Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variation and Establishment
2.2. Phenotypic Correlations between Measured Traits
2.3. Genomic Regions Associated with Germination and Seedling Establishment Related Traits
2.4. Candidate Genes Described in the Regions Surrounding Significant SNP
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Design and Data Recorded
4.3. Statistical Analyses
4.4. SNPs, QTL and Candidate Gene Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.T.; Tardieu, F.; Dong, Z.; Messina, C.D.; Hammer, G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Chang. Biol. 2014, 20, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Boyer, J.S.; Byrne, P.; Cassman, K.G.; Cooper, M.; Delmer, D.; Greene, T.; Gruis, F.; Habben, J.; Hausmann, N.; Kenny, N.; et al. The U.S. drought of 2012 in perspective: A call to action. Glob. Food Secur. 2013, 2, 139–143. [Google Scholar] [CrossRef]
- Thirunavukkarasu, N.; Hossain, F.; Arora, K.; Sharma, R.; Shiriga, K.; Mittal, S.; Mohan, S.; Namratha, P.M.; Dogga, S.; Rani, T.S.; et al. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genom. 2014, 15, 1182. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Chen, J.; Xu, W.; Velten, J.; Xin, Z.; Stout, J. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 2012, 67, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.S. Plant productivity and environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef]
- Edmeades, G.O. Drought Tolerance in Maize: An Emerging Reality; Companion Document to Executive Summary ISAAA Briefs 39—2008; ISAAA International Service for the Acquisition of Agri-Biotech Applications: Ithaka, NY, USA, 2008. [Google Scholar]
- Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edmeades, G.O. Progress in Achieving and Delivering Drought Tolerance in Maize—An Update; ISAA: Ithaka, NY, USA, 2013; pp. 1–44. [Google Scholar]
- Singh, A.; Bhatnagar, N.; Pandey, A.; Pandey, G.K. Plant phospholipase C family: Regulation and functional role in lipid signaling. Cell Calcium 2015, 58, 139–146. [Google Scholar] [CrossRef]
- Joshi, R.; Wani, S.; Singh, B.; Bohra, A.; Dar, Z.; Lone, A.; Pareek, A.; Singla-Pareek, S.L. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Front. Plant Sci. 2016, 7, 1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Kumari, M.; Kumar, H.; Varadwaj, P.K. Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. Funct. Integr. Genom. 2017, 17, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 2014, 5, 170. [Google Scholar] [CrossRef] [Green Version]
- Stange, M.; Utz, H.F.; Schrag, T.A.; Melchinger, A.E.; Würschum, T. High-density genotyping: An overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor. Appl. Genet. 2013, 126, 2563–2574. [Google Scholar] [CrossRef]
- Yan, J.; Warburton, M.; Crouch, J. Association Mapping for Enhancing Maize (Zea mays L.) Genetic Improvement. Crop. Sci. 2011, 51, 433–449. [Google Scholar] [CrossRef]
