Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variation in Chemical Composition of BE, CH, SA, and BA Rhizomes Essential Oils
2.2. Discrimination of Z. officinale Oil Varieties via Principal Component Analysis (PCA)
2.3. Antiproliferative Evaluation
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation and Isolation of Essential Oil
3.3. Chromatographic Condition
3.4. Data Handling and Statistical Analysis
3.5. Cell Culture
3.6. Cell Viability Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, S.; Mullick, H.I.; Banerjee, J.; Ghosh, A.K. Zingiber officinale: A natural gold. Int. J. Pharma Bio Sci. 2011, 2, 283–294. [Google Scholar]
- Mahdi, H.J.; Andayani, R. Ishak Metabolic fingerprinting of three Malaysian ginger (Zingiber officinale Roscoe) using gas chromatography-mass spectrometry. Am. J. Appl. Sci. 2010, 7, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Pawar, N.; Pai, S.; Nimbalkar, M.; Dixit, G. RP-HPLC Analysis of phenolic antioxidant compound 6-gingerol from different ginger cultivars. Food Chem. 2011, 126, 1330–1336. [Google Scholar] [CrossRef]
- Yadav, R.K.; Yadav, D.S.; Rai, N.; Sanwal, S.K.; Sarma, P. Commercial prospects of ginger cultivation in North-Eastern region. ENVIS Bull. Himal. Ecol. 2004, 12, 1–5. [Google Scholar]
- Yudthavorasit, S.; Wongravee, K.; Leepipatpiboon, N. Characteristic fingerprint based on gingerol derivative analysis for discrimination of ginger (Zingiber officinale) according to geographical origin using HPLC-DAD combined with chemometrics. Food Chem. 2014, 158, 101–111. [Google Scholar] [CrossRef]
- Mesomo, M.C.; Scheer, A.D.P.; Perez, E.; Ndiaye, P.M.; Corazza, M.L. Ginger (Zingiber officinale R.) extracts obtained using supercritical CO2 and compressed propane: Kinetics and antioxidant activity evaluation. J. Supercrit. Fluids 2012, 71, 102–109. [Google Scholar] [CrossRef]
- Sharma, P.K.; Singh, V.; Ali, M.; Kumar, S. Effect of ethanolic extract of Zingiber officinale Roscoe on central nervous system activity in mice. Indian J. Exp. Biol. 2016, 54, 664–669. [Google Scholar]
- Bode, A.M.; Dong, Z. The amazing and mighty ginger. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 131–156. ISBN 9781439807163. [Google Scholar]
- Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytosci. 2019, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Munda, S.; Dutta, S.; Haldar, S.; Lal, M. Chemical analysis and therapeutic uses of ginger (Zingiber officinale Rosc.) essential oil: A review. J. Essent. Oil-Bear. Plants 2018, 21, 994–1002. [Google Scholar] [CrossRef]
- Suhaimi, M.Y.; Mohamad, A.M.; Hani, M.N.F. Potential and viability analysis for ginger cultivation using fertigation technology in Malaysia. Int. J. Innov. Appl. Stud. 2014, 9, 421–427. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suciyati, S.W.; Adnyana, I.K. Red ginger (Zingiber officinale Roscoe var Rubrum): A review. Pharmacol. Online 2017, 2, 60–65. [Google Scholar]
- Zhang, S.; Kou, X.; Zhao, H.; Mak, K.-K.; Balijepalli, M.K.; Pichika, M.R. Zingiber officinale var. rubrum: Red ginger’s medicinal uses. Molecules 2022, 27, 775. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Whelan, R.J.; Pattnaik, B.R.; Ludwig, K.; Subudhi, E.; Rowland, H.; Claussen, N.; Zucker, N.; Uppal, S.; Kushner, D.M.; et al. Terpenoids from Zingiber officinale (ginger) induce apoptosis in endometrial cancer cells through the activation of P53. PLoS ONE 2012, 7, e53178. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, R.A. Anticancer properties of Zingiber officinale–ginger: A review. Int. J. Med. Pharm. Sci. 2013, 3, 11–20. [Google Scholar]
- Cheng, X.L.; Liu, Q.; Peng, Y.B.; Qi, L.W.; Li, P. steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential. Food Chem. 2011, 129, 1785–1792. [Google Scholar] [CrossRef]
