Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Genetics and Growth Conditions of Cotton Lines
3.2. Experimental Design and Statistical Analysis
3.3. Soil Nutrients Analysis
3.4. Seed Micro-Nutrients Analysis
3.5. Boron Analysis
3.6. Iron Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constable, G.A.; Bange, M.P. The yield potential of cotton (Gossypium hirsutum L.). Field Crops Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Vieira, J.L.V.; Nardi, K.T.; Silva, G.R.A.; Moreira, L.A.; Zavaschi, E.; Moura, T.A.; Otto, R. Nutrient uptake by high-yielding cotton crop in Brazil. Rev. Bras. Cienc. Solo 2018, 42, e0170033. [Google Scholar] [CrossRef]
- Liu, J.; Wu, B.; Singh, R.P.; Velu, G. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. J. Cereal Sci. 2019, 88, 57–64. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Worldwide Prevalence of Anaemia 1993–2005; De Benoist, B., McLean, E.I., Eds.; WHO: Geneva, Switzerland; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2008; ISBN 978-92-4–159665-7. [Google Scholar]
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009; pp. 32–54. Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_annex.pdf (accessed on 3 February 2020).
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H. Boron in plant biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–243. [Google Scholar]
- He, Z.; Shankle, M.; Zhang, H.; Way, T.R.; Tewolde, H.; Uchimiya, M. Mineral composition of cotton seed is affected by fertilization management practices. Agron. J. 2013, 105, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Grusak, M.A.; Della-Penna, D. Improving the nutrient composition of plants to enhance human nutrition and health. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 133–161. [Google Scholar] [CrossRef]
- Ding, G.; Yang, M.; Hu, Y.; Liao, T.; Shi, L.; Xu, F.; Meng, J. Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies. Ann. Bot. 2010, 105, 1221–1234. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Ebelhar, M.W.; Gillen, A.M.; Fisher, D.K.; Abbas, H.K.; Mengistu, A.; Reddy, K.N.; Paris, R.L. Soybean seed protein, oil, and fatty acids are altered by S and S + N fertilizer under irrigated and non-irrigated environments. Agric. Sci. 2011, 2, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.W.; Yu, S.X.; Fan, S.L.; Song, M.Z.; Zhai, H.H.; Li, X.L. Mapping quantitative trait loci for cotton seed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 2012, 187, 191–201. [Google Scholar] [CrossRef]
- Cherry, J.P. Cottonseed oil. J. Am. Oil Chem. Soc. 1983, 60, 360–367. [Google Scholar] [CrossRef]
- Alford, B.B.; Liepa, G.U.; Vanbeber, A.N. Cotton seed protein: What does the future hold? Plant Food Hum. Nutr. 1996, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Singh, S.P.; Chapman, K.; Green, A.G. Bridging traditional and molecular genetics in modifying cottonseed oil. In Genetics and Genomics of Cotton, Plant Genetics and Genomics: Crops and Models, 3rd ed.; Paterson, A.H., Ed.; Springer: New York, NY, USA, 2009; pp. 353–382. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, M. Proteins as Sources of Materials. In Monomers, Polymers and Composites from Renewable Resources; Gandini, A., Belgacem, M.N., Eds.; Elsevier: Boston, MA, USA, 2008; pp. 479–493. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Bellaloui, N.; Hu, Y.; Mengistu, A.; Kassem, M.A.; Abel, C.A. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress. Front. Plant Sci. 2013, 4, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellaloui, N.; Turley, R.B. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Front. Plant Sci. 2013, 4, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellaloui, N.; Stetina, S.R.; Turley, R.B. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Front. Plant Sci. 2015, 6, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R. Water stress and foliar boron application altered cell wall boron and seed nutrition in near-isogenic cotton lines expressing fuzzy and fuzzless seed phenotypes. PLoS ONE 2015, 10, e0130759. [Google Scholar] [CrossRef]
- Andres, R.J.; Bowman, D.T.; Jones, D.C.; Kuraparthy, V. Major leaf shapes of cotton: Genetics and agronomic effects in crop production. J. Cott. Sci. 2016, 20, 330–340. [Google Scholar]
- Jones, J.E.; Andries, J.A. Okra leaf cotton for boll rot control. Agriculture 1967, 10, 4–5. [Google Scholar]
- Andries, J.A.; Jones, J.E.; Sloane, L.W.; Marshall, J.G. Effects of super okra leaf shape on boll rot, yield, and other characters of Upland cotton, Gossypium hirsutum L. Crop Sci. 1970, 10, 403–407. [Google Scholar] [CrossRef]
- Karami, E.; Weaver, J.B. Growth analysis of American Upland cotton, Gossypium hirsutum L., with different leaf shapes and colors. Crop Sci. 1972, 12, 317–320. [Google Scholar] [CrossRef]
- Rao, M.J.; Weaver, J.B. Effect of leaf shape on response of cotton to plant population, N rate, and irrigation. Crop Sci. 1976, 68, 599–601. [Google Scholar] [CrossRef]