- Yan, J.; Shah, T.; Warburton, M.L.; Buckler, E.; McMullen, M.D.; Crouch, J. Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS ONE 2009, 4, e8451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide association studies in maize: Praise and stargaze. Mol. Plant 2017, 10, 359–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckler, E.S.; Holland, J.B.; Bradbury, P.J.; Acharya, C.B.; Brown, P.J.; Browne, C.; Ersoz, E.; Flint-Garcia, S.; Garcia, A.; Glaubitz, J.C.; et al. The genetic architecture of maize flowering time. Science 2009, 325, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, J.; Xie, C.; Hao, Z.; Wang, J.; Liu, C.; Li, M.; Zhang, D.; Bai, L.; Zhang, S.; Li, X. Genome-wide association study identifies candidate genes that affect plant height in chinese elite maize (Zea mays L.) inbred lines. PLoS ONE 2011, 6, e29229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Peng, Z.; Yang, X.; Wang, W.; Fu, J.; Wang, J.; Han, Y.; Chai, Y.; Guo, T.; Yang, N.; et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat. Genet. 2013, 45, 43–50. [Google Scholar] [CrossRef]
- Tian, F.; Bradbury, P.J.; Brown, P.J.; Hung, H.; Sun, Q.; Flint-Garcia, S.; Rocheford, T.R.; McMullen, M.D.; Holland, J.; Buckler, E. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat. Genet. 2011, 43, 159–162. [Google Scholar] [CrossRef]
- Revilla, P.; Rodríguez, V.M.; Ordás, A.; Rincent, R.; Charcosset, A.; Giauffret, C.; Melchinger, A.E.; Schön, C.-C.; Bauer, E.; Altmann, T.; et al. Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol. 2016, 16, 127. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.W.H.; Wang, H.; Liu, S.; Ferjani, A.; Li, J.; Yan, J.; Yang, J.L.X.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 2016, 48, 1233–1241. [Google Scholar] [CrossRef]
- Xue, Y.; Warburton, M.L.; Sawkins, M.; Zhang, X.; Setter, T.; Xu, Y.; Grudloyma, P.; Gethi, J.; Ribaut, J.-M.; Li, W.; et al. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Genet. 2013, 126, 2587–2596. [Google Scholar] [CrossRef]
- Mackay, T.F.C.; Stone, E.A.; Ayroles, J.F. The genetics of quantitative traits: Challenges and prospects. Nat. Rev. Genet. 2009, 10, 565–577. [Google Scholar] [CrossRef]
- Cavanagh, C.; Morell, M.; Mackay, I.; Powell, W. From mutations to magic: Resources for gene discovery, validation and delivery in crop plants. Curr. Opin. Plant Biol. 2008, 11, 215–221. [Google Scholar] [CrossRef]
- Flint-Garcia, S.; Thuillet, A.-C.; Yu, J.; Pressoir, G.; Romero, S.M.; Mitchell, S.E.; Doebley, J.; Kresovich, S.; Goodman, M.M.; Buckler, E.S. Maize association population: A high-resolution platform for quantitative trait locus dissection. Plant J. 2005, 44, 1054–1064. [Google Scholar] [CrossRef]
- Yordanov, I.; Velikova, V.; Tsonev, T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 2000, 38, 171–186. [Google Scholar] [CrossRef]
- Muhammad, A.; Amjad, F.; Ihsan, K.; Qurban, A.; Muhammad, A.; Muhammad, K.; Ahsan, M.; Farooq, A.; Khaliq, I.; Ali, Q.; et al. Inheritance of various yield contributing traits in maize (Zea mays L.) at low moisture condition. Afr. J. Agric. Res. 2013, 8, 413–420. [Google Scholar] [CrossRef]
- Liu, M.; Li, M.; Liu, K.; Sui, N. Effects of drought stress on seed germination and seedling growth of different maize varieties. J. Agric. Sci. 2015, 7, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q. Lignification: Flexibility, Biosynthesis and Regulation. Trends Plant Sci. 2016, 21, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Meeks, M.; Murray, S.C.; Hague, S.; Hays, D. Measuring maize seedling drought response in search of tolerant germplasm. Agronomy 2013, 3, 135–147. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar] [CrossRef]
