Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. Chlorophyll Content
2.3. Proline Content
2.4. Oxidative Damage to Lipids
2.5. Total Soluble Sugars
2.6. Membrane Electrolyte Leakage and Water Deficit Saturation
2.7. Total Phenol Content
2.8. Accumulation of Hydrogen Peroxide
2.9. Peroxidase and Polyphenol Oxidase Activities
3. Discussion
4. Materials and Methods
4.1. Soil and Biological Materials and Trial Layout
4.2. Growing Conditions
4.3. Measurements
4.3.1. Morphological Measurements
4.3.2. Total Chlorophyll Content
4.3.3. Proline Content
4.3.4. Total Soluble Sugar
4.3.5. Oxidative Damage to Lipids
4.3.6. Water Deficit Saturation
4.3.7. Electrolyte Leakage
4.3.8. Hydrogen Peroxide Content
4.3.9. Total Phenol Content
4.3.10. Polyphenol Oxidase and Peroxidase Content
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehraban, A.; Tobe, A.; Gholipouri, A.; Amiri, E.; Ghafari, A.; Rostaii, M. The effects of drought stress on yield, yield components, and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.). Pol. J. Environ. Stud. 2019, 28, 739–746. [Google Scholar] [CrossRef]
- The Food and Agriculture Organization (FAO). World Food and Agriculture Statistical Year Book 2013; FAO: Rome, Italy, 2013. [Google Scholar]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Emam, Y.; Shekoofa, A.; Salehi, F.; Jalali, A.H. Water stress effects on two common bean cultivars with contrasting growth habits. Arch. Agron. Soil Sci. 2010, 9, 495–499. [Google Scholar]
- Belay, J.A.; Zhang, Z.; Xu, P. Physio-morphological and biochemical trait-based evaluation of Ethiopian and Chinese wheat germplasm for drought tolerance at the seedling stage. Sustainablity 2021, 13, 4605. [Google Scholar] [CrossRef]
- Jafari-Shabestari, J.; Corke, H.; Qualset, C.O. Field evaluation to salinity stress in Iranian hexaploid wheat landrace accessions. Genet. Resour. Crop. Evol. 1995, 42, 147–156. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J.M. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerance cultivar. Front. Plant. Sci. 2017, 8, 1056. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Nat. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [Green Version]
- Rui-Lozano, J.M.; Porcel, R.; Azcón, R.; Aroca, R. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. J. Exp. Bot. 2012, 63, 695–709. [Google Scholar]
- Candar-Cakir, B.; Arican, E.; Zhang, B. Small RNA and degradome deep sequencing reveals drought -and tissue-specific microRNAs and their important roles in drought-sensitive and drought-tolerant tomato genotypes. J. Plant. Biotech. 2016, 14, 1727–1746. [Google Scholar] [CrossRef] [Green Version]
- Min, H.; Chen, C.; Wei, S.; Shang, X.; Sun, M.; Xia, R. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Front. Plant. Sci. 2016, 7, 1080. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.A.; Tanveer, M.; Ashraf, U.; Hussain, S.; Shahzad, B.; Khan, I. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environ. Sci. Pollut. Res. Int. 2016, 23, 17132–17141. [Google Scholar] [CrossRef] [PubMed]