- Landivar, J.A.; Baker, D.N.; Jenkins, J.N. Application of GOSSYM to genetic feasibility studies. Analyses of fruit abscission and yield in okra-leaf cotton. Crop Sci. 1983, 23, 497–504. [Google Scholar] [CrossRef]
- Wilson, F.D.; George, B.W. Effects of okra-leaf, frego-bract, and smooth-leaf mutants on pink bollworm damage and agronomic properties of cotton. Crop Sci. 1982, 22, 798–801. [Google Scholar] [CrossRef]
- Wilson, F.D. Pink bollworm resistance, lint yield, and lint yield components of okra-leaf cotton indifferent genetic backgrounds. Crop Sci. 1986, 26, 1164–1167. [Google Scholar] [CrossRef]
- Liu, J.; Deng, S.; Wang, H.; Ye, J.; Wu, H.-W.; Sun, H.-Z.; Chua, N.-H. Curly leaf regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol. 2016, 171, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Katz, A.; Oliva, M.; Hakim, O.; Ohad, N. FIE and curly leaf polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 2004, 37, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, C.W.; Park, G.T.; Yun, H.; Hsieh, T.F.; Choi, Y.D.; Choi, Y.; Lee, J.S. Control of paternally expressed imprinted upward curly leaf1, a gene encoding an F-box protein that regulates curly leaf polycomb protein, in the arabidopsis endosperm. PLoS ONE 2015, 10, e0117431. [Google Scholar] [CrossRef] [Green Version]
- Piper, E.L.; Boote, K.J. Temperature and cultivar effects of soybean seed oil and protein concentration. J. Am. Oil Chem. Soc. 1999, 76, 1233–1241. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.A. Variation in fatty acid composition of the different acyl-lipids in seed oils from four Sesamun species. J. Am. Oil Chem. Soc. 1994, 71, 135–139. [Google Scholar] [CrossRef]
- May, W.E.; Hume, D.L.; Hale, B.A. Effects of agronomic practices on free fatty acid levels in the oil of Ontario-grown spring canola. Can. J. Plant Sci. 1993, 74, 267–274. [Google Scholar] [CrossRef]
- Dardanelli, J.L.; Balzarini, M.; Martinez, M.J.; Cuniberti, M.; Resnik, S.; Ramunda, S.F.; Herrero, R.; Baigorri, H. Soybean maturity groups, environments, and their interaction define mega-environments for seed composition in Argentina. Crop Sci. 2006, 46, 1939–1947. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effects of maturity, genotypic background, and temperature on seed mineral composition in near isogenic soybean lines in the early soybean production system. Crop Sci. 2011, 51, 1161–1171. [Google Scholar] [CrossRef]
- Bellaloui, N.; Abbas, H.K.; Bruns, A.; Mengistu, A. Grain chemical composition as affected by genetic backgrounds and toxigenic Aspergillus flavus inoculation in corn hybrids. Atlas J. Plant Biol. 2016, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Abbas, H.K.; Ebelhar, W.M.; Mengistu, A.; Mulvaney, M.J.; Accinelli, C.; Shier, T.W. Effect of increased nitrogen application rates and environment on protein, oil, fatty acids, and minerals in sesame (Sesamum indicum) seed grown under Mississippi Delta conditions. Food Nutr. Sci. 2018, 9, 1112–1135. [Google Scholar] [CrossRef] [Green Version]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 3rd ed.; International Potash Institute: Worblaufen-Bern, Switzerland, 1982. [Google Scholar]
- Bellaloui, N.; Hanks, J.E.; Fisher, D.K.; Mengistu, A. Soybean seed composition is influenced by with-in field variability in soil nutrients. Crop Manag. 2009, 8, 1–12. [Google Scholar] [CrossRef]
- Bellaloui, N.; Reddy, K.N.; Zablotowicz, R.M.; Abbas, H.K.; Abel, C.A. Effects of glyphosate application on seed iron and root ferric (III) reductase in soybean cultivars. J. Agric. Food Chem. 2009, 57, 9569–9574. [Google Scholar] [CrossRef]
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Bellaloui, N.; Turley, R.B.; Stetina, S.R.; Molin, W.T. Cottonseed protein, oil, and mineral nutrition in near-isogenic Gossypium hirsutum cotton lines expressing leaf color phenotypes under field conditions. Food Nutr. Sci. 2019, 10, 834–859. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. 2014. Available online: http://websoilsurvey.nrcs.usda.gov/ (accessed on 21 January 2014).
- SAS. SAS Institute, Statistical Analysis Systems; SAS Institute: Cary, NC, USA, 2002–2012. [Google Scholar]
- Bellaloui, N.; Mengistu, A.; Walker, R.R.; Young, L.D. Soybean seed composition affected by seeding rates and row spacing in the Midsouth USA. Crop Sci. 2014, 54, 1782–1795. [Google Scholar] [CrossRef]
- Dumas, J.B.A. Procedes de l’analyse organic. Ann. Chim.Phys. 1831, 247, 198–213. [Google Scholar]
- Holmes, F.L. Elementary analysis and the origins of physiological chemistry. Isis 1963, 54, 50–81. [Google Scholar] [CrossRef]
- Childs, C.E.; Henner, E.B. A Direct comparison of the Pregl, Dumas, Perkin-Elmer, and Hewlett-Packard (F&M) carbon-hydrogen-nitrogen procedures. Microchem. J. 1970, 15, 590–597. [Google Scholar]
- Mississippi State University Extension. Available online: http://extension.msstate.edu/agriculture/crops/cotton (accessed on 9 July 2021).
