Early Growth Performance of In Vitro Raised Melia volkensii Gürke Plantlets in Response to Beneficial Microorganisms under Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Greenhouse and Field Conditions
2.3. Indigenous Arbuscular Mycorrhiza Fungi
2.4. Greenhouse Experiment
2.5. Field Experiment
2.6. Data Collection and Statical Analysis
3. Results
3.1. Indigenous Arbuscular Mycorrhiza Fungi Identification and Spore Counting
3.2. Greenhouse Experiment
3.2.1. Survival and Shoot Growth
Root Growth and Fungal Colonization
Effect of the Biological Agents on Quality and Biomass
3.3. Field Experiment
4. Discussion
4.1. Greenhouse Experiment
4.2. Field Experiment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, C.C.; Shyamkumar, B.; Anjaneyulu, C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: An overview. Trees 2004, 18, 115–135. [Google Scholar] [CrossRef]
- Rohr, R.; Iliev, I.; Scaltsoyiannes, A.; Tsoulpha, P. Acclimatization of micropropagated forest trees. Acta Hortic. 2003, 616, 59–69. [Google Scholar] [CrossRef]
- Chandra, S.; Bandopadhyay, R.; Kumar, V.; Chandra, R. Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnol. Lett. 2010, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Rao, I.U. Morphophysiologicals Problems in Acclimatization of Micropropagated Plants in—Ex Vitro Conditions-A Reviews. J. Ornam. Hortic. Plants 2012, 2, 271–283. [Google Scholar]
- Muchiri, D.K.; Gyokusen, K.; Gotoh, E.; Tsuyama, M.; Sakuta, K.; Muturi, G.M. Variation in drought tolerance among Melia volkensii clones of Candidate Plus Trees selected from the species ecological natural range in Kenya. In Proceedings of the International Conference on Project on Development of Drought Tolerant Trees for Adaptation to Climate Change in Drylands of Kenya, Nairobi, Kenya, 13–16 February 2017; KEFRI Kenya: Nairobi, Kenya, 2018; pp. 117–128. [Google Scholar]
- Werbrouck, S.; Bhogar, N.; Magomere, T.; Omondi, S. In vitro biotechnology of Melia volkensii, a high potential forestry tree from eastern Africa. In Proceedings of the Fourth International Union of Forest Research Organizations (IUFRO) Unit 209 02 on Development and Application of Vegetative Propagation Technologies in Plantation Forestry to Cope with a Changing Climate and Environment, La Plata, Argentina, 19–23 September 2017; pp. 249–256. [Google Scholar]
- Indieka, S.A.; Odee, D.W.; Muluvi, G.M.; Rao, K.N.; Machuka, J. Regeneration of Melia volkensii Gürke (Meliaceae) through direct somatic embryogenesis. New. For. 2007, 34, 73–81. [Google Scholar] [CrossRef]
- Mulanda, E.S.; Adero, M.O.; Amugune, N.O.; Akunda, E.; Kinyamario, J.I. High-Frequency Regeneration of the Drought-Tolerant Tree Melia volkensii Gurke Using Low-Cost Agrochemical Thidiazuron. Biotechnol. Res. Int. 2012, 2012, 818472. [Google Scholar] [CrossRef] [Green Version]
- Mulanda, E.S.; Adero, M.O.; Wepukhulu, D.K.; Amugune, N.O.; Akunda, E.; Kinyamario, J.I. Thidiazuron-induced somatic embryogenesis and shoot regeneration in cotyledon explants of Melia volkensii Gürke. Propag. Ornam. Plants. 2014, 14, 40–46. [Google Scholar]
- Vidal, M.T.; Azcón-Aguilar, C.; Barea, J.M.; Pliego-Alfaro, F. Mycorrhizal Inoculation Enhances Growth and Development of Micropropagated Plants of Avocado. HortScience 1992, 27, 785–787. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Palni, L.M.S.; Bag, N. Biological hardening of tissue culture raised tea plants through rhizosphere bacteria. Biotechnol. Lett. 2000, 22, 1087–1091. [Google Scholar] [CrossRef]
- Martins, A. In vitro Mycorrhization of Micropropagated Plants: Studies on Castanea sativa Mill. In Mycorrhizae: Sustainable Agriculture and Forestry; Tinctorius, P., Akhtar, M.S., Futai, K., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 321–336. [Google Scholar]
- Wu, Q.-S.; Zou, Y.-N.; Wang, G.-Y. Arbuscular Mycorrhizal Fungi and Acclimatization of Micropropagated Citrus. Commun. Soil. Sci. Plant. Anal. 2011, 42, 1825–1832. [Google Scholar] [CrossRef]