- Marulanda, A.; Barea, J.M.; Azcon, R. Stimulation of plant growth and drought tolerance by native microorganisms (am fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. J. Plant. Grow. Regul. 2009, 28, 115–124. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Ghalavand, A.; Dolatabadian, A.; Jamshidi, E.; Joghan, A.K. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agri. Water Manag. 2013, 117, 106–114. [Google Scholar] [CrossRef]
- Chitarra, W.; Pagliarani, C.; Maserti, B.; Lumini, E.; Siciliano, I.; Cascone, P. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant. Physiol. 2016, 171, 1009–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Karaki, G.N.; Al-Raddad, A. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 1997, 7, 83–88. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Porcel, R.; Azcón, R.; Bárzana, G.; Aroca, R. Contribution of arbuscular mycorrhizal symbiosis to plant drought tolerance: State of the art. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Heidelberg/Berlin, Germany, 2012; pp. 335–362. [Google Scholar]
- Yooyongwech, S.; Samphumphuang, T.; Tisarum, R.; Theerawitaya, C.; Chaum, S. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hort. 2016, 198, 107–117. [Google Scholar] [CrossRef]
- Aroca, R.; Del Mar Alguacil, M.; Vernier, P.; Ruiz-Lozano, J.M. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). Microb. Ecol. 2008, 56, 704–719. [Google Scholar] [CrossRef]
- Dietz, K.J.; Foyer, C. The relationship between phosphate and photosynthesis in leaves, Reversibility of the effects of phosphate deficiency on photosynthesis. Planta 1986, 167, 376–381. [Google Scholar] [CrossRef]
- Mercy, M.A.; Shivashankar, G.; Bagyaraj, D.J. Mycorrhizal colonization in cowpea is host dependent and heritable. Plant. Soil 1990, 121, 292–294. [Google Scholar] [CrossRef]
- Moucheshi, A.; Heidari, B.; Assad, M.T. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. Int. J. Agri. Sci. 2012, 2, 35–47. [Google Scholar]
- Emmett, B.D.; Lévesque-Tremblay, V.; Harrison, M.J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021, 15, 2276–2288. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Pan, W.L.; Kennedy, A.C. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dry land field conditions. Mycorrhiza 1998, 8, 139–144. [Google Scholar]
- Abdul-Wasea, A.A.; Elhindi, K.M. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 2011, 18, 93–98. [Google Scholar]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Yang, X.; Chena, X.; Gea, Q.; Li, B.; Tongc, Y.; Li, Z.; Kuanga, T.; Lu, C. Characterization of photosynthesis of flag leaves in a wheat hybrid and its parents grown under field conditions. Plant. Physiol. 2007, 164, 318–326. [Google Scholar] [CrossRef]
- Khan, A.; Pan, X.; Najeeb, U.; Tan, D.K.Y.; Faha, S.; Zahoor, R.; Luo, H. Coping with drought: Stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness. Biol. Res. 2018, 51, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, N.; Armada, E.; Duque, E.; Roldán, A.; Azcón, R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. Plant. Physiol. 2015, 174, 87–96. [Google Scholar] [CrossRef]