- Avramova, V.; Nagel, K.A.; AbdElgawad, H.; Bustos, D.; DuPlessis, M.; Fiorani, F.; Beemster, G.T. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J. Exp. Bot. 2016, 67, 2453–2466. [Google Scholar] [CrossRef]
- Kaydan, D.; Yagmur, M. Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCI. Afr. J. Biotechnol. 2008, 7, 2862–2868. [Google Scholar] [CrossRef]
- Li, X.; Mu, C.; Lin, J. The germination and seedlings growth response of wheat and corn to drought and low temperature in spring of Northeast China. J. Anim. Plant Sci. 2014, 2121, 3212–3222. [Google Scholar]
- Naveed, M.; Mitter, B.; Reichenauer, T.G.; Wieczorek, K.; Sessitsch, A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 2014, 97, 30–39. [Google Scholar] [CrossRef]
- Whitmore, A.P.; Whalley, R. Physical effects of soil drying on roots and crop growth. J. Exp. Bot. 2009, 60, 2845–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruta, N.; Stamp, P.; Liedgens, M.; Fracheboud, Y.; Hund, A. Collocations of QTLs for seedling traits and yield components of tropical maize under water stress conditions. Crop Sci. 2010, 50, 1385–1392. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, D.; Zhao, Y.; Wang, W.; Yang, H.; Tai, F.; Li, C.; Hu, X. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front. Plant Sci. 2016, 7, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Iglesias, L.; de la Roza-Delgado, B.; Reigosa, M.J.; Revilla, P.; Pedrol, N. A simple, fast and accurate screening method to estimate maize (Zea mays L.) tolerance to drought at early stages. Maydica 2018, 62, 12. [Google Scholar]
- Khan, N.H.; Ahsan, M.; Naveed, M.; Sadaqat, H.A.; Javed, I. Genetics of drought tolerance at seedling and maturity stages in Zea mays L. Span. J. Agric. Res. 2016, 14, e0705. [Google Scholar] [CrossRef] [Green Version]
- Djemel, A.; Cherchali, F.Z.; Benchikh-Le-Hocine, M.; Malvar, R.A.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Santiago, R.; Malvar, R.A.; Pedrol, N.; Revilla, P. Algerian maize populations from the Sahara desert as potential sources of drought tolerance. Acta Physiol. Plant. 2019, 41, 12. [Google Scholar] [CrossRef]
- Badr, A.; El-Shazly, H.H.; Tarawneh, R.A.; Börner, A. Screening for drought tolerance in maize (Zea mays L.) germplasm using germination and seedling traits under simulated drought conditions. Plants 2020, 9, 565. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, P.H.; Seetharam, K.; Krishna, G.; Krishnamurthy, L.; Gajanan, S.; Babu, R.; Zerka, M.; Vinayan, M.T.; Vivek, B.S. Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). PLoS ONE 2016, 11, e0164340. [Google Scholar] [CrossRef] [PubMed]
- Partheeban, C.; Chandrasekhar, C.; Jeyakumar, P.; Ravikesavan, R.; Gnanam, R. Effect of PEG induced drought stress on seed germination and seedling characters of maize (Zea mays L.) genotypes. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Djemel, A.; Álvarez-Iglesias, L.; Pedrol, N.; López-Malvar, A.; Ordás, A.; Revilla, P. Identification of drought tolerant populations at multi-stage growth phases in temperate maize germplasm. Euphytica 2018, 214, 138. [Google Scholar] [CrossRef]
- Ali, Q.; Ahsan, M.; Ali, F.; Muhammad, S.; Manzoor, M.; Khan, N.H.; Maqsood, S.; Basra, A.; Saad, H.; Mustafa, B. Genetic advance, heritability, correlation, heterosis and heterobeltiosis for morphological traits of maize (Zea mays L.). Albanian J. Agric. Sci. 2013, 12, 689–698. [Google Scholar]
