Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector
Abstract
:1. Introduction
2. Results
2.1. HPLC–DAD Analysis
2.1.1. Optimization of HPLC–DAD Analytical Conditions
2.1.2. Method Validation of the Developed HPLC Assay
2.1.3. Quantification of the Five Markers in P. pubescens Leaves Samples by HPLC–DAD Analysis
2.2. LC–MS/MS Analysis
2.2.1. Optimization of LC–MS/MS Analytical Conditions
2.2.2. Validation of the LC–MS/MS MRM Analytical Method
2.2.3. Quantification of the Six Marker Components in P. pubescens Leaves by LC–MS/MS MRM Mode
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Materials and Preparation of 80% Ethanol Extract of P. pubescens Leaves
4.3. HPLC–DAD Analytical Conditions
4.4. LC–MS/MS Analytical Conditions
4.5. Preparation of Standard Solutions of Marker Analytes and Sample Solution
4.6. Method Validation of Developed HPLC–DAD Assay
4.7. Method Validation of the Developed LC–MS/MS MRM Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Tang, F.; Yue, Y.; Tao, X.; Wei, Q.; Yu, J. Simultaneous determination of 12 coumarins in bamboo leaves by HPLC. J. AOAC Int. 2013, 96, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Im, M.; Gu, M.J.; Ma, J.Y. Ethanol extract of Lophatheri Herba exhibits anti-cancer activity in human cancer cells by suppression of metastatic and angiogenic potential. Sci. Rep. 2016, 6, 36277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.H.; Guo, J.; Chen, S.H.; Yuan, X.R.; Zhang, T.; Ding, Y. Antioxidant and compositional HPLC analysis of three common bamboo leaves. Molecules 2020, 25, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bao, B.; Lu, B.; Ren, Y.; Tie, X.; Zhang, Y. Determination of flavone C-glucosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection. J. Chromatogr. A 2005, 1065, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bai, M.; Qin, Y.; Liu, B.; Wang, Y.; Zhou, Y. Application of ionic liquid-based ultrasonic-assisted extraction of flavonoids from bamboo leaves. Molecules 2018, 23, 2309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Zhu, D.; Wang, C.; Zhang, Y.; Shang, Y.; Liu, F.; Ye, T.; Chen, X.; Wei, Z. Simultaneous and fast separation of three chlorogenic acids and two flavonoids from bamboo leaves extracts using zirconia. Food Chem. Toxicol. 2018, 119, 375–379. [Google Scholar] [CrossRef]
- Wang, C.Z.; Zhang, H.Y.; Li, W.J.; Ye, J.Z. Chemical constituents and structural characterization of polysaccharides from four typical bamboo species leaves. Molecules 2015, 20, 4162–4179. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, K.; Cao, Q.; Sun, J.; Xia, Y.; Wang, Y.; Li, W.; Ma, C.; Liu, S. Homogenate-assisted vacuum-powered bubble extraction of moso bamboo flavonoids for on-line scavenging free radical capacity analysis. Molecules 2017, 22, 1156. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yue, Y.; Jiang, H.; Tang, F. Rapid screening for flavone C-glycosides in the leaves of different species of bamboo and simultaneous quantitation of four marker compounds by HPLC-UV/DAD. Int. J. Anal. Chem. 2012, 2012, 205201. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.H.; Hwang, S.Y.; Han, J.S. Bamboo (Phyllostachys bambusoides) leaf extracts inhibit adipogenesis by regulating adipogenic transcription factors and enzymes in 3T3-L1 adipocytes. Food Sci. Biotechnol. 2017, 26, 1037–1044. [Google Scholar] [CrossRef]
- Liao, M.; Ren, X.; Gao, Q.; Liu, N.; Tang, F.; Wang, G.; Cao, H. Anti-fungal activity of moso bamboo (Phyllostachys pubescens) leaf extract and its development into a botanical fungicide to control pepper phytophthora blight. Sci. Rep. 2021, 11, 4146. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, S.H.; Cha, J. Antiobesity effects of the combined plant extracts varying the combination ratio of Phyllostachys pubescens leaf extract and Scutellaria baicalensis root extract. Evid. Based Complement. Alternat. Med. 2016, 2016, 9735276. [Google Scholar] [PubMed] [Green Version]
- Cho, E.; Kim, S.; Na, I.; Dim, D.C.; In, M.J.; Chae, H.J. Antioxidant and anticoagulant activities of water and ethanol extracts of Phyllostachys pubescence leaf produced in Geoje. J. Appl. Biol. Chem. 2010, 53, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.H.; Hu, X.Q.; Hu, M.J.; Pan, X.K.; Lu, H.G.; Chen, B.; Wu, B.; Chen, G. Activation of AKT signaling via small molecule natural compound prevents against osteoblast apoptosis and osteonecrosis of the femoral head. Am. J. Transl. Res. 2020, 12, 7211–7222. [Google Scholar]
- Song, K.H.; Seo, C.S.; Yang, W.K.; Gu, H.O.; Kim, K.J.; Kim, S.H. Extracts of Phyllostachys pubescens leaves represses human steroid 5-alpha reductase type 2 promoter activity in BPH-1 cells and ameliorates testosterone-induced benign prostatic hyperplasia in rat model. Nutrients 2021, 13, 884. [Google Scholar] [CrossRef]
- Jin, Y.C.; Yin, L.; Ke, Y. A novel high-performance liquid chromatography fingerprint approach to discriminate Phyllostachys pubescens from China. Pharmacogn. Mag. 2012, 8, 42–48. [Google Scholar]
- Liang, F.; Wang, R.; Xiang, H.; Tang, X.; Zhang, T.; Hu, W.; Mi, B.; Liu, Z. Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS. Bioresour. Technol. 2018, 256, 53–60. [Google Scholar] [CrossRef]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The applications and features of liquid chromatography-mass spectrometry in the analysis of traditional Chinese medicine. Evid. Based Complement. Altern. Med. 2016, 2016, 3837270. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, A.; Yan, G.; Han, Y.; Sun, H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. TrAC Trends Anal. Chem. 2014, 63, 180–187. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Y.D.; Tang, F.; Sun, J. Screening and analysis of the potential bioactive components in rabbit plasma after oral administration of hot-water extracts from leaves of Bambusa textilis McClure. Molecules 2012, 17, 8872–8885. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chen, Y.; Shi, P.; Hu, J.; Li, S.; Huang, L.; Lin, J.; Lin, X. Screening and quantitative analysis of antioxidants in the fruits of Livistona chinensis R. Br using HPLC-DAD-ESI/MS coupled with pre-column DPPH assay. Food Chem. 2012, 135, 2802–2807. [Google Scholar] [PubMed]
- Li, X.; Xiong, Z.; Ying, X.; Cui, L.; Zhu, W.; Li, F. A rapid ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometric method for the qualitative and quantitative analysis of the constituents of the flower of Trollius ledibouri Reichb. Anal. Chim. Acta 2006, 580, 170–180. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, H.; Yuan, K. Simultaneous determination of seven effective constituents in the leaves of bamboo by reversed phase high performance liquid chromatography (RP-HPLC). J. Med. Plants Res. 2011, 5, 5630–5635. [Google Scholar]
Analyte | Quantification Wavelength (nm) | Linear Range (μg/mL) | Regression Equation a | r2 | LOD b (μg/mL) | LOQ c (μg/mL) |
---|---|---|---|---|---|---|
Chlorogenic acid | 325 | 0.31–20.00 | y = 34,768.31x + 404.96 | 1.0000 | 0.03 | 0.09 |
Isoorientin | 350 | 0.78–50.00 | y = 38,934.35x + 46.76 | 1.0000 | 0.10 | 0.29 |
Orientin | 350 | 0.31–20.00 | y = 35,868.34x + 13.07 | 1.0000 | 0.04 | 0.13 |
Isovitexin | 335 | 0.31–20.00 | y = 37,242.75x + 481.66 | 1.0000 | 0.04 | 0.13 |
p-Coumaric acid | 310 | 0.31–20.00 | y = 96,763.89x + 1244.28 | 1.0000 | 0.03 | 0.09 |
Analyte | Spiked Conc. (μg/mL) | Measured Conc. (μg/mL) | Recovery (%) | SD | RSD (%) |
---|---|---|---|---|---|
Chlorogenic acid | 1.00 | 0.99 | 99.23 | 2.06 | 2.08 |
2.00 | 1.97 | 98.69 | 1.18 | 1.19 | |
4.00 | 3.93 | 98.21 | 0.51 | 0.52 | |
Isoorientin | 2.00 | 1.90 | 95.22 | 1.39 | 1.46 |
5.00 | 4.90 | 97.94 | 0.72 | 0.74 | |
10.00 | 9.83 | 98.27 | 0.73 | 0.75 | |
Orientin | 1.00 | 0.97 | 96.72 | 1.56 | 1.61 |
2.00 | 1.93 | 96.66 | 1.52 | 1.57 | |
4.00 | 3.89 | 97.30 | 0.28 | 0.29 | |
Isovitexin | 1.00 | 0.98 | 98.05 | 2.18 | 2.22 |
2.00 | 1.95 | 97.69 | 1.47 | 1.50 | |
4.00 | 3.88 | 96.99 | 1.29 | 1.33 | |
p-Coumaric acid | 1.00 | 1.01 | 101.17 | 0.93 | 0.92 |
2.00 | 2.03 | 101.29 | 0.96 | 0.95 | |
4.00 | 3.94 | 98.40 | 1.58 | 1.61 |
Analyte | Conc. (μg/mL) | Intra-Day (n = 5) | Inter-Day (n = 5) | ||||
---|---|---|---|---|---|---|---|
Measured Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | Measured Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | ||
Cholrogenic acid | 5.00 | 5.02 | 0.52 | 100.41 | 5.09 | 1.38 | 101.75 |
10.00 | 10.03 | 0.92 | 100.29 | 10.14 | 1.24 | 101.43 | |
20.00 | 20.03 | 0.37 | 100.17 | 20.33 | 1.24 | 101.64 | |
Isoorientin | 12.50 | 12.56 | 0.53 | 100.47 | 12.75 | 1.48 | 102.00 |