- Sánchez-Romera, B.; Ruiz-Lozano, J.M.; Zamarreño, Á.M.; García-Mina, J.M.; Aroca, R. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of rot hydraulic conductivity caused by drought. Mycorrhiza 2016, 26, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, L.P.; Guttikonda, S.K.; Tran, L.S.P.; Nguyen, H.T. Physiological and molecular approaches to improve drought resistance in soybean. Plant. Cell Physiol. 2009, 50, 1260–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanveer, M.; Shahzad, B.; Sharma, A.; Khan, E.A. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant. Physiol. Biochem. 2019, 135, 295–303. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Zhang, F.; Huang, Y. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 2011, 21, 423–430. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003, 13, 309–317. [Google Scholar] [CrossRef]
- Wu, Q.S.; Xia, R.X.; Zou, Y.N.; Wang, G.Y. Osmotic solute responses of mycorrhizal citrus (Poncirus trifoliata) seedlings to drought stress. Acta Physiol. Plant. 2007, 2, 543–549. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Huang, Y. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions. New For. 2014, 45, 545–556. [Google Scholar] [CrossRef]
- Abid, M.; Tian, Z.; Ata-Ul-Karim, S.T.; Liu, Y.; Cui, Y.; Zahoor, R. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant. Physiol. Bioch. 2016, 106, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.; Hui, C.; Tang, M.; Zhang, H. Effect of Rhizophagus irregularis on osmotic adjustment, anti-oxidation and aquaporin PIP genes expression of Populus × canadensis ‘Neva’ under drought stress. Acta Physiol. Plant. 2016, 38, 191. [Google Scholar] [CrossRef]
- He, Z.; He, C.; Zhang, Z.; Zou, Z.; Wan, H. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Coll. Surf. B Biointer. 2007, 59, 128–133. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; Chaoxing, H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Mehdy, M.C.; Sharma, Y.K.; Sathasivan, K.; Bays, N.W. The role of activated oxygen species in plant disease resistance. Plant. Physiol. 1996, 98, 365–374. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzadeh, A.; Laiegh, S.F.; Poschenrieder, C. Colonization with arbuscular mycorrhizal fungi improve salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant. Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant. Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Urano, D.; Kang-Ling, L.; Hedrick, T.L.; Gao, Y.; Jones, A.M. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings. Plant. Meth. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Bates, L.; Waldren, R.P.; Teare, J.D. Rapid determination of free proline for water stress studies. Plant. Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Farissi, M.; Ghoulam, C.; Bouizgaren, A. Changes in water deficit saturation and photosynthetic pigments of Alfafa populations under salinity and assessment of proline role in salt tolerance. J. Agri. Sci. 2013, 3, 29–35. [Google Scholar]
- Irigoyen, J.J.; Einerich, D.W.; Sanchez-Diaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Plant. Physiol. 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Chow, P.S.; Landhäusser, S.M. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004, 24, 1129–1136. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. The importance of free radicals and catalytic metal ions in human diseases. Mol. Asp. Med. 1985, 8, 89–193. [Google Scholar] [CrossRef]
- Zeb, A.; Ullah, F. A Simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J. Anal. Methods Chem. 2016, 2016, 9412767. [Google Scholar] [CrossRef] [Green Version]