- Lohse, G. Microanalytical azomethine-H method for boron determination in plant tissue. Commun. Soil Sci. Plant Anal. 1982, 13, 127–134. [Google Scholar] [CrossRef]
- John, M.K.; Chuah, H.H.; Neufeld, J.H. Application of improved azomethine- method to the determination of boron in soils and plants. Anal. Lett. 1975, 8, 559–568. [Google Scholar] [CrossRef]
- Bandemer, S.L.; Schaible, P.J. Determination of iron. A study of the o-phenanthroline method. Ind. Eng. Chem. Anal. Ed. 1944, 16, 317–319. [Google Scholar] [CrossRef]
- Loeppert, R.L.; Inskeep, W.P. Colorimetric determination of ferrous iron and ferric iron by the 1,10-phenanthroline method. In Methods of Soil Analysis; Part 3—Chemical Methods; Bigham, J.M., Ed.; SSSA: Madison, WI, USA, 1996; pp. 659–661. [Google Scholar]
DF | B | Cu | Fe | Mn | Ni | Zn | |
---|---|---|---|---|---|---|---|
Year | 1 | 77.57 *** | 12.9 * | 12.64 ** | 121 *** | 53.27 *** | 69.27 *** |
Line | 2 | 55.38 *** | 70.88 *** | 75.65 *** | 13.49 *** | 30.30 *** | 2.74 ns |
Year *Line | 2 | 1.65 ns | 0.75 ns | 0.48 ns | 22.73 *** | 1.06 ns | 40.55 *** |
Residuals | 0.27 | 0.34 | 6.79 | 0.24 | 0.22 | 2.82 |
Line | B | Cu | Fe (mg/kg) | Mn | Ni | Zn |
---|---|---|---|---|---|---|
DP 5690 Wilde-type | 16.16 | 13.08 | 69.08 | 15.94 | 6.28 | 36.61 |
Uzbek CRL | 14.48 | 13.74 | 58.84 | 14.72 | 5.04 | 36.66 |
DP 5690 CRL | 13.42 | 10.30 | 49.55 | 16.41 | 4.21 | 46.11 |
LSD | 0.309 | 0.406 | 1.515 | 0.354 | 0.343 | 1.167 |
Line | B | Cu | Fe (mg/kg) | Mn | Ni | Zn |
---|---|---|---|---|---|---|
DP 5690 Wilde-type | 14.20 | 12.03 | 63.07 | 14.30 | 3.90 | 48.70 |
Uzbek CRL | 12.77 | 12.53 | 55.70 | 12.90 | 3.32 | 47.80 |
DP 5690 CRL | 10.67 | 8.47 | 46.60 | 11.41 | 1.80 | 42.63 |
LSD | 0.296 | 0.374 | 1.54 | 0.227 | 0.269 | 0.757 |
2014 | |||||
---|---|---|---|---|---|
B | Cu | Fe | Mn | Ni | |
Cu | p = 0.52056 | ||||
R = ns | |||||
Fe | p = 0.88079 | 0.73212 | |||
R = ** | * | ||||
Mn | p = 0.00082 | −0.69623 | −0.19359 | ||
R = ns | * | ns | |||
Ni | p = 0.79173 | 0.626 | 0.94197 | −0.08823 | |
R = ** | ns | *** | ns | ||
Zn | p = −0.7744 | −0.83225 | −0.74718 | 0.58827 | −0.5666 |
R = ** | ** | * | ns | ns |
2015 | |||||
---|---|---|---|---|---|
B | Cu | Fe | Mn | Ni | |
Cu | p = 0.80413 | ||||
R = ** | |||||
Fe | p = 0.89765 | 0.72654 | |||
R = ** | * | ||||
Mn | p = 0.93164 | 0.73328 | 0.92415 | ||
R = *** | * | *** | |||
Ni | p = 0.8621 | 0.9018 | 0.81475 | 0.82594 | |
R = ** | *** | ** | ** | ||
Zn | p = 0.8435 | 0.87237 | 0.80441 | 0.86862 | 0.86611 |
R = ** | ** | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellaloui, N.; Turley, R.B.; Stetina, S.R. Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines. Plants 2021, 10, 1701. https://doi.org/10.3390/plants10081701
Bellaloui N, Turley RB, Stetina SR. Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines. Plants. 2021; 10(8):1701. https://doi.org/10.3390/plants10081701
Chicago/Turabian StyleBellaloui, Nacer, Rickie B. Turley, and Salliana R. Stetina. 2021. "Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines" Plants 10, no. 8: 1701. https://doi.org/10.3390/plants10081701
APA StyleBellaloui, N., Turley, R. B., & Stetina, S. R. (2021). Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines. Plants, 10(8), 1701. https://doi.org/10.3390/plants10081701