M.K.; Haider, M.Z.; Ali, S.; Rizwan, M.; Aslam, N.; Noman, A.; Iqbal, N.; Shahzad, F.; Deeba, F.; et al. Seed Priming by Sodium Nitroprusside Improves Salt Tolerance in Wheat (Triticum Aestivum L.) by Enhancing Physiological and Biochemical Parameters. Plant Physiol. Biochem. 2017, 119, 50–58. [Google Scholar] [CrossRef]

	



Fatma, M.; Khan, N.A. Nitric Oxide Protects Photosynthetic Capacity Inhibition by Salinity in Indian Mustard. J. Func. Environ. Bot. 2014, 4, 106. [Google Scholar] [CrossRef]

	



Melo, N.K.G.; Bianchetti, R.E.; Lira, B.S.; Oliveira, P.M.R.; Zuccarelli, R.; Dias, D.L.O.; Demarco, D.; Peres, L.E.P.; Rossi, M.; Freschi, L. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings. Plant Physiol. 2016, 170, 2278–2294. [Google Scholar] [CrossRef]

	



Shewry, P.R.; Hey, S.J. The Contribution of Wheat to Human Diet and Health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]

	



Elkelish, A.A.; Soliman, M.H.; Alhaithloul, H.A.; El-Esawi, M.A. Selenium Protects Wheat Seedlings against Salt Stress-Mediated Oxidative Damage by up-Regulating Antioxidants and Osmolytes Metabolism. Plant Physiol. Biochem. 2019, 137, 144–153. [Google Scholar] [CrossRef]

	



Ke, Q.; Wang, Z.; Ji, C.Y.; Jeong, J.C.; Lee, H.-S.; Li, H.; Xu, B.; Deng, X.; Kwak, S.-S. Transgenic Poplar Expressing CodA Exhibits Enhanced Growth and Abiotic Stress Tolerance. Plant Physiol. Biochem. 2016, 100, 75–84. [Google Scholar] [CrossRef] [PubMed]

	



Egbichi, I.; Keyster, M.; Ludidi, N. Effect of Exogenous Application of Nitric Oxide on Salt Stress Responses of Soybean. South Afr. J. Bot. 2014, 90, 131–136. [Google Scholar] [CrossRef]

	



Shokat, S.; Großkinsky, D.K. Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World. Sustainability 2019, 11, 4558. [Google Scholar] [CrossRef]

	



Wani, S.H.; Dutta, T.; Neelapu, N.R.R.; Surekha, C. Transgenic Approaches to Enhance Salt and Drought Tolerance in Plants. Plant Gene 2017, 11, 219–231. [Google Scholar] [CrossRef]

	



Shi, Q.; Ding, F.; Wang, X.; Wei, M. Exogenous Nitric Oxide Protect Cucumber Roots against Oxidative Stress Induced by Salt Stress. Plant Physiol. Biochem. 2007, 45, 542–550. [Google Scholar] [CrossRef]

	



Mostofa, M.G.; Fujita, M.; Tran, L.S.P. Nitric Oxide Mediates Hydrogen Peroxide- and Salicylic Acid-Induced Salt Tolerance in Rice (Oryza Sativa L.) Seedlings. Plant Growth Regul. 2015, 77, 265–277. [Google Scholar] [CrossRef]

	



Asgher, M.; Per, T.S.; Masood, A.; Fatma, M.; Freschi, L.; Corpas, F.J.; Khan, N.A. Nitric Oxide Signaling and Its Crosstalk with Other Plant Growth Regulators in Plant Responses to Abiotic Stress. Environ. Sci. Pollut. Res. Int. 2017, 24, 2273–2285. [Google Scholar] [CrossRef]

	



Ahmad, N.; Malagoli, M.; Wirtz, M.; Hell, R. Drought Stress in Maize Causes Differential Acclimation Responses of Glutathione and Sulfur Metabolism in Leaves and Roots. BMC Plant Biol. 2016, 16, 247. [Google Scholar] [CrossRef] [PubMed]

	



Fan, H.-F.; Du, C.-X.; Ding, L.; Xu, Y.-L. Effects of Nitric Oxide on the Germination of Cucumber Seeds and Antioxidant Enzymes under Salinity Stress. Acta Physiol. Plant. 2013, 35, 2707–2719. [Google Scholar] [CrossRef]

	