- Jeena, K.; Liju, V.B.; Kuttan, R. Antitumor and cytotoxic activity of ginger essential oil (zingiber officinale Roscoe). Int. J. Pharm. Pharm. Sci. 2015, 7, 341–344. [Google Scholar]
- Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.B.; Lobaccaro, J.M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Osanloo, M.; Ghanbariasad, A.; Taghinezhad, A. Antioxidant and anticancer activities of Anethum graveolens L., Citrus limon (L.) Osbeck and Zingiber officinale Roscoe essential oils. Tradit. Integr. Med. 2022, 6, 333–347. [Google Scholar] [CrossRef]
- Nishimura, O. Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography-mass spectroscopy. J. Agric. Food Chem. 1995, 43, 2941–2945. [Google Scholar] [CrossRef]
- Jirovetz, L.; Buchbauer, G.; Shafi, M.P.; Leela, N.K. Analysis of the essential oils of the leaves, stems, rhizomes and roots of the medicinal plant Alpinia galanga from Southern India. Acta Pharm. 2003, 53, 73–81. [Google Scholar] [PubMed]
- Adam, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 10–788. [Google Scholar]
- Cornwell, C.P. Notes on the composition of patchouli oil (Pogostemon cablin (Blanco) Benth.). J. Essent. Oil Res. 2010, 22, 360–364. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Joo, J.H.; Jetten, A.M. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010, 287, 123–135. [Google Scholar] [CrossRef] [Green Version]
- Höferl, M.; Stoilova, I.; Wanner, J.; Schmidt, E.; Jirovetz, L.; Trifonova, D.; Stanchev, V.; Krastanov, A. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat. Prod. Commun. 2015, 10, 672. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.; Saleh-e-In, M.; Rahim, M.; Bhuiyan, M.; Sultana, N.; Ahsan, M.; Ahmed, S.; Siraj, S.; Rahman, M.; Roy, S. Quality composition and biological significance of the Bangladeshi and China ginger (Zingiber officinale Rosc.). J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2283–2290. [Google Scholar]
- Ekundayo, O.; Laakso, I.; Hiltunen, R. Composition of ginger (Zingiber officinale Roscoe) volatile oils from Nigeria. Flavour Fragr. J. 1988, 3, 85–90. [Google Scholar] [CrossRef]
- Sharma, P.K.; Singh, V.; Ali, M. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber officinale Roscoe. Pharmacogn. J. 2016, 8, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Onyenekwe, P.C.; Hashimoto, S. The composition of the essential oil of dried Nigerian ginger (Zingiber officinale Roscoe). Eur. Food Res. Technol. 1999, 209, 407–410. [Google Scholar] [CrossRef]
- Kumar Poudel, D.; Dangol, S.; Rokaya, A.; Maharjan, S.; Kumar Ojha, P.; Rana, J.; Dahal, S.; Timsina, S.; Dosoky, N.S.; Satyal, P.; et al. Quality assessment of Zingiber officinale Roscoe essential oil from Nepal. Nat. Prod. Commun. 2022, 17, 1934578X2210803. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Rosado, A.; Batista, A. Chemical composition of the essential oil of Zingiber officinale Roscoe L. from Cuba. J. Essent. Oil Res. 2004, 16, 186–188. [Google Scholar] [CrossRef]
- Kiran, C.R.; Chakka, A.K.; Amma, K.P.P.; Menon, A.N.; Kumar, M.M.S.; Venugopalan, V.V. Essential oil composition of fresh ginger cultivars from North-East India. J. Essent. Oil Res. 2013, 25, 380–387. [Google Scholar] [CrossRef]
- Nampoothiri, S.V.; Venugopalan, V.V.; Joy, B.; Sreekumar, M.M.; Menon, A.N. Comparison of essential oil composition of three ginger cultivars from Sub Himalayan region. Asian Pac. J. Trop. Biomed. 2012, 2, S1347–S1350. [Google Scholar] [CrossRef]
- Möllenbeck, S.; König, T.; Schreier, P.; Schwab, W.; Rajaonarivony, J.; Ranarivelo, L. Chemical composition and analyses of enantiomers of essential oils from Madagascar. Flavour Fragr. J. 1997, 12, 63–69. [Google Scholar] [CrossRef]
- Chagonda, L.S.; Chalchat, J.C. Essential oil composition of Zingiber officinale Roscoe from Eastern Zimbabwe. J. Essent. Oil-Bear. Plants 2016, 19, 510–515. [Google Scholar] [CrossRef]