- Mwangi, A.M.K.; Kahangi, E.M.; Ateka, E.; Onguso, J.; Mukhongo, R.W.; Mwangi, E.K.; Jefwa, J.M. Growth effects of microorganisms based commercial products inoculated to tissue cultured banana cultivated in three different soils in Kenya. Appl. Soil. Ecol. 2013, 64, 152–162. [Google Scholar] [CrossRef]
- Mutabaruka, R.; Mutabaruka, C.; Fernandez, I. Research note: Diversity of arbuscular mycorrhizal fungi associated to tree species in semiarid areas of Machakos, Kenya. Arid. L. Res. Manag. 2002, 16, 385–390. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant. Prop. Soc. Proc. 1980, 30, 421–427. [Google Scholar]
- Gerdemann, J.W.; Nicolson, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Omar, M.B.; Bolland, L.; Heather, W.A. A permanent mounting medium for fungi. Bull. Br. Mycol. Soc. 1978, 13, 31–32. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Jobim, K.; Niezgoda, P.; Meller, E.; Malinowski, R.; Milczarski, P.; Zubek, S.; Magurno, F.; Casieri, L.; Bierza, W. New Glomeromycotan Taxa, Dominikia glomerocarpica sp. nov. and Epigeocarpum crypticum gen. nov. et sp. nov. From Brazil, and Silvaspora gen. nov. From New Caledonia. Front. Microbiol. 2021, 12, 704. [Google Scholar] [CrossRef]
- Walker, C. Taxonomic concepts in the Endogonaceae: Spore wall characteristics in species descriptions. Mycotaxon 1983, 18, 443–455. [Google Scholar]
- Koske, R.E.; Gemma, J.N. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Kariuki, C.K.; Mutitu, E.W.; Muiru, W.M. Effect of Bacillus and Trichoderma species in the management of the bacterial wilt of tomato ( Lycopersicum esculentum ) in the field. Egypt. J. Biol. Pest. Control. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Kenya Forest Service. Guidelines to Growing Melia volkensii in the Dryland Areas of Kenya; CADEP-SFM: Nairobi, Kenya, 2018; Volume 53. [Google Scholar]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality Appraisal of White Spruce and White Pine Seedling Stock in Nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Martins, A.; Barroso, J.; Pais, M.S. Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Mycorrhiza 1996, 6, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Díez, J.; Manjón, J.L.; Kovács, G.M.; Celestino, C.; Toribio, M. Mycorrhization of vitroplants raised from somatic embryos of cork oak (Quercus suber L.). Appl. Soil. Ecol. 2000, 15, 119–123. [Google Scholar] [CrossRef]
- Thomas, J.; Kumar, R.R.; Mandal, A.K. Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult. 2010, 10, 365–370. [Google Scholar] [CrossRef]
- Russo, A.; Vettori, L.; Felici, C.; Fiaschi, G.; Morini, S.; Toffanin, A. Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr. S 2/5 plants. J. Biotechnol. 2008, 134, 312–319. [Google Scholar] [CrossRef]
- Wanjala, P.M.; Odhiambo, K.O.; Balozi, K.; Sang, F.K.A. Effect of Different Levels of Artificial Mycorrhizal Inoculation on Growth of Pinus patula Schldl. & Cham. Seedlings. In Proceeding of the 3rd International Interdisciplinary Conference (IIC3), Eldoret, Kenya, 7–9 September 2016; pp. 49–55. [Google Scholar]
- Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil. 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Li, Y.T.; Hwang, S.G.; Huang, Y.M.; Huang, C.H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot. 2018, 110, 275–282. [Google Scholar] [CrossRef]
- Martínez, J.I.; Gómez-Garrido, M.; Gómez-López, M.D.; Faz, Á.; Martínez-Martínez, S.; Acosta, J.A. Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chil. J. Agric. Res. 2019, 79, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Scandellari, F. Arbuscular mycorrhizal contribution to nitrogen uptake of grapevines. Vitis 2017, 56, 147–154. [Google Scholar]
