Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis
Abstract
:1. Introduction
2. Results
2.1. Assemblies and Annotations of Chloroplast Genomes
2.2. Unique Genes of the Chloroplast Genomes
2.3. Phylogenetic Analysis Based on the Concatenation Method
2.4. Phylogenetic Analysis Based on Coalescence Method
3. Discussion
4. Materials and Methods
4.1. Data Sets
4.2. Chloroplast Genomes Assembly and Gene Annotation
4.3. Analysis of Unique Chloroplast Genes
4.4. Phylogeny Analysis Based on Concatenation Method
4.5. Phylogeny Analysis Based on Coalescence Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, X. Annamocarya Sinensis, a Rare Species of Guizhou, China. For. By-Prod. Spec. China 2002, 2, 63. [Google Scholar]
- Zhang, Z.Y.; Pang, X.M.; Han, J.W.; Wang, Y.; Li, Y.Y. Conservation Genetics of Annamocarya Sinensis (Dode) Leroy, an Endangered Endemic Species. Genet. Mol. Res. 2013, 12, 3965–3974. [Google Scholar] [CrossRef] [PubMed]
- Grauke, L.J.; Wood, B.; Payne, J. Genetic Resources of Carya in Vietnam and China. Ann. Report Northern Nut Growers Assoc. 1991, 82, 80–87. [Google Scholar]
- Manning, W.E.; Hjelmqvist, H. Annamocarya, Rhamphocarya, and Carya Sinensis. Botaniska Notiser. 1951, 4, 319–330. [Google Scholar]
- Chevalier, A. Variabilité Et Hybridité Chez Les Noyers. Notes Sur Des Juglans Peu Connus, Sur L’annamocarya Et Un Carya D’indochine. Rev. Bot. Appl. d’Agric. Coloniale 1941, 21, 241. [Google Scholar] [CrossRef]
- Manos, P.S.; Stone, D.E. Evolution, Phylogeny, and Systematics of the Juglandaceae. Ann. Mo. Bot. Gard. 2001, 88, 231–269. [Google Scholar] [CrossRef]
- Leroy, J.F. Etude sur les Juglandaceae: A la Recherche d’une Concepcion Morphologique de la Fleur Femelle et du Fruit; Éditions du Muséum: Paris, France, 1955. [Google Scholar]
- Li, R.; Chen, Z.; Lu, A.; Soltis, D.E.; Soltis, P.S.; Manoss, P.S. Phylogenetic Relationships in Fagales Based on DNA Sequences from Three Genomes. Int. J. Plant Sci. 2004, 165, 311–324. [Google Scholar] [CrossRef]
- Manos, P.S.; Soltis, P.S.; Soltis, D.E.; Manchester, S.R.; Oh, S.-H.; Bell, C.D.; Dilcher, D.L.; Stone, D.E. Phylogeny of Extant and Fossil Juglandaceae Inferred from the Integration of Molecular and Morphological Data Sets. Syst. Biol. 2007, 56, 412–430. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Li, R.-Q.; Xiang, X.-G.; Manchester, S.R.; Lin, L.; Wang, W.; Wen, J.; Chen, Z.-D. Integrated Fossil and Molecular Data Reveal the Biogeographic Diversification of the Eastern Asian-Eastern North American Disjunct Hickory Genus (Carya Nutt.). PLoS ONE 2013, 8, e70449. [Google Scholar] [CrossRef]
- Leebens-Mack, J.; Raubeson, L.A.; Cui, L.; Kuehl, J.V.; Fourcade, M.H.; Chumley, T.W.; Boore, J.L.; Jansen, R.K.; Claude, W.; DePamphilis, C.W. Identifying the Basal Angiosperm Node in Chloroplast Genome Phylogenies: Sampling One’s Way out of the Felsenstein Zone. Mol. Biol. Evol. 2005, 22, 1948–1963. [Google Scholar] [CrossRef]
- Alzahrani, D.A.; Yaradua, S.S.; Albokhari, E.J.; Abba, A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genom. 2020, 21, 393. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Gui, S.; Quan, Z.; Pan, L.; Wang, S.; Ke, W.; Liang, D.; Ding, Y. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: Insight into the plastid evolution of basal eudicots. BMC Plant Biol. 2014, 14, 289. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Liao, R.; Yang, T.; Dong, X.; Lan, D.; Qin, R.; Liu, H. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genom. 2020, 21, 621. [Google Scholar] [CrossRef] [PubMed]
- Rabiee, M.; Sayyari, E.; Mirarab, S. Multi-Allele Species Reconstruction Using Astral. Mol. Phylogenet. Evol. 2019, 130, 286–296. [Google Scholar] [CrossRef]
- Roch, S.; Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 2015, 100, 56–62. [Google Scholar] [CrossRef]