Ahmad, P.; Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Alam, P. Exogenous Application of Nitric Oxide Modulates Osmolyte Metabolism, Antioxidants, Enzymes of Ascorbate-Glutathione Cycle and Promotes Growth under Cadmium Stress in Tomato. Protoplasma 2018, 255, 79–93. [Google Scholar] [CrossRef]

	



Marvasi, M. Potential Use and Perspectives of Nitric Oxide Donors in Agriculture. J. Sci. Food Agric. 2017, 97, 1065–1072. [Google Scholar] [CrossRef] [PubMed]

	



Dong, Y.J.; Jinc, S.S.; Liu, S.; Xu, L.L.; Kong, J. Effects of Exogenous Nitric Oxide on Growth of Cotton Seedlings under NaCl Stress. J. Soil Sci. Plant Nutr. 2014, 14, 1–13. [Google Scholar] [CrossRef]

	



Basalah, M.; Ali, H.; Al-whaibi, M.; Siddiqui, D.M.H.; Sakran, A.; Alsahli, A. Nitric Oxide and Salicylic Acid Mitigate Cadmium Stress in Wheat Seedlings. J. Pure Appl. Microbiol. 2013, 7, 139–148. [Google Scholar]

	



Simontacchi, M.; Galatro, A.; Ramos-Artuso, F.; Santa-María, G.E. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. Front. Plant Sci. 2015, 6, 977. [Google Scholar] [CrossRef]

	



Lu, S.; Zhuo, C.; Wang, X.; Guo, Z. Nitrate Reductase (NR)-Dependent NO Production Mediates ABA- and H2O2-Induced Antioxidant Enzymes. Plant Physiol. Biochem. 2014, 74, 9–15. [Google Scholar] [CrossRef]

	



Kolbert, Z. Implication of Nitric Oxide (NO) in Excess Element-Induced Morphogenic Responses of the Root System. Plant Physiol. Biochem. 2016, 101, 149–161. [Google Scholar] [CrossRef]

	



Shabala, S.; Pottosin, I. Regulation of Potassium Transport in Plants under Hostile Conditions: Implications for Abiotic and Biotic Stress Tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef]

	



Jabborova, D.; Annapurna, K.; Paul, S.; Kumar, S.; Saad, H.A.; Desouky, S.; Ibrahim, M.F.M.; Elkelish, A. Beneficial Features of Biochar and Arbuscular Mycorrhiza for Improving Spinach Plant Growth, Root Morphological Traits, Physiological Properties, and Soil Enzymatic Activities. JoF 2021, 7, 571. [Google Scholar] [CrossRef]

	



Elkelish, A.; Ibrahim, M.F.M.; Ashour, H.; Bondok, A.; Mukherjee, S.; Aftab, T.; Hikal, M.; El-Yazied, A.A.; Azab, E.; Gobouri, A.A.; et al. Exogenous Application of Nitric Oxide Mitigates Water Stress and Reduces Natural Viral Disease Incidence of Tomato Plants Subjected to Deficit Irrigation. Agronomy 2021, 11, 87. [Google Scholar] [CrossRef]

	



Turan, S.; Tripathy, B.C. Salt-Stress Induced Modulation of Chlorophyll Biosynthesis during de-Etiolation of Rice Seedlings. Physiol. Plant. 2015, 153, 477–491. [Google Scholar] [CrossRef]

	



Fatma, M.; Masood, A.; Per, T.S.; Khan, N.A. Nitric Oxide Alleviates Salt Stress Inhibited Photosynthetic Performance by Interacting with Sulfur Assimilation in Mustard. Front. Plant Sci. 2016, 7, 521. [Google Scholar] [CrossRef]

	



Procházková, D.; Haisel, D.; Wilhelmová, N.; Pavlíková, D.; Száková, J. Effects of Exogenous Nitric Oxide on Photosynthesis. Photosynthetica 2013, 51, 483–489. [Google Scholar] [CrossRef]

	



Azooz, M.; Youssef, A.; Ahmad, P. Evaluation of Salicylic Acid (SA) Application on Growth, Osmotic Solutes and Antioxidant Enzyme Activities on Broad Bean Seedlings Grown under Diluted Seawater. Inter. J. Plant Physiol. Biochem. 2011, 3, 253–264. [Google Scholar] [CrossRef]

	



Bahrami-Rad, S.; Hajiboland, R. Effect of Potassium Application in Drought-Stressed Tobacco (Nicotiana Rustica L.) Plants: Comparison of Root with Foliar Application. Ann. Agric. Sci. 2017, 62, 121–130. [Google Scholar] [CrossRef]

	



Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]

	