- Gupta, S.; Pandotra, P.; Ram, G.; Anand, R.; Gupta, A.P.; Husain, M.K.; Bedia, Y.S.; Mallavarapu, G.R. Composition of a monoterpenoid-rich essential oil from the rhizome of Zingiber officinale from North Western Himalayas. Nat. Prod. Commun. 2011, 6, 93–96. [Google Scholar] [CrossRef] [Green Version]
- González-Guevara, J.C.; Redondo, G.L.M.; Zuñiga, R.V.; Sibaja, S.R. Comparison of the antifungal and antibacterial effect of the essential oil and ethanolic extract of the Zingiber officinale rhizome (ginger) cultivated in the San Carlos zone, Costa Rica in order to standardize a hydroponic medicinal cultivation of the same. J. Pharmacogn. Phytochem. 2020, 9, 43–50. [Google Scholar]
- Wohlmuth, H.; Smith, M.K.; Brooks, L.O.; Myers, S.P.; Leach, D.N. Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) grown in Australia. J. Agric. Food Chem. 2006, 54, 1414–1419. [Google Scholar] [CrossRef]
- Wibowo, D.P.; Mariani, R.; Hasanah, S.U.; Aulifa, D.L. Chemical constituents, antibacterial activity and mode of action of Elephant ginger (Zingiber officinale var. Officinale) and Emprit ginger rhizome (Zingiber officinale var. Amarum) essential oils. Pharmacogn. J. 2020, 12, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Vairappan, C.; Nagappan, T.; Gobilik, J.; Ramachandram, T. Essential oil profiles of major populations Zingiber officinale Rose. utilized in Malaysia for traditional medicine. J. Trop. Biol. Conserv. 2012, 9, 206–212. [Google Scholar]
- Kubra, I.R.; Rao, L.J.M. Effect of microwave drying on the phytochemical composition of volatiles of ginger. Int. J. Food Sci. Technol. 2012, 47, 53–60. [Google Scholar] [CrossRef]
- Panyajai, P.; Chueahongthong, F.; Viriyaadhammaa, N.; Nirachonkul, W.; Tima, S.; Chiampanichayakul, S.; Anuchapreeda, S.; Okonogiid, S. Anticancer activity of Zingiber ottensii essential oil and its nanoformulations. PLoS ONE 2022, 17, e262335. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.A.S.R.; Avanço, G.B.; Nerilo, S.B.; Marcelino, R.I.A.; Janeiro, V.; Valadares, M.C.; Machinski, M. Assessment of cytotoxic activity of rosemary (Rosmarinus officinalis L.), turmeric (Curcuma longa L.), and ginger (Zingiber officinale R.) essential oils in cervical cancer cells (HeLa). Sci. World J. 2017, 2016, 142. [Google Scholar]
- Lee, Y. Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicol. Res. 2016, 32, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Shukla, D.P.; Shah, K.P.; Rawal, R.M.; Jain, N.K. Anticancer and cytotoxic potential of turmeric (Curcuma longa), neem (Azadirachta indica), tulasi (Ocimum sanctum) and ginger (Zingiber officinale) extracts on HeLa cell line. Int. J. Life Sci. Sci. Res. 2016, 2, 309–315. [Google Scholar] [CrossRef]
- Ansari, J.A.; Ahmad, M.K.; Khan, A.R.; Fatima, N.; Khan, H.J.; Rastogi, N.; Mishra, D.P.; Mahdi, A.A. Anticancer and antioxidant activity of zingiber officinale Roscoe rhizome. Indian J. Exp. Biol. 2016, 54, 767–773. [Google Scholar]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. Rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology. BMC Complement. Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nalbantsoy, A.; Ayyildiz Tami, D.; Akgün, I.H.; Öztürk Yalçin, T.; Deliloǧlu Gürhan, I.; Karaboz, I. Antimicrobial and cytotoxic activities of Zingiber officinalis extracts. Fabad J. Pharm. Sci. 2008, 33, 77–86. [Google Scholar]
- Choudhury, D.; Das, A.; Bhattacharya, A.; Chakrabarti, G. Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. Food Chem. Toxicol. 2010, 48, 2872–2880. [Google Scholar] [CrossRef]
- Hachlafi, N.E.L.; Aanniz, T.; Menyiy, N.E.; Baaboua, A.; Omari, N.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In vitro and in vivo biological investigations of camphene and its mechanism insights: A review. Food Rev. Int. 2021, 10, 1–28. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry/ (accessed on 4 May 2022).