- Sayyari, E.; Mirarab, S. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Mol. Biol. Evol. 2016, 33, 1654–1668. [Google Scholar] [CrossRef]
- Xi, Z.; Liu, L.; Rest, J.S.; Davis, C.C. Coalescent Versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies. Syst. Biol. 2014, 63, 919–932. [Google Scholar] [CrossRef]
- Kubatko, L.S.; Degnan, J.H. Inconsistency of Phylogenetic Estimates from Concatenated Data under Coalescence. Syst. Biol. 2007, 56, 17–24. [Google Scholar] [CrossRef]
- Simmons, M.P.; Gatesy, J. Coalescence Vs. Concatenation: Sophisticated Analyses Vs. First Principles Applied to Rooting the Angiosperms. Mol. Phylogenet. Evol. 2015, 91, 98–122. [Google Scholar] [CrossRef]
- Edwards, S.V.; Xi, Z.; Janke, A.; Faircloth, B.; McCormack, J.E.; Glenn, T.C.; Zhong, B.; Wu, S.; Lemmon, E.M.; Lemmon, A.R.; et al. Implementing and testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 2016, 94, 447–462. [Google Scholar] [CrossRef]
- Gonçalves, D.J.; Simpson, B.B.; Ortiz, E.M.; Shimizu, G.H.; Jansen, R.K. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 2019, 138, 219–232. [Google Scholar] [CrossRef]
- Xi, Z.; Rest, J.S.; Davis, C.C. Phylogenomics and Coalescent Analyses Resolve Extant Seed Plant Relationships. PLoS ONE 2013, 8, e80870. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Ye, L.; Fu, C.; Wang, Y.; Liu, J.; Gao, L.-M. Characterization of the complete plastid genome of a Chinese endemic species Carya kweichowensis. Mitochondrial DNA Part B 2018, 3, 492–493. [Google Scholar] [CrossRef]
- Favre, F.; Jourda, C.; Besse, P.; Charron, C. Genotyping-by-Sequencing Technology in Plant Taxonomy and Phylogeny. In Molecular Plant Taxonomy; Humana: New York, NY, USA, 2020; pp. 167–178. [Google Scholar]
- Huang, Y.; Xiao, L.; Zhang, Z.; Zhang, R.; Wang, Z.; Huang, C.; Huang, R.; Luan, Y.; Fan, T.; Wang, J.; et al. The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience 2019, 8, giz036. [Google Scholar] [CrossRef]
- Wang, X.; Rhein, H.S.; Jenkins, J.; Schmutz, J.; Grimwood, J.; Grauke, L.J.; Randall, J.J. Chloroplast Genome Sequences of Carya Illinoinensis from Two Distinct Geographic Populations. Tree Genet. Genomes 2020, 16, 48. [Google Scholar] [CrossRef]
- Mu, X.-Y.; Tong, L.; Sun, M.; Zhu, Y.-X.; Wen, J.; Lin, Q.-W.; Liu, B. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Mol. Phylogenet. Evol. 2020, 147, 106802. [Google Scholar] [CrossRef] [PubMed]
- Salas-Leiva, D.E.; Meerow, A.W.; Calonje, M.; Griffith, M.P.; Francisco-Ortega, J.; Nakamura, K.; Stevenson, D.W.; Lewis, C.E.; Namoff, S. Phylogeny of the Cycads Based on Multiple Single-Copy Nuclear Genes: Congruence of Concatenated Parsimony, Likelihood and Species Tree Inference Methods. Ann. Bot. 2013, 112, 1263–1278. [Google Scholar] [CrossRef]
- CNCB-NGDC Members and Partners. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2021. [Google Scholar] [CrossRef]
- Chen, M.; Ma, Y.; Wu, S.; Zheng, X.; Kang, H.; Sang, J.; Xu, X.; Hao, L.; Li, Z.; Gong, Z.; et al. Genome Warehouse: A Public Repository Housing Genome-scale Data. Genom. Proteom. Bioinform. 2021. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, H. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics 2012, 28, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; Depamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. Orthofinder: Solving Fundamental Biases in Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Katoh, K.; Asimenos, G.; Toh, H. Multiple Alignment of DNA Sequences with Mafft. Methods Mol. Biol. 2009, 537, 39–64. [Google Scholar]
- Katoh, K.; Standley, D.M. Mafft Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. Iq-Tree 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fasttree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Moore, M.J.; Brown, J.W.; Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 2015, 15, 150. [Google Scholar] [CrossRef] [PubMed]