- Ghoulam, C.; Foursy, A.; Fares, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Adreva, A. Some antioxidant systems in acid rain treated bean plants; protective role of exogenous polyamines. Plant. Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Abdi, N.; Ltaief, B.; Hemissi, I.; Bouraoui, M.; Sifi, B. Oxidative stress in pea (Pisum sativum L.)-rhizobia symbiosis induced under conditions of salt stress. J. Agr. Sci. Tech. 2019, 21, 957–968. [Google Scholar]
- Dicko, M.H.; Hilhorst, R.; Gruppen, H.; Traore, A.S.; Laane, C. Comparison of content in phenolic compounds, polyphenol oxides and peroxidase in grains of fifty sorghum varieties from Burkina Faso. J. Agric. Food Chem. 2002, 50, 3780–3788. [Google Scholar] [CrossRef]
- Bargaz, A.; Faghire, M.; Farissi, M.; Drevon, J.J.; Ghoulam, C. Oxidative stress in the root nodules of Phaseolus vulgaris is induced under conditions of phosphorus deficiency. Acta Physiol. Plant. 2013, 35, 1633–1644. [Google Scholar] [CrossRef]
- Hori, K.; Wada, A.; Shibuta, T. Changes in phenoloxidase activities of the galls on leaves of Ulmusvidana formed by Tetraneura fuciformis. Appl. Entom. Zool. 1997, 32, 365–371. [Google Scholar] [CrossRef] [Green Version]
No stress application | PL (cm) | TN Plant-1 | NN Tiller-1 | LLN (cm) | LN Plant-1 | LL (cm) | LW (cm) | ||||||||
PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | ||
T0 | 23.06 ± 2.7 b | 21.92 ± 2.9 c | 1.46 ± 0.63 c | 1.53 ± 0.6 b | 1.66 ± 0.4 b | 1.2 ± 0.41 c | 1.44 ± 0.8 b | 1.71 ± 0.77 b | 3.93 ± 1.09 b | 4.6 ± 2.04 b | 20.14 ± 2.04 b | 18.21 ± 2.67 c | 0.58 ± 0.13 | 0.58 ± 0.15 | |
T1 | 28.60 ± 2.02 a | 25.4 ± 1.99 a | 2.26 ± 0.45 a | 1.8 ± 0.41 ab | 2 ± 0.53 a | 2.06 ± 0.45 a | 2.12 ± 0.60 a | 2.26 ± 0.66 a | 6.46 ± 1.40 a | 5.6 ± 1.05 a | 23.06 ± 1.7 a | 19.8 ± 1.8 a | 0.76 ± 0.11 | 0.71 ± 0.09 | |
T2 | 23.06 ± 1.6 b | 22.46 ± 0.87 c | 1.46 ± 2.05 c | 2 ± 0.23 a | 1.66 ± 0.48 b | 1.2 ± 0.42 c | 1.58 ± 0.76 b | 1.54 ± 0.72 c | 3.73 ± 1.27 b | 4.93 ± 1.90 b | 19.73 ± 1.89 c | 18.16 ± 1.77 c | 0.58 ± 0.10 | 0.58 ± 0.13 | |
T3 | 28 ± 1.2 a | 23.13 ± 2.4 b | 1.96 ± 1.98 b | 2 ± 0.50 a | 2 ± 0.38 a | 1.86 ± 0.40 b | 2.12 ± 0.66 a | 1.91 ± 0.66 ab | 6.06 ± 1.10 a | 4.86 ± 1.94 b | 23.06 ± 2.00 a | 18.73 ± 2.08 b | 0.76 ± 0.08 | 0.66 ± 011 | |
15 days after stress application | PL (cm) | TN Plant-1 | NN | LLN (cm) | LN | LL (cm) | LW (cm) | ||||||||
PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | ||
T0 | 35.2 ± 3.9 a | 32.6 ± 2.7 a | 2.53 ± 0.63 b | 3 ± 0.84 b | 2.6 ± 0.50 b | 2.26 ± 0.45 c | 2.42 ± 1.2 b | 2.033 ± 0.97 a | 8.86 ± 1.7 b | 11.13 ± 3.5 ab | 26.13 ± 2.3 a | 25.46 ± 1.7 a | 0.86 ± 0.13 b | 0.86 ± 0.11 a | |
T1 | 34.53 ± 3.02 a | 31.37 ± 2.3 b | 3.46 ± 0.99 a | 3.4 ± 0.6 a | 2.46 ± 0.51 b | 2.73 ± 0.45 a | 2.67 ± 0.79 a | 1.63 ± 0.69 b | 11.33 ± 2.7 a | 11.86 ± 1.8 a | 26.06 ± 2.3 a | 25 ± 1.8 a | 0.97 ± 0.14 a | 0.78 ± 0.08 b | |
T2 | 27.86 ± 3.2 c | 25.93 ± 2.5 d | 1.66 ± 0.72 c | 2.06 ± 0.96 c | 2.8 ± 0.41 a | 2.4 ± 0.50 b | 0.73 ± 0.36 c | 1.47 ± 0.78 b | 5.93 ± 1.9 c | 7.26 ± 2.08 c | 22.06 ± 2.7 b | 21.13 ± 2.09 c | 0.62 ± 0.08 c | 0.70 ± 0.07 c | |