Kaldenhoff, R.; Ribas-Carbo, M.; Sans, J.F.; Lovisolo, C.; Heckwolf, M.; Uehlein, N. Aquaporins and Plant Water Balance. Plant Cell Environ. 2008, 31, 658–666. [Google Scholar] [CrossRef]

	



Dawood, M.G.; El-Awadi, M.E. Alleviation of Salinity Stress on Vicia Faba L. Plants via Seed Priming with Melatonin. Acta Biológica Colomb. 2015, 20, 223–235. [Google Scholar] [CrossRef]

	



Abdelgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef] [PubMed]

	



Saleh, A.; Abu-Elsaoud, A.; El Kelish, A.; Sahadad, M.; Mohamed, E. Role of External Proline on Enhancing Defence Mechanisms of Vicia Faba L. against Ultraviolet Radiation. Am. Eurasian J. Sustain. Agric. 2015, 9, 22–34. [Google Scholar]

	



Elkahoui, S.; Hernández, J.A.; Abdelly, C.; Ghrir, R.; Limam, F. Effects of Salt on Lipid Peroxidation and Antioxidant Enzyme Activities of Catharanthus Roseus Suspension Cells. Plant Sci. 2005, 168, 607–613. [Google Scholar] [CrossRef]

	



Hernandez, M.; Fernandez-Garcia, N.; Diaz-Vivancos, P.; Olmos, E. A Different Role for Hydrogen Peroxide and the Antioxidative System under Short and Long Salt Stress in Brassica Oleracea Roots. J. Exp. Bot. 2010, 61, 521–535. [Google Scholar] [CrossRef] [PubMed]

	



Carrasco-Ríos, L.; Pinto, M. Effect of Salt Stress on Antioxidant Enzymes and Lipid Peroxidation in Leaves in Two Contrasting Corn, ‘Lluteno’ and ‘Jubilee’. Chil. J. Agric. Res. 2014, 74, 89–95. [Google Scholar] [CrossRef]

	



Lamattina, L.; García-Mata, C.; Graziano, M.; Pagnussat, G. Nitric Oxide: The Versatility of an Extensive Signal Molecule. Annu. Rev. Plant Biol. 2003, 54, 109–136. [Google Scholar] [CrossRef]

	



Corpas, F.J.; Barroso, J.B. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. Plants 2015, 4, 240–252. [Google Scholar] [CrossRef]

	



Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]

	



Dutta, D.; Esmaili, M.; Overduin, M.; Fliegel, L. Expression and Detergent Free Purification and Reconstitution of the Plant Plasma Membrane Na+/H+ Antiporter SOS1 Overexpressed in Pichia Pastoris. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183111. [Google Scholar] [CrossRef]

	



Afzal, Z.; Howton, T.C.; Sun, Y.; Mukhtar, M.S. The Roles of Aquaporins in Plant Stress Responses. J. Dev. Biol. 2016, 4, 9. [Google Scholar] [CrossRef] [PubMed]

	



Hakim; Ullah, A.; Hussain, A.; Shaban, M.; Khan, A.H.; Alariqi, M.; Gul, S.; Jun, Z.; Lin, S.; Li, J.; et al. Osmotin: A Plant Defense Tool against Biotic and Abiotic Stresses. Plant Physiol. Biochem. 2018, 123, 149–159. [Google Scholar] [CrossRef] [PubMed]

	



Bashir, M.A.; Silvestri, C.; Ahmad, T.; Hafiz, I.A.; Abbasi, N.A.; Manzoor, A.; Cristofori, V.; Rugini, E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. Plants 2020, 9, 992. [Google Scholar] [CrossRef] [PubMed]

	



Kale, R.; Hebert, A.E.; Frankel, L.K.; Sallans, L.; Bricker, T.M.; Pospíšil, P. Amino Acid Oxidation of the D1 and D2 Proteins by Oxygen Radicals during Photoinhibition of Photosystem II. Proc. Natl. Acad. Sci. USA 2017, 114, 2988–2993. [Google Scholar] [CrossRef] [PubMed]

	



Goyal, V.; Jhanghel, D.; Mehrotra, S. Emerging Warriors against Salinity in Plants: Nitric Oxide and Hydrogen Sulphide. Physiol. Plant. 2021, 171, 896–908. [Google Scholar] [CrossRef]

	



Hasanuzzaman, M.; Inafuku, M.; Nahar, K.; Fujita, M.; Oku, H. Nitric Oxide Regulates Plant Growth, Physiology, Antioxidant Defense, and Ion Homeostasis to Confer Salt Tolerance in the Mangrove Species, Kandelia Obovata. Antioxidants 2021, 10, 611. [Google Scholar] [CrossRef]