- Butrón, A.; Santiago, R.; Cao, A.; Samayoa, L.F.; Malvar, R.A. QTLs for resistance to fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Dis. 2019, 103, 897–904. [Google Scholar] [CrossRef]
- Jiménez-Galindo, J.C.; Malvar, R.A.; Butrón, A.; Santiago, R.; Samayoa, L.F.; Caicedo, M.; Ordás, B. Mapping of resistance to corn borers in a magic population of maize. BMC Plant Biol. 2019, 19, 431. [Google Scholar] [CrossRef] [Green Version]
- Yi, Q.; Malvar, R.A.; Álvarez-Iglesias, L.; Ordás, B.; Revilla, P. Dissecting the genetics of cold tolerance in a multiparental maize population. Theor. Appl. Genet. 2019, 133, 503–516. [Google Scholar] [CrossRef]
- López-Malvar, A.; Butron, A.; Malvar, R.A.; McQueen-Mason, S.J.; Faas, L.; Gómez, L.D.; Revilla, P.; Figueroa-Garrido, D.J.; Santiago, R. Association mapping for maize stover yield and saccharification efficiency using a multiparent advanced generation intercross (MAGIC) population. Sci. Rep. 2021, 11, 3425. [Google Scholar] [CrossRef]
- Lopez-Malvar, A.; Malvar, R.A.; Butron, A.; Revilla, P.; Pereira-Crespo, S.; Santiago, R. Genetic dissection for maize forage digestibility traits in a multi-parent advanced generation intercross (MAGIC) population. Agronomy 2021, 11, 104. [Google Scholar] [CrossRef]
- Grzesiak, M.T.; Waligorski, P.; Janowiak, F.; Marcińska, I.; Hura, K.; Szczyrek, P.; Głąb, T. The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiol. Plant. 2012, 35, 549–565. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Azhar, F.; Khan, E.I. Variability for drought tolerance in cotton (Gossypium hirsutum) and its genetic basis. Int. J. Agric. Biol. 2011, 13, 61–66. [Google Scholar]
- Akinwale, R.O.; Awosanmi, F.E.; Ogunniyi, O.O.; Fadoju, A.O. Determinants of drought tolerance at seedling stage in early and extra-early maize hybrids. Maydica 2017, 62, 9. [Google Scholar]
- Cao, L.; Wj, B. Discuss on evaluating method to drought-resistance of maize in seedling stage. J. Maize Sci. 2004, 12, 73–75. [Google Scholar]
- Lynch, J.P.; Ho, M.D.; Phosphorus, L. Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant Soil 2005, 269, 45–56. [Google Scholar] [CrossRef]
- Shao, H.-B.; Chu, L.-Y.; Jaleel, C.A.; Zhao, C.-X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef]
- Radic, V.; Vujakovic, M.; Marjanovic-Jeromela, A. Influence of drought on seedling development in different corn genotypes (Zea mays L.). J. Agric. Sci. Belgrade 2007, 52, 131–136. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.). In Springer Briefs Agriculture; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Trampe, B.T.; Trampe, B.T. Assessment of Inducibility and Spontaneous Haploid Genome Doubling in Maize (Zea mays L.). Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2019. [Google Scholar]
- Giuliani, S.; Sanguineti, M.C.; Tuberosa, R.; Bellotti, M.; Salvi, S.; Landi, P. Root-ABA1, a major constitutive QTL, affects maize root architecture and leaf ABA concentration at different water regimes. J. Exp. Bot. 2005, 56, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Landi, P.; Sanguineti, M.; Liu, C.; Li, Y.; Wang, T.; Giuliani, S.; Bellotti, M.; Salvi, S.; Tuberosa, R. Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J. Exp. Bot. 2006, 58, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Chai, W.; Peng, X.; Liu, B.; Wang, J.; Zhu, Z.; Liu, Y.; Zhao, K.; Cheng, B.; Si, W.; Jiang, H. Comparative genomics, whole-genome re-sequencing and expression profile analysis of nucleobase: Cation symporter 2 (NCS2) genes in maize. Front. Plant Sci. 2018, 9, 856. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Wu, X.; Wang, W. Identification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biol. 2020, 20, 315. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Liu, P.; Zhang, J.-W.; Zhao, B.; Ren, B.-Z. Endogenous hormones inhibit differentiation of young ears in maize (Zea mays L.) under heat stress. Front. Plant Sci. 2020, 11, 533046. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Li, Y.; Zhang, Y.; Gou, Z.; Qi, X.; Zhang, J. Transcriptomic analysis revealed the common and divergent responses of maize seedling leaves to cold and heat stresses. Genes 2020, 11, 881. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Ge, M.; Ning, L.; Hu, M.; Zhao, H. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. BMC Genom. 2020, 21, 353. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, X.; Lu, M.; Chen, J.; Shi, T. Gene expression and evolution of Family-1 UDP-glycosyltransferases—insights from an aquatic flowering plant (sacred lotus). Aquat. Bot. 2020, 166, 103270. [Google Scholar] [CrossRef]
- Castilhos, G.; Lazzarotto, F.; Spagnolo-Fonini, L.; Bodanese-Zanettini, M.H.; Margis-Pinheiro, M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci. 2014, 223, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Sakamoto, H.; Momonoki, Y.S. Maize acetylcholinesterase is a positive regulator of heat tolerance in plants. J. Plant Physiol. 2011, 168, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.; Dilkes, B.; Gregory, B.D.; Ross, A.S.; Yuan, H.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Tanaka, A.; Yoshida, S.; et al. The arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol. 1999, 119, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, Y.; Yin, Y.; Liu, Q.; Li, N.; Li, X.; He, W.; Hao, D.; Liu, X.; Guo, C. Expression of AtGA2ox1 enhances drought tolerance in maize. Plant Growth Regul. 2019, 89, 203–215. [Google Scholar] [CrossRef]
- Ogden, A.J.; Abdali, S.; Engbrecht, K.M.; Zhou, M.; Handakumbura, P.P. Distinct preflowering drought tolerance strategies of Sorghum bicolor genotype RTx430 revealed by subcellular protein profiling. Int. J. Mol. Sci. 2020, 21, 9706. [Google Scholar] [CrossRef]
- Hu, J.; Ren, B.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC Plant Biol. 2020, 20, 44. [Google Scholar] [CrossRef]
- Castorina, G.; Domergue, F.; Chiara, M.; Zilio, M.; Persico, M.; Ricciardi, V.; Horner, D.S.; Consonni, G. Drought-responsive ZmFDL1/MYB94 regulates cuticle biosynthesis and cuticle-dependent leaf permeability. Plant Physiol. 2020, 184, 266–282. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Wang, X.; Liu, G.; Jin, H.; Dong, A.; Yang, Y.; Duan, H. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int. J. Mol. Sci. 2019, 20, 1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lei, L.; Lai, J.; Zhao, H.; Song, W. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biol. 2018, 18, 68. [Google Scholar] [CrossRef]
- Liu, S.; Zenda, T.; Jin, H.; Liu, G.; Wang, X.; Dong, A.; Yang, Y.; Duan, H. Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific and hybrid-cultivar-specific drought stress responses in Maize. Res. Sq. 2020. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, A.B.; Vikal, Y.; Johal, G.S. Genome-Wide Development and Validation of Cost-E ff ective KASP Marker Assays for Genetic Dissection of Heat Stress Tolerance in Maize. Int. J. Mol. Sci. 2020, 21, 7386. [Google Scholar] [CrossRef]