25.00 | 25.06 | 0.83 | 100.24 | 25.36 | 1.26 | 101.44 | |
50.00 | 50.08 | 0.37 | 100.15 | 50.88 | 1.36 | 101.76 | |
Orientin | 5.00 | 5.01 | 0.62 | 100.28 | 5.09 | 1.50 | 101.81 |
10.00 | 10.00 | 0.68 | 100.01 | 10.13 | 1.21 | 101.27 | |
20.00 | 20.02 | 0.25 | 100.12 | 20.34 | 1.35 | 101.72 | |
Isovitexin | 5.00 | 5.04 | 0.31 | 100.80 | 5.11 | 1.39 | 102.22 |
10.00 | 10.03 | 0.75 | 100.34 | 10.15 | 1.24 | 101.50 | |
20.00 | 20.04 | 0.31 | 100.21 | 20.36 | 1.35 | 101.82 | |
p-Coumaric acid | 5.00 | 5.02 | 0.36 | 100.48 | 5.10 | 1.40 | 102.00 |
10.00 | 10.03 | 0.78 | 100.33 | 10.15 | 1.25 | 101.51 | |
20.00 | 20.02 | 0.28 | 100.11 | 20.33 | 1.29 | 101.67 |
Compound | Batch 1 | Batch 2 | Batch 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (mg/g) | SD × 10−1 | RSD (%) | Mean (mg/g) | SD × 10−1 | RSD (%) | Mean (mg/g) | SD × 10−1 | RSD (%) | |
Chlorogenic acid | 1.71 | 0.08 | 0.44 | 1.85 | 0.16 | 0.84 | 1.78 | 0.17 | 0.95 |
Isoorientin | 10.94 | 0.18 | 0.16 | 11.63 | 0.23 | 0.20 | 11.29 | 0.30 | 0.27 |
Orientin | 3.06 | 0.03 | 0.09 | 3.25 | 0.09 | 0.29 | 3.15 | 0.02 | 0.07 |
Isovitexin | 4.36 | 0.15 | 0.34 | 4.65 | 0.06 | 0.12 | 4.51 | 0.09 | 0.20 |
p-Coumaric acid | 2.13 | 0.04 | 0.17 | 2.27 | 0.07 | 0.30 | 2.20 | 0.10 | 0.44 |
Analyte | Ion Mode | Molecular Weight | MRM Transition | Cone Voltage (V) | Collision Energy (eV) | Retention Time (min) |
---|---|---|---|---|---|---|
Chlorogenic acid | − | 354.1 | 353.2 → 191.0 | 20 | 20 | 10.17 |
p-Coumaric acid | + | 164.0 | 165.0 → 147.0 | 20 | 10 | 14.10 |
Isoorientin | − | 448.1 | 447.2 → 327.1 | 45 | 25 | 18.27 |
Orientin | − | 448.1 | 447.2 → 327.1 | 45 | 25 | 18.60 |
Vitexin | − | 432.1 | 431.2 → 311.1 | 45 | 15 | 20.56 |
Isovitexin | − | 432.1 | 431.2 → 311.1 | 45 | 15 | 21.12 |
Analyte | Linear Range (ng/mL) | Regression Equation a | r2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
Chlorogenic acid | 75.00–1200.00 | y = 125.51x − 880.85 | 0.9976 | 3.00 | 8.90 |
p-Coumaric acid | 75.00–1200.00 | y = 81.33x + 258.47 | 0.9972 | 12.00 | 36.10 |
Isoorientin | 750.00–1200.00 | y = 137.42x + 109,104.00 | 0.9954 | 1.00 | 3.00 |
Orientin | 200.00–3200.00 | y = 62.79x + 1809.43 | 0.9980 | 14.90 | 44.80 |
Vitexin | 40.00–640.00 | y = 277.01x + 773.67 | 0.9998 | 0.80 | 2.40 |
Isovitexin | 200.00–3200.00 | y = 12.27x − 7.50 | 0.9998 | 16.20 | 48.60 |
Analyte | Spiked Amount (ng/mL) | Found Amount (ng/mL) | Recovery (%) | SD | RSD (%) |
---|---|---|---|---|---|
Chlorogenic acid | 300 | 299.56 | 99.85 | 2.62 | 2.62 |
600 | 623.52 | 103.92 | 1.21 | 1.17 | |
1200 | 1259.64 | 104.97 | 1.58 | 1.50 | |
p-Coumaric acid | 300 | 296.46 | 98.82 | 4.48 | 4.54 |
600 | 627.02 | 104.50 | 4.42 | 4.23 | |
1200 | 1255.80 | 104.65 | 2.41 | 2.30 | |
Isoorientin | 3000 | 3151.78 | 105.06 | 2.33 | 2.22 |
6000 | 7128.88 | 118.81 | 1.11 | 0.94 | |
12,000 | 13,405.70 | 111.71 | 2.00 | 1.79 | |
Orientin | 800 | 798.62 | 99.83 | 1.32 | 1.32 |