	



Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]

	



Hiscox, J.D.; Israelstam, G.F. Erratum: A Method for the Extraction of Chlorophyll from Leaf Tissue without Maceration. Can. J. Bot. 2011, 58, 403. [Google Scholar] [CrossRef]

	



Smart, R.E.; Bingham, G.E. Rapid Estimates of Relative Water Content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef]

	



Sadasivam, S.; Manickam, A. Biochemical Methods; New Age International: New Delhi, India, 1996; ISBN 978-81-224-0976-5. [Google Scholar]

	



Shields, R.; Burnett, W. Determination of Protein-Bound Carbohydrate in Serum by Modified Anthrone Method. Anal. Chem. 1960, 32, 885–886. [Google Scholar] [CrossRef]

	



Ibrahim, M.; Bondok, A.; Al-Senosy, N.K.; Younis, R. Stimulation some of defense mechanisms in tomato plants under water deficit and Tobacco mosaic virus (TMV). World J. Agric. Sci. 2015, 11, 289–302. [Google Scholar]

	



Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]

	



Cheeseman, J.M. Hydrogen Peroxide Concentrations in Leaves under Natural Conditions. J. Exp. Bot. 2006, 57, 2435–2444. [Google Scholar] [CrossRef]

	



Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]

	



Beyer, W.F.; Fridovich, I. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Anal. Biochem. 1987, 161, 559–566. [Google Scholar] [CrossRef]

	



Aebi, H. Catalase in vitro. In Methods in Enzymology; Oxygen Radicals in Biological Systems; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]

	



Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant. Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]

	



Carlberg, I.; Mannervik, B. Glutathione reductase. In Methods in Enzymology; Glutamate, Glutamine, Glutathione, and Related Compounds; Academic Press: Cambridge, MA, USA, 1985; Volume 113, pp. 484–490. [Google Scholar]

	



Mukherjee, S.P.; Choudhuri, M.A. Implications of Water Stress-Induced Changes in the Levels of Endogenous Ascorbic Acid and Hydrogen Peroxide in Vigna Seedlings. Physiol. Plant. 1983, 58, 166–170. [Google Scholar] [CrossRef]

	



Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]

	



Wolf, B. A Comprehensive System of Leaf Analyses and Its Use for Diagnosing Crop Nutrient Status. Commun. Soil Sci. Plant. Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]

	



Subbiah, B.V.; Asija, G.L. A Rapid Procedure for the Estimation of Available Nitrogen in Soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]

	



Togawa, T.; Dunn, W.A.; Emmons, A.C.; Nagao, J.; Willis, J.H. Developmental Expression Patterns of Cuticular Protein Genes with the R&R Consensus from Anopheles Gambiae. Insect Biochem. Mol. Biol. 2008, 38, 508–519. [Google Scholar] [CrossRef] [PubMed]








[image: Plants 10 01693 g001 550] 





Figure 1. Effect of salinity stress (100 mM NaCl) on (A) chlorophyll a, (B) chlorophyll b, (C) total chlorophyll, (D) carotenoids, (E) photosynthetic rate, and (F) stomatal conductance in wheat (Triticum aestivum L.) with and without exogenous application of NO (50 and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05. 
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Figure 2. Effect of salinity stress (100 mM NaCl) on (A) RWC, (B) proline, and (C) soluble sugar content in wheat (Triticum aestivum L.) with and without exogenous application of NO (50 µM and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05. 






Figure 2. Effect of salinity stress (100 mM NaCl) on (A) RWC, (B) proline, and (C) soluble sugar content in wheat (Triticum aestivum L.) with and without exogenous application of NO (50 µM and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05.



[image: Plants 10 01693 g002]







[image: Plants 10 01693 g003 550] 





Figure 3. Effect of salinity stress (100 mM NaCl) on (A) hydrogen peroxide, (B) lipid peroxidation (MDA), and (C) membrane stability index (MSI) in wheat (Triticum aestivum L.) with and without exogenous application of NO (50 and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05. 
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Figure 4. Effect of salinity stress (100 mM NaCl) on activity of (A) superoxide dismutase, (B) catalase, (C) ascorbate peroxidase, (D) glutathione reductase, and (E) ascorbic acid and (F) reduced glutathione content (Triticum aestivum L.) with and without exogenous application of NO (50 µM and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05. 
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Figure 5. Effect of salinity stress (100 mM NaCl) on relative gene expression of (A) SOS1, (B) NHX1, (C) Aquaporin, (D) OSM-34, and (E) D2 protein (Triticum aestivum L.) with and without exogenous application of NO (50 µM and 100 µM). Data presented are mean (±SE) of three replicates, and bars with different letters denote significant difference at p ≤ 0.05. 
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Table 1. Effect of salinity stress (100 mM NaCl) on shoot length (cm) and shoot fresh and dry weight (g) in wheat (Triticum aestivum L.) with and without exogenous application of NO. Data presented are mean (±SE) of three replicates and different letters denote significant difference at p ≤ 0.05.