- Dong, A.; Yang, Y.; Liu, S.; Zenda, T.; Liu, X.; Wang, Y.; Li, J.; Duan, H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. Biotechnol. Biotechnol. Equip. 2020, 34, 763–780. [Google Scholar] [CrossRef]
- Vendramin, S.; Huang, J.; Crisp, P.A.; Madzima, T.F.; McGinnis, K.M. Epigenetic regulation of ABA-induced transcriptional responses in maize. G3 Genes Genomes Genet. 2020, 10, 1727–1743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, G.; Fu, C.; Duan, S.; Hu, D.; Guo, X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci. Rep. 2020, 10, 8073. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, Q.; Li, C.; An, D.; Xiao, Q.; Wang, W.; Wu, Y. Intra-kernel reallocation of proteins in maize depends on VP1-mediated scutellum development and nutrient assimilation. Plant Cell 2019, 31, 2613–2635. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.D.; Benfey, P.N. Regulation of plant root system architecture: Implications for crop advancement. Curr. Opin. Biotechnol. 2015, 32, 93–98. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Li, J.; Li, H. Genome-wide investigation of the phospholipase c gene family in Zea mays. Front. Genet. 2021, 11, 1638. [Google Scholar] [CrossRef]
- Hagemeyer, C. Transcriptome Analysis of Flood-Induced Hypoxia in Maize (Zea mays) Seedling Shoots; Florida State University: Tallahassee, FL, USA, 2018. [Google Scholar]
- Yu, F.; Tan, Z.; Fang, T.; Tang, K.; Liang, K.; Qiu, F. A Comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize. Genes 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, J.B. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS proc mixed. Crop Sci. 2006, 46, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Endelman, J.B.; Jannink, J.-L. Shrinkage estimation of the realized relationship matrix. G3 Genes Genomes Genet. 2012, 2, 1405–1413. [Google Scholar] [CrossRef]
- Li, J.; Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 2005, 95, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Akey, J.M.; Zhang, K.; Chakraborty, R.; Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: The interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 2002, 71, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andorf, C.M.; Cannon, E.K.; Portwood, J.L.; Gardiner, J.M.; Harper, L.C.; Schaeffer, M.L.; Braun, B.L.; Campbell, D.A.; Vinnakota, A.G.; Sribalusu, V.V.; et al. MaizeGDB update: New tools, data and interface for the maize model organism database. Nucleic Acids Res. 2015, 44, D1195–D1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Mean ± s.e. | CV | Skewness | Kurtosis | Min. | Max. |
---|---|---|---|---|---|---|
Control (0 g L−1 of Polyethylene glycol 6000) | ||||||
Germination | 74.44 ± 9.45 | 21.98 | −0.77 ** | 0.38 | 20.0 | 100 |
Coleoptile length | 21.34 ± 5.08 | 41.22 | 0.63 ** | 0.05 | 6.2 | 51.8 |
Root length | 39.38 ± 8.75 | 38.46 | 0.50 ** | −0.05 | 7.5 | 94.1 |
Coleoptile length/ Root length ratio | 0.58 ± 0.14 | 41.43 | 2.99 ** | 16.85 ** | 0.2 | 2.5 |
Coleoptile dry weight | 51.39 ± 16.18 | 54.53 | 1.07 ** | 1.29 ** | 6.7 | 160 |
Root dry weight | 32.40 ± 11.64 | 62.15 | 1.77 ** | 4.98 ** | 3.3 | 136.7 |