1600 | 1689.00 | 105.56 | 1.25 | 1.18 | |
3200 | 3395.94 | 106.12 | 2.12 | 2.00 | |
Vitexin | 160 | 154.50 | 96.56 | 2.21 | 2.29 |
320 | 332.22 | 103.82 | 2.13 | 2.05 | |
640 | 681.10 | 106.42 | 2.20 | 2.07 | |
Isovitexin | 800 | 778.50 | 97.31 | 2.58 | 2.65 |
1600 | 1608.16 | 100.51 | 2.45 | 2.44 | |
3200 | 3331.50 | 104.11 | 1.25 | 1.20 |
Analyte | Conc. (μg/mL) | Intraday (n = 5) | Interday (n = 5) | Repeatability (n = 6) | |||||
---|---|---|---|---|---|---|---|---|---|
Observed Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | Observed Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | RSD (%) of Retention Time | RSD (%) of Peak Area | ||
Chlorogenic acid | 300 | 281.30 | 1.96 | 93.77 | 297.70 | 2.00 | 99.23 | 0.07 | 0.61 |
600 | 615.06 | 0.38 | 102.51 | 624.70 | 0.61 | 104.12 | |||
1200 | 1289.38 | 0.48 | 107.45 | 1264.40 | 0.90 | 105.37 | |||
p-Coumaric acid | 300 | 311.40 | 1.95 | 103.71 | 302.00 | 3.61 | 100.66 | 0.08 | 3.76 |
600 | 630.24 | 2.21 | 105.04 | 620.10 | 2.60 | 103.35 | |||
1200 | 1259.64 | 3.03 | 104.97 | 1249.6 | 3.00 | 104.13 | |||
Isoorientin | 3000 | 2989.90 | 3.03 | 99.66 | 3107.00 | 2.54 | 103.57 | 0.02 | 0.73 |
6000 | 6894.80 | 0.65 | 114.91 | 7017.80 | 0.71 | 116.96 | |||
12,000 | 13,647.06 | 1.48 | 113.73 | 13,531.4 | 1.58 | 112.76 | |||
Orientin | 800 | 760.34 | 2.21 | 95.04 | 776.50 | 1.38 | 97.06 | 0.08 | 1.94 |
1600 | 1660.46 | 3.78 | 103.78 | 1674.90 | 2.10 | 104.68 | |||
3200 | 3514.78 | 1.33 | 109.84 | 3421.20 | 1.27 | 106.91 | |||
Vitexin | 160 | 153.32 | 3.85 | 95.83 | 154.80 | 2.29 | 96.77 | 0.03 | 0.93 |
320 | 335.36 | 2.88 | 104.80 | 334.90 | 2.50 | 104.65 | |||
640 | 696.22 | 1.21 | 108.78 | 683.30 | 1.43 | 106.76 | |||
Isovitexin | 800 | 724.14 | 1.52 | 90.52 | 762.90 | 1.58 | 95.37 | 0.03 | 0.82 |
1600 | 1657.38 | 3.15 | 106.59 | 1654.10 | 2.08 | 103.38 | |||
3200 | 3476.34 | 1.34 | 108.64 | 3362.30 | 1.01 | 105.07 |
Analyte | Amount | ||
---|---|---|---|
Mean (mg/g) | SD (×10−1) | RSD (%) | |
Chlorogenic acid | 1.74 | 0.03 | 0.17 |
p-Coumaric acid | 1.76 | 0.26 | 1.49 |
Isoorientin | 9.33 | 0.35 | 0.37 |
Orientin | 3.95 | 0.24 | 0.62 |
Vitexin | 0.12 | 0.04 | 3.50 |
Isovitexin | 19.20 | 1.00 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Song, K.-H. Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector. Plants 2022, 11, 50. https://doi.org/10.3390/plants11010050
Seo C-S, Song K-H. Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector. Plants. 2022; 11(1):50. https://doi.org/10.3390/plants11010050
Chicago/Turabian StyleSeo, Chang-Seob, and Kwang-Hoon Song. 2022. "Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector" Plants 11, no. 1: 50. https://doi.org/10.3390/plants11010050
APA StyleSeo, C. -S., & Song, K. -H. (2022). Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector. Plants, 11(1), 50. https://doi.org/10.3390/plants11010050