Species | LSC | SSC | IR | Total Length | GC Content(%) |
---|---|---|---|---|---|
Carya aquatica | 89,966 | 18,791 | 26,003 | 160,763 | 36.16 |
Carya cordiformis | 89,992 | 18,798 | 26,003 | 160,796 | 36.15 |
Carya dabieshanensis | 89,508 | 18,861 | 25,834 | 160,037 | 36.20 |
Carya glabra | 89,888 | 18,786 | 25,989 | 160,652 | 36.18 |
Carya laciniosa | 89,927 | 18,842 | 26,001 | 160,771 | 36.17 |
Carya myristiciformis | 89,990 | 18,792 | 26,003 | 160,788 | 36.15 |
Carya ovata | 89,930 | 18,809 | 25,994 | 160,727 | 36.17 |
Carya palmeri | 89,818 | 18,778 | 26,004 | 160,604 | 36.18 |
Carya texana | 89,964 | 18,793 | 25,994 | 160,745 | 36.17 |
Carya tomentosa | 89,988 | 18,792 | 26,002 | 160,784 | 36.16 |
Species | Genome Size (bp) | Coding Gene Number | tRNA Genes | rRNA Genes | CDS Total Length (bp) | CDS GC Content (%) |
---|---|---|---|---|---|---|
A. sinensis | 158,484 | 79 | 35 | 8 | 68,261 | 37.26 |
B. platyphylla | 160,518 | 84 | 37 | 8 | 78,972 | 37.43 |
C. aquatica | 160,763 | 79 | 37 | 8 | 68,673 | 37.24 |
C. cathayensis | 160,666 | 80 | 36 | 8 | 69,595 | 37.22 |
C. cordiformis | 160,796 | 79 | 37 | 8 | 68,673 | 37.24 |
C. dabieshanensis | 160,037 | 80 | 37 | 8 | 69,250 | 37.24 |
C. glabra | 160,652 | 79 | 37 | 8 | 68,674 | 37.25 |
C. hunanensis | 160,397 | 80 | 36 | 8 | 69,449 | 37.21 |
C. illinoinensis | 160,819 | 79 | 37 | 8 | 68,673 | 37.25 |
C. kweichowensis | 175,313 | 79 | 38 | 8 | 68,314 | 37.27 |
C. laciniosa | 160,771 | 79 | 37 | 8 | 68,672 | 37.26 |
C. myristiciformis | 160,788 | 79 | 37 | 8 | 68,673 | 37.24 |
C. ovata | 160,727 | 79 | 37 | 8 | 68,680 | 37.26 |
C. palmeri | 160,604 | 79 | 37 | 8 | 68,673 | 37.25 |
C. texana | 160,745 | 79 | 37 | 8 | 68,674 | 37.25 |
C. tomentosa | 160,784 | 79 | 37 | 8 | 68,673 | 37.25 |
Cy. paliurus | 160,562 | 89 | 40 | 8 | 81,015 | 37.19 |
J. cathayensis | 159,730 | 87 | 40 | 8 | 80,331 | 37.26 |
J. cinerea | 160,288 | 84 | 37 | 8 | 78,333 | 37.26 |
J. hopeiensis | 159,714 | 86 | 40 | 8 | 80,259 | 37.27 |
J. major | 160,276 | 83 | 37 | 8 | 77,970 | 37.2 |
J. nigra | 160,274 | 83 | 37 | 8 | 77,958 | 37.21 |
J. regia | 160,370 | 83 | 37 | 8 | 77,979 | 37.2 |
P. strobilacea | 160,994 | 85 | 36 | 8 | 78,915 | 37.18 |
Pt. hupehensis | 159,770 | 89 | 40 | 8 | 81,315 | 37.2 |
Pt. stenoptera | 160,202 | 89 | 40 | 8 | 81,021 | 37.23 |
Fuctional Groups | Name of Genes |
---|---|
Ribosomal protein small subunit | rps2, rps3, rps4, rps8, rps11, rps14, rps18 |
Ribosomal protein large subunit | rpl14, rpl20, rpl22, rpl32, rpl33 |
Subunits of RNA polymerase | rpoA, rpoB, rpoC1, rpoC2 |
Photosystcm I | psaA, psaB, psaI, psaJ |
Photosystem II | psbA, psbC, psbD, psbE, psbH, psbJ, psbK, psbL, psbM, psbT |
Cythochrome b/f complex | petA, petG, petL, petN |
ATP synthase | atpA, atpB, atpE, atpF, atpH, atpI |
NADH-dehydrogenase | ndhC, ndhF, ndhJ, ndhK |
Large subunit Rubisco | rbcL |
Acetyl-CoA carboxylase | accD |
Maturase | matk |
Inner membrane protein | cemA |
Conserved open reading frames | ycf3, ycf4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Chen, J.; Guo, W.; Yang, Z.; Lim, K.-J.; Wang, Z. Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis. Plants 2022, 11, 52. https://doi.org/10.3390/plants11010052
Luo J, Chen J, Guo W, Yang Z, Lim K-J, Wang Z. Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis. Plants. 2022; 11(1):52. https://doi.org/10.3390/plants11010052
Chicago/Turabian StyleLuo, Jie, Junhao Chen, Wenlei Guo, Zhengfu Yang, Kean-Jin Lim, and Zhengjia Wang. 2022. "Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis" Plants 11, no. 1: 52. https://doi.org/10.3390/plants11010052
APA StyleLuo, J., Chen, J., Guo, W., Yang, Z., Lim, K. -J., & Wang, Z. (2022). Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis. Plants, 11(1), 52. https://doi.org/10.3390/plants11010052