T3 | 28.8 ± 1.61 b | 28.53 ± 4.01 c | 1.66 ± 0.72 c | 2.8 ± 0.7 b | 2.8 ± 0.41 a | 2.26 ± 0.45 c | 0.72 ± 0.36 c | 1.95 ± 0.90 a | 5.93 ± 1.9 c | 9.66 ± 1.9 b | 22.06 ± 2.7 b | 22.2 ± 2.8 b | 0.62 ± 0.08 c | 0.72 ± 0.09 b | |
30 days after stress application | PL (cm) | TN Plant-1 | NN | LLN (cm) | LN | LL (cm) | LW (cm) | ||||||||
PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | ||
T0 | 38.76 ± 2.5 a | 33.63 ± 1.63 b | 3.43 ± 0.86 b | 4.00 ± 0.92 c | 3.3 ± 0.25 a | 2.79 ± 0.51 b | 1.71 ± 0.65 bc | 2.38 ± 0.61 b | 13.93 ± 3.6 b | 17.23 ± 2.5 b | 27.06 ± 2.15 a | 24.89 ± 1.42 ab | 0.98 ± 0.11 a | 0.88 ± 0.10 b | |
T1 | 37.43 ± 2.76 b | 34.52 ± 3.17 a | 4.73 ± 0.99 a | 5.36 ± 1.55 a | 2.73 ± 0.25 c | 2.86 ± 0.22 b | 3.035 ± 1.04 a | 2.065 ± 0.64 c | 17.66 ± 4.1 a | 19.43 ± 4.4 a | 26.69 ± 2.3 ab | 25.5 ± 2.2 a | 1.02 ± 0.17 a | 0.91 ± 0.16 a | |
T2 | 29.76 ± 2.3 d | 28.96 ± 2.25 c | 2.16 ± 0.61 d | 2.53 ± 0.48 d | 3.40 ± 0.20 a | 3.2 ± 0.25 a | 1.86 ± 0.68 b | 1.8 ± 0.69 d | 9.8 ± 2.2 d | 10.63 ± 2.04 d | 22.03 ± 2.2 c | 21.9 ± 1.62 c | 0.71 ± 0.09 b | 0.78 ± 0.06 c | |
T3 | 31.73 ± 2.33 c | 31.76 ± 2.50 bc | 2.99 ± 1.11 c | 4.23 ± 0.63 b | 3.23 ± 0.49 b | 2.79 ± 0.22 b | 1.64 ± 0.80 c | 2.64 ± 0.83 a | 12.96 ± 4.55 c | 16.49 ± 1.2 c | 23.69 ± 2.5 b | 24.43 ± 3.15 b | 0.86 ± 0.08 b | 0.81 ± 0.09 b | |
45 days after stress application | PL (cm) | TN Plant-1 | NN | LLN (cm) | LN | LL (cm) | LW (cm) | ||||||||
PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | PAN3497 | SST806 | ||
T0 | 42.33 ± 1.17 a | 34.67 ± 0.57 bc | 4.33 ± 1.1 b | 5.00 ± 1.00 c | 4.00 ± 0.00 a | 3.33 ± 0.57 b | 1.00 ± 0.10 d | 2.73 ± 0.25 b | 19.00 ± 5.5 bc | 23.33 ± 1.5 b | 28.00 ± 2 a | 24.33 ± 1.15 b | 1.10 ± 0.09 a | 0.90 ± 0.10 b | |
T1 | 40.33 ± 2.5 b | 37.67 ± 4.04 a | 6.00 ± 1.00 a | 7.33 ± 2.51 a | 3.00 ± 0.00 c | 3.00 ± 0.00 c | 3.40 ± 1.30 a | 2.50 ± 0.60 bc | 24.67 ± 5.5 a | 27.00 ± 7.00 a | 27.33 ± 2.3 b | 26.00 ± 2.6 ab | 1.07 ± 0.20 ab | 1.04 ± 0.25 a | |
T2 | 31.67 ± 1.5 d | 32.00 ± 2 c | 2.67 ± 0.5 c | 3.00 ± 0.00 d | 4.00 ± 0.00 a | 4.00 ± 0.00 a | 3.00 ± 1.00 b | 2.13 ± 0.60 c | 13.67 ± 2.5 c | 14.00 ± 2 c | 22.00 ± 1.7 d | 22.67 ± 1.15 c | 0.80 ± 0.10 b | 0.87 ± 0.05 b | |
T3 | 34.67 ± 3.05 c | 35.00 ± 1.00 b | 4.33 ± 1.5 b | 5.67 ± 0.57 b | 3.67 ± 0.57 b | 3.33 ± 0.57 b | 2.57 ± 1.25 c | 3.33 ± 0.76 a | 20.00 ± 7.2 b | 23.33 ± 0.5 b | 25.33 ± 2.3 c | 26.67 ± 3.5 a | 1.10 ± 0.09 a | 0.90 ± 0.10 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi, N.; van Biljon, A.; Steyn, C.; Labuschagne, M.T. Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions. Plants 2021, 10, 1756. https://doi.org/10.3390/plants10091756
Abdi N, van Biljon A, Steyn C, Labuschagne MT. Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions. Plants. 2021; 10(9):1756. https://doi.org/10.3390/plants10091756
Chicago/Turabian StyleAbdi, Neila, Angeline van Biljon, Chrisna Steyn, and Maryke Tine Labuschagne. 2021. "Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions" Plants 10, no. 9: 1756. https://doi.org/10.3390/plants10091756
APA StyleAbdi, N., van Biljon, A., Steyn, C., & Labuschagne, M. T. (2021). Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae Inoculation under Drought Stress Conditions. Plants, 10(9), 1756. https://doi.org/10.3390/plants10091756