Coleoptile dry weight/Root dry weight ratio | 1.81 ± 0.44 | 42.16 | 1.54 ** | 3.06 ** | 0.7 | 5.2 |
Water stress (200 g L−1 of Polyethylene glycol 6000) | ||||||
Germination | 42.95 ± 12.183 | 49.14 | −0.02 | −0.66 * | 0 | 90 |
Coleoptile length | 2.14 ± 1.343 | 108.73 | 1.34 ** | 1.76 ** | 0 | 11.6 |
Root length | 15.95 ± 3.237 | 35.16 | 0.53 ** | 0.97 ** | 0 | 37.3 |
Coleoptile length/Root length ratio | 0.13 ± 0.084 | 115.69 | 1.74 ** | 4.70 ** | 0 | 1 |
Coleoptile dry weight | 5.42 ± 4.858 | 155.34 | 2.76 ** | 12.14 ** | 0 | 66.7 |
Root dry weight | 10.68 ± 4.644 | 75.29 | 1.16 ** | 1.99 ** | 0 | 43.3 |
Coleoptile dry weight/Root dry weight ratio | 0.46 ± 0.320 | 119.96 | 1.86 ** | 4.34 ** | 0 | 3.3 |
G% | CL | RL | CL/RL | CDW | RDW | CDW/RDW | |
---|---|---|---|---|---|---|---|
G% | 0.25 ** | 0.37 ** | −0.20 ** | 0.50 ** | 0.58 ** | −0.26 ** | |
CL | 0.41 ** | 0.75 ** | 0.24 ** | 0.83 ** | 0.59 ** | 0.26 ** | |
RL | 0.47 ** | 0.40 ** | −0.30 ** | 0.70 ** | 0.74 ** | −0.19 ** | |
CL/RL | 0.29 ** | 0.84 ** | 0.07 | 0.10 | −0.18 ** | 0.68 ** | |
CDW | 0.50 ** | 0.85 ** | 0.38 ** | 0.66 ** | 0.76 ** | 0.18 ** | |
RDW | 0.74 ** | 0.41 ** | 0.60 ** | 0.22 ** | 0.52 ** | −0.34 ** | |
CDW/RDW | 0.26 ** | 0.84 ** | 0.14 * | 0.90 ** | 0.75 ** | 0.17 ** |
SNPa | Bin | QTL | p Value b | Allele c | Additive Effect d | Increase/ Decrease e | R² f | Previous Experiments with Co-Localizing QTLg |
---|---|---|---|---|---|---|---|---|
Coleoptile length | ||||||||
S5_185498400 | 5.05 | CL5.05 | 1.92 × 10−5 | C/T | 0.76 | 97/87 | 0.1 | |
S6_3045454 | 6 | CL6.00 | 2.29 × 10−5 | A/G | 1.19 | 20/184 | 0.09 | |
S7_163929841 | 7.04 | CL7.04 | 2.17 × 10−5 | A/G | 1.62 | 11/128 | 0.14 | |
Coleoptile length/Root length ratio | ||||||||
S2_6486062 | 2.02 | CL/RL2.02 | 1.51 × 10−5 | T/A | 0.1 | 12/212 | 0.08 | |
S4_206750186 | 4.09 | CL/RL4.09 | 7.41 × 10−6 | C/A | 0.13 | 7/135 | 0.13 | |
S4_235381511 | 4.09 | CL/RL4.09 | 8.33 × 10−6 | G/A | 0.14 | 6/126 | 0.14 | |
S6_107737617 | 6.04 | CL/RL6.04 | 2.97 × 10−6 | T/C | 0.1 | 14/234 | 0.09 | |
S6_111018551 | 6.04 | 1 | 1.27 × 10−5 | A/G | 0.09 | 14/250 | 0.08 | Trampe (2019) |
S6_114057282 | 6.04 | CL/RL6.04 | 2.05 × 10−5 | T/C | 0.07 | 20/239 | 0.07 | |
S6_114919493 | 6.04 | CL/RL6.04 | 2.11 × 10−5 | T/C | 0.08 | 20/164 | 0.09 | |
S9_10122782 | 9.01 | CL/RL9.01 | 5.31 × 10−7 | T/A | 0.12 | 10/156 | 0.16 | |
Coleoptile dry weight | ||||||||
S2_55483944 | 2.04 | CDW2.04 | 6.01 × 10−8 | G/C | 6.97 | 12/230 | 0.13 | |
S2_56924044 | 2.04 | CDW2.04 | 2.18 × 10−5 | T/C | 4.55 | 17/256 | 0.07 | |
S2_61029060 | 2.04 | CDW2.04 | 1.44 × 10−5 | A/C | 5.28 | 13/241 | 0.08 | |
S5_11084653 | 5.02 | CDW5.02 | 1.51 × 10−5 | G/T | 6.42 | 9/135 | 0.16 | |
S5_214081679 | 5.08 | CDW5.08 | 7.67 × 10−6 | T/A | 5.93 | 12/122 | 0.13 | |
S6_3042595 | 6 | CDW6.00 | 7.55 × 10−7 | G/A | 6.29 | 13/153 | 0.13 | |
S6_157412647 | 6.06 | CDW6.06 | 9.23 × 10−7 | T/G | 7.12 | 10/127 | 0.15 | |
S8_145231325 | 8.05 | CDW8.05 | 2.79 × 10−6 | T/G | 6.61 | 10/191 | 0.11 | |
S8_163741873 | 8.06 | CDW8.06 | 4.82 × 10−6 | C/T | 3.68 | 25/174 | 0.11 | |
S8_164558505 | 8.06 | CDW8.06 | 6.55 × 10−7 | A/G | 6.87 | 11/138 | 0.14 | |
Root dry weight | ||||||||
S3_10685613 | 3.03 | RDW3.03 | 1.18 × 10−5 | A/C | 2.68 | 73/116 | 0.1 | |
S10_127256724 | 10 | RDW10.00 | 1.47 × 10−5 | A/G | 3 | 51/119 | 0.11 | |
Coleoptile dry weight/Root dry weight ratio | ||||||||