No | Compound | a TR (min) | CASRN | Molecular Formula | b Class | c Match Factor (Reverse Match Factor) | dm/z of Significant Ions (Relative Ion Abundance) | RIref | e Rical f (Relative Percentage Abundance, %) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BE | CH | SA | BA | |||||||||
1 | Pinene, α- | 10.0 | 80-56-8 | C10H16 | MH | 931 (932); 934 (934); 930 (930); 933 (933) | 93.1 (100), 91.1 (43.3), 92.1 (37.5); 93.1 (100), 91.1 (43.3), 92.1 (37.5); 93.1 (100), 91.1 (45.3), 92.1 (37.8); 93.1 (100), 91.1 (42.4), 92.1 (37.4) | 931 | 931 (4.0 ± 0.71) | 931 (3.3 ± 0.83) | 931 (3.0 ± 0.04) | 931 (2.8 ± 0.37) |
2 | Camphene | 10.7 | 79-92-5 | C10H16 | MH | 958 (967); 959 (966); 958 (965); 959 (967) | 93.1 (100), 121.2 (74.9), 79.1 (36.2); 93.1 (100), 121.2 (76.7), 79.1 (35.9); 93.1 (100), 121.1 (72.6), 91.1 (36.2); 93.1 (100), 121.2 (76.8), 79.1 (36.2) | 946 | 946 (9.4 ± 1.71) | 946 (7.2 ± 1.75) | 945 (7.2 ± 0.10) | 946 (10.5 ± 1.45) |
3 | Myrcene, β- | 12.7 | 123-35-3 | C10H16 | MH | 941 (949); 930 (938); 925 (933); 935 (944) | 93.1 (100), 69.1 (65.1), 91.1 (23.0); 93.1 (100), 69.1 (64.0), 91.1 (23.0); 93.1 (100), 69.1 (62.9), 91.1 (24.4); 93.1 (100), 69.1 (64.5), 91.1 (22.8) | 991 | 992 (2.2 ± 0.39) | 992 (1.8 ± 0.48) | 991 (1.5 ± 0.02) | 991 (1.5 ± 0.18) |
4 | Phellandrene, β- | 14.4 | 555-10-2 | C10H16 | MH | 867 (904); 857 (884); 901 (904); 883 (895) | 93.1 (100), 91.1 (44.1), 77.1 (33.0); 93.1 (100), 91.1 (43.2), 77.1 (32.3); 93.1 (100), 91.1 (43.2), 77.1 (32.3); 93.1 (100), 91.1 (44.7), 77.1 (33.2) | 1028 | 1028 (7.2 ± 1.22) | 1028 (5.0 ± 1.25) | 1028 (7.4 ± 0.08) | 1028 (7.9 ± 1.01) |
5 | Eucalyptol | 14.5 | 470-82-6 | C10H18O | MO | 940 (940); 931 (931); 917 (917); 934 (934) | 81.1 (100), 108.1 (92.7), 111.1 (80.3); 81.1 (100), 108.1 (94.4), 154.2 (80.9); 81.1 (100), 108.1 (97.4), 111.1 (85.6); 81.1 (100), 108.1 (92.8), 154.2 (79.7) | 1029 | 1029 (4.1 ± 0.68) | 1029 (2.4 ± 0.64) | 1028 (2.3 ± 0.038) | 1029 (2.3 ± 0.31) |
6 | Linalool | 17.8 | 78-70-6 | C10H18O | OM | 887 (902); 892 (900); 891 (901); 864 (880) | 71.1 (100), 93.1 (90.0), 69.1 (62.5); 71.1 (100), 93.1 (90.4), 69.1 (63.3); 71.1 (100), 93.1 (94.2), 69.1 (58.1); 71.1 (100), 93.1 (88.1), 69.1 (60.4) | 1100 | 1100 (0.7 ± 0.09) | 1100 (1.0 ± 0.51) | 1100 (0.6 ± 0.008) | 1100 (1.2 ± 0.14) |