Table 1. Effect of salinity stress (100 mM NaCl) on shoot length (cm) and shoot fresh and dry weight (g) in wheat (Triticum aestivum L.) with and without exogenous application of NO. Data presented are mean (±SE) of three replicates and different letters denote significant difference at p ≤ 0.05.











	
	Shoot Length (cm)
	Shoot Fresh Weight (gm)
	Shoot Dry Weight (gm)





	Control
	22.26 ± 1.006c
	4.573 ± 0.417c
	1.206 ± 0.103bc



	NaCl (100 mM)
	14.09 ± 0.899e
	2.725 ± 0.453f
	0.7071 ± 0.012e



	NO 50 µM
	25.96 ± 2.65b
	4.805 ± 0.116b
	1.386 ± 0.055b



	NO 100 µM
	28.73 ± 1.08a
	6.068 ± 0.073a
	2.034 ± 0.06a



	NaCl + NO 50 µM
	16.06 ± 0.125d
	3.256 ± 0.169e
	0.944 ± 0.05d



	NaCl + NO 100 µM
	17.97 ± 0.047d
	4.025 ± 0.18d
	1.103 ± 0.1c
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Table 2. Effect of salinity stress (100 mM NaCl) on nitrogen, potassium calcium, sodium, and Na/K ratio in wheat (Triticum aestivum L.) with and without exogenous application of NO. Data presented are mean (±SE) of three replicates, and different letters denote significant difference at p ≤ 0.05.
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N

(mg g−1)

	
Na

(mg g−1)

	
K

(mg g−1)

	
Ca

(mg g−1)

	
Na/K

%




	
Leaf

	
Root

	
Leaf

	
Root

	
Leaf

	
Root

	
Leaf

	
Root

	
Leaf

	
Root






	
Control

	
35.37 ± 1.05c

	
17.46 ± 1.02c

	
7.072 ± 0.51d

	
9.98 ± 0.87d

	
45.64 ± 0.74c

	
26.55 ± 1.44c

	
6.78 ± 0.502c

	
4.91 ± 0.54c

	
0.154

	
0.375




	
NaCl (100 mM)

	
25.71 ± 1.05f

	
13.06 ± 0.96d

	
15.39 ± 1.15a

	
17.69 ± 0.6a

	
25.07 ± 0.27f

	
17.92 ± 0.89f

	
4.02 ± 0.327ef

	
3.21 ± 0.29ef

	
0.613

	
0.987




	
NO 50 µM

	
38.59 ± 0.61b

	
19.3 ± 1.12b

	
6.55 ± 0.37d

	
7.66 ± 0.42e

	
51.24 ± 1.22b

	
30.02 ± 1.04b

	
7.35 ± 0.168b

	
5.56 ± 0.38b

	
0.127

	
0.255




	
NO 100 µM

	
43.69 ± 1.13a

	
25.31 ± 0.97a

	
4.86 ± 0.08e

	
5.51 ± 0.55f

	
61.13 ± 1.12a

	
34.75 ± 1.03a

	
9.5 ± 0.465a

	
6.93 ± 0.14a

	
0.079

	
0.158




	
NaCl + NO 50 µM

	
27.95 ± 0.11e

	
14.92 ± 0.97d

	
13.18 ± 0.61b

	
15.29 ± 1.01b

	
31.41 ± 0.6e

	
19.43 ± 0.65e

	
4.58 ± 0.302e

	
3.6 ± 0.51e

	
0.419

	
0.786




	
NaCl + NO 100 µM

	
33.48 ± 0.44cd

	
16.68 ± 1.08c

	
10.6 ± 0.53c

	
12.71 ± 0.54c

	
37.85 ± 0.9d

	
24.25 ± 0.58cd

	
5.93 ± 0.153d

	
4.56 ± 0.4cd

	
0.28

	
0.524
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