S1_82154624 | 1.04 | CDW/RDW1.04 | 1.48 × 10−5 | G/A | 0.52 | 6/127 | 0.14 | |
S2_216786049 | 2.08 | CDW/RDW2.08 | 1.79 × 10−5 | T/G | 0.48 | 7/147 | 0.11 | |
S2_217507453 | 2.08 | CDW/RDW2.08 | 6.87 × 10−6 | T/A | 0.52 | 7/118 | 0.15 | |
S2_218777697 | 2.08 | CDW/RDW2.08 | 3.85 × 10−6 | A/G | 0.41 | 11/193 | 0.1 | |
S9_10122782 | 9.01 | CDW/RDW9.01 | 1.48 × 10−5 | T/A | 0.41 | 10/153 | 0.12 |
SNP a | Bin | QTL | p Value b | Allele c | Additive Effect d | Increase/ Decrease e | R² f | Previous Experiments with Co-Localizing QTLg |
---|---|---|---|---|---|---|---|---|
Germination | ||||||||
S1_281709337 | 1.1 | G1.1 | 6.63 × 10−6 | A/T | 8.27 | 116/31 | 0.15 | |
S4_18695379 | 4.03 | G4.03 | 8.67 × 10−7 | C/T | 13.06 | 209/12 | 0.12 | |
S4_18695411 | 4.03 | G4.03 | 8.67 × 10−7 | C/G | 13.06 | 209/12 | 0.12 | |
Coleoptile length | ||||||||
S6_158689148 | 6.06 | CL6.06 | 1.74 × 10−5 | C/T | 3.82 | 32/141 | 0.12 | |
Coleoptile length/Root length ratio | ||||||||
S1_42298404 | 1.03 | CL/RL1.03 | 4.38 × 10−6 | A/C | 0.19 | 9/165 | 0.1 | |
S1_279913636 | 1.1 | CL/RL1.1 | 1.38 × 10−5 | C/G | 0.15 | 14/130 | 0.11 | |
S2_19259124 | 2.03 | CL/RL2.03 | 1.28 × 10−7 | G/A | 0.22 | 10/197 | 0.12 | |
S3_165855897 | 3.05 | CL/RL3.05 | 1.22 × 10−5 | A/G | 0.2 | 8/149 | 0.12 | |
S6_62741341 | 6.01 | CL/RL6.01 | 2.29 × 10−5 | G/C | 0.11 | 32/218 | 0.12 | |
S7_140235159 | 7.03 | CL/RL7.03 | 1.11 × 10−6 | C/T | 0.16 | 11/168 | 0.1 | |
S7_161684211 | 7.04 | CL/RL7.04 | 1.40 × 10−5 | A/G | 0.13 | 23/109 | 0.07 | |
S8_13332626 | 8.02 | CL/RL8.02 | 1.64 × 10−5 | A/C | 0.22 | 7/129 | 0.14 | |
S8_159549553 | 8.06 | CL/RL8.06 | 8.90 × 10−6 | A/T | 0.12 | 20/232 | 0.12 | |
S8_171777809 | 8.08 | CL/RL8.08 | 9.84 × 10−6 | C/G | 0.27 | 5/122 | 0.12 | |
S10_18140694 | 10.03 | CL/RL10.03 | 5.14 × 10−6 | A/C | 0.19 | 9/165 | 0.13 | |
Coleoptile dry weight | ||||||||
S7_140235159 | 7.03 | CDW7.03 | 1.17 × 10−5 | A/G | 0.36 | 28/183 | 0.09 |
Lines | Grain Color | Pedigree | Type of Grain |
---|---|---|---|
EP17 a | Yellow | A1267 (Unknown location) e | Flint |
EP43 a | Yellow | Parderrubias (Atlantic Spain) e | Flint |
EP53 a | Yellow | Laro (Atlantic Spain) e | Flint |
EP86 a | Yellow | Nostrano dell’Isola (Italy) e | Flint |
PB130 b | Yellow | Rojo Vinoso de Aragón (Mediterranean Spain) e | Flint |
F473 c | White | Doré de Gomer (France) e | Flint |
EP125 a | Yellow | Selection from CO125 | Corn Belt Dent |
A509 d | Yellow | A78 × A109 | Corn Belt Dent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rida, S.; Maafi, O.; López-Malvar, A.; Revilla, P.; Riache, M.; Djemel, A. Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. Plants 2021, 10, 1786. https://doi.org/10.3390/plants10091786
Rida S, Maafi O, López-Malvar A, Revilla P, Riache M, Djemel A. Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. Plants. 2021; 10(9):1786. https://doi.org/10.3390/plants10091786
Chicago/Turabian StyleRida, Soumeya, Oula Maafi, Ana López-Malvar, Pedro Revilla, Meriem Riache, and Abderahmane Djemel. 2021. "Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize" Plants 10, no. 9: 1786. https://doi.org/10.3390/plants10091786
APA StyleRida, S., Maafi, O., López-Malvar, A., Revilla, P., Riache, M., & Djemel, A. (2021). Genetics of Germination and Seedling Traits under Drought Stress in a MAGIC Population of Maize. Plants, 10(9), 1786. https://doi.org/10.3390/plants10091786