7 | Borneol | 20.8 | 507-70-0 | C10H18O | OM | 923 (923); 917 (917); 910 (910); 940 (940) | 95.1 (100), 110.2 (20.6), 93.1 (9.1); 95.1 (100), 110.1 (20.7), 93.1 (9.0); 95.1 (100), 110.1 (20.2), 67.1 (9.8); 95.1 (100), 110.2 (21.1), 7.1 (9.6) | 1163 | 1163 (0.8 ± 0.09) | 1163 (0.6 ± 0.28) | 1163 (0.7 ± 0.01) | 1163 (2.7 ± 0.30) |
8 | Citral, β- | 24.6 | 106-26-3 | C10H16O | MA | 929 (929); 936 (936); 926 (926); 936 (937) | 69.1 (100), 94.1 (37.0), 109.1 (36.2); 69.1 (100), 94.1 (36.6), 109.1 (35.4); 69.1 (100), 109.1 (40.0), 94.1 (37.8); 69.1 (100), 94.1 (36.9), 109.1 (35.9) | 1244 | 1245 (8.0 ± 0.98) | 1244 (5.6 ± 0.53) | 1244 (6.8 ± 0.03) | 1244 (8.1 ± 0.92) |
9 | Geraniol | 25.3 | 106-24-1 | C10H18O | OM | 930 (930); 929 (929); 924 (924); 937 (937) | 69.1 (100), 68.1 (20.0), 93.1 (17.3); 69.1 (100), 68.1 (19.9), 93.1 (18.2); 69.1 (100), 68.1 (20.0), 93.1 (19.2); 69.1 (100), 68.1 (19.9), 93.1 (14.6) | 1259 | 1259 (2.6 ± 0.32) | 1260 (5.0 ± 0.57) | 1258 (1.8 ± 0.008) | 1259 (4.2 ± 0.43) |
10 | Citral, α- | 26.0 | 141-27-5 | C10H16O | MA | 942 (942); 943 (943); 924 (924); 939 (939) | 69.1 (100), 84.1 (29.4), 94.1 (19.1); 69.1 (100), 84.1 (29.4), 94.1 (19.1); 69.1 (100), 84.1 (28.2), 94.1 (19.2); 69.1 (100), 84.1 (29.6), 94.1 (19.3) | 1268 | 1276 (9.8 ± 2.52) | 1275 (7.3 ± 0.71) | 1275 (9.0 ± 0.01) | 1268 (10.0 ± 1.11) |
11 | Geranyl acetate | 30.8 | 105-87-3 | C12H20O2 | MAc | 893 (905); 934 (937); 881 (899); 941 (942) | 69.1 (100), 93.1 (46.9), 68.1 (41.6); 69.1 (100), 68.1 (38.8), 93.1 (34.3); 69.1 (100), 93.1 (52.4), 68.1 (37.7); 69.1 (100), 68.1 (38.6), 93.1 (34.4) | 1385 | 1385 (0.2 ± 0.05) | 1388 (6.4 ± 0.53) | 1385 (0.2 ± 0.001) | 1386 (2.3 ± 0.58) |
12 | Germacrene D | 34.7 | 23986-74-5 | C15H24 | SH | 912 (933); 919 (936); 916 (934); 863 (891) | 161.2 (100), 105.1 (54.1), 91.1 (47.0); 161.2 (100), 105.1 (54.5), 91.1 (46.5); 161.2 (100), 105.1 (54.9), 91.1 (48.1); 161.2 (100), 119.1 (86.4), 105.1 (72.7) | 1480 | 1480 (0.9 ± 0.15) | 1480 (1.2 ± 0.50) | 1480 (1.5 ± 0.02) | 1480 (0.3 ± 0.04) |
13 | Curcumene, α- | 34.9 | 644-30-4 | C15H22 | SH | 917 (936); 909 (937); 908 (932); 932 (940) | 119.1 (100), 132.1 (87.6), 105.1 (52.5); 119.1 (100), 132.1 (86.7), 105.1 (53.1); 119.1 (100), 132.1 (87.5), 105.1 (53.9); 119.1 (100), 132.1 (88.8), 105.1 (50.3) | 1484 | 1484 (2.6 ± 0.40) | 1483 (2.2 ± 0.22) | 1484 (3.6 ± 0.06) | 1484 (4.5 ± 0.85) |
14 | Zingiberene | 35.5 | 495-60-3 | C15H24 | SH | 861 (886); 902 (955); 896 (951); 898 (950) | 119.1 (100), 93.1 (82.9), 91.1 (46.8); 119.1 (100), 93.1 (84.4), 91.1 (42.8); 119.1 (100), 93.1 (82.9), 91.1 (46.7); 119.1 (100), 93.1 (84.3), 91.1 (43.7) | 1499 | 1499 (7.9 ± 1.13) | 1498 (12.1 ± 1.01) | 1497 (14.0 ± 1.29) | 1499 (10.8 ± 1.86) |
15 | Bisabolene, β- | 36.0 | 495-61-4 | C15H24 | SH | 890 (899); 942 (948); 936 (942); 886 (886) | 93.1 (100), 69.1 (56.3), 107.1 (48.1); 93.1 (100), 107.1 (52.6), 119.1 (47.2); 93.1 (100), 107.1 (54.9), 91.1 (46.5); 93.1 (100), 69.1 (66.1), 107.1 (44.0) | 1510 | 1510 (4.6 ± 0.70) | 1510 (7.4 ± 0.60) | 1510 (8.4 ± 0.16) | 1510 (4.6 ± 0.91) |
16 | Sesquiphellandrene, β- | 36.6 | 20307-83-9 | C15H24 | SH | 906 (917); 936 (925); 899 (910); 912 (936) | 69.1 (100), 93.1 (68.4), 91.1 (64.8); 69.1 (100), 93.1 (68.0), 91.1 (61.1); 69.1 (100), 93.1 (68.0), 91.1 (61.1); 69.1 (100), 93.1 (67.6), 91.1 (60.9) | 1525 | 1525 (3.2 ± 0.51) | 1526 (4.6 ± 0.47) | 1526 (5.2 ± 0.08) | 1526 (4.5 ± 0.97) |
17 | Elemol | 37.5 | 21657-90-9 | C15H26O | OS | 926 (929); 926 (929); 941 (946); 918 (921) | 93.1 (100), 59.1 (98.7), 161.2 (80.1); 93.1 (100), 59.1 (96.9), 161.2 (81.9); 93.1 (100), 59.1 (91.3), 161.2 (85.4); 93.1 (100), 59.1 (97.7), 161.2 (80.8) | 1549 | 1549 (0.9 ± 0.12) | 1549 (1.2 ± 0.12) | 1549 (0.7 ± 0.01) | 1549 (0.3 ± 0.08) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, A.; Haw, X.R.; Alkatib, H.H.; Sasidharan, S.; Marriott, P.J.; Wong, Y.F. Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line. Plants 2022, 11, 1280. https://doi.org/10.3390/plants11101280
Zaid A, Haw XR, Alkatib HH, Sasidharan S, Marriott PJ, Wong YF. Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line. Plants. 2022; 11(10):1280. https://doi.org/10.3390/plants11101280
Chicago/Turabian StyleZaid, Atiqah, Xue Rou Haw, Huda Hisham Alkatib, Sreenivasan Sasidharan, Philip J. Marriott, and Yong Foo Wong. 2022. "Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line" Plants 11, no. 10: 1280. https://doi.org/10.3390/plants11101280
APA StyleZaid, A., Haw, X. R., Alkatib, H. H., Sasidharan, S., Marriott, P. J., & Wong, Y. F. (2022). Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line. Plants, 11(10), 1280. https://doi.org/10.3390/plants11101280