- Wang, J.; Fu, Z.; Ren, Q.; Zhu, L.; Lin, J.; Zhang, J.; Cheng, X.; Ma, J.; Jianmin, Y. Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests 2019, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Padilla, I.M.G.; Carmona, E.; Westendorp, N.; Encina, C.L. Micropropagation and effects of mycorrhiza and soil bacteria on acclimatization and development of lucumo (Pouteria lucuma R. and Pav.) var. La Molina. Vitr. Cell. Dev. Biol. Plant. 2006, 42, 193–196. [Google Scholar] [CrossRef]
- Lotfi, M.; Fernandez, K.; Vermeir, P.; Mars, M.; Werbrouck, S. In vitro mycorrhization of pear (Pyrus communis). Mycorrhiza 2019, 29, 607–614. [Google Scholar] [CrossRef]
- Monticelli, S.; Puppi, G.; Damiano, C. Effects of in vivo mycorrhization on micropropagated fruit tree rootstocks. Appl. Soil Ecol. 2000, 15, 105–111. [Google Scholar] [CrossRef]
- Vettori, L.; Russo, A.; Felici, C.; Fiaschi, G.; Toffanin, A. Improving micropropagation: Effect of Azospirillum brasilense Sp245 on acclimatization of rootstocks of fruit tree. J. Plant Interact. 2010, 5, 249–259. [Google Scholar] [CrossRef]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Zaspel, I.; Ewald, D. Promotion of root development and root growth of forest plants by rhizobacteria. IOBC WPRS Bulletin 2001, 24, 161–166. [Google Scholar]
- Kumar, N.; Kumar, A.; Shukla, A.; Kumar, S. Effect of Arbuscular Mycorrhiza Fungi (AMF) on Early Seedling Growth of Some Multipurpose Tree Species. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3885–3892. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Boutaj, H.; Meddich, A.; Chakhchar, A.; Wahbi, S.; El Alaoui-Talibi, Z.; Douira, A.; Filali-Maltouf, A.; El Modafar, C. Arbuscular mycorrhizal fungi improve mineral nutrition and tolerance of olive tree to Verticillium wilt. Arch. Phytopathol. Plant. Prot. 2020, 53, 673–689. [Google Scholar] [CrossRef]
- De Azevedo, G.B.; de Novaes, Q.S.; Azevedo, G.T.d.O.S.; Silva, H.F.; Rocha Sobrinho, G.G.; de Novaes, A.B. Effect of Trichoderma spp. on Eucalyptus camaldulensis clonal seedlings growth. Sci. For. 2017, 45, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, R.F.; da Cruz, S.P.; Botelho, G.R.; Flores, A.V. Inoculation of Pinus taeda Seedlings with Plant Growth-promoting Rhizobacteria. Floresta Ambient 2018, 25, 1–7. [Google Scholar] [CrossRef]
- Estrada-Luna, A.; Davies, F.T. Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J. Plant Physiol. 2003, 160, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Jacott, C.N.; Murray, J.D.; Ridout, C.J. Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy 2017, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Núñez, J.; Muñóz, D.; de la Cruz, A.; Saiz de Omeñaca, J.A. Effects of Pseudomonas fluorescens on the water parameters of mycorrhizal and non-mycorrhizal seedlings of pinus halepensis. Agronomy 2013, 3, 571–582. [Google Scholar] [CrossRef] [Green Version]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Sakha, M.A.; Jefwa, J.; Gweyi-Onyango, J.P. Effects of Arbuscular Mycorrhizal Fungal Inoculation on Growth and Yield of Two Sweet Potato Varieties. J. Agric. Ecol. Res. Int. 2019, 18, 1–8. [Google Scholar] [CrossRef]
- Dominguez, J.A.; Martin, A.; Anriquez, A.; Albanesi, A. The combined effects of Pseudomonas fluorescens and Tuber melanosporum on the quality of Pinus halepensis seedlings. Mycorrhiza 2012, 22, 429–436. [Google Scholar] [CrossRef]
- Rostaminia, M.; Habibi, D.; Shahbazi, S.; Sani, B.; Pazoki, A. Effect of different species of Pseudomonas and Trichoderma on several morpho-physiological traits of roselle (Hibiscus sabdariffa L.). Acta. Physiol. Plant. 2021, 43, 1–8. [Google Scholar] [CrossRef]
Month | Rainfall (mm) | Minimum Temperature (°C) * | Maximum Temperature (°C) * |
---|---|---|---|
November 2020 | 252 | 13.23 | 24.57 |
December 2020 | 83 | 11.84 | 25.29 |
January 2021 | 31.5 | 11.58 | 26.03 |
February 2021 | 29.3 | 12.61 | 26.18 |
March 2021 | 0 | 13.13 | 26.58 |
April 2021 | 96.3 | 15.17 | 25.37 |
May 2021 | 0 | 14.52 | 21.52 |
Property | Units | Value | Property | Units | Value |
---|---|---|---|---|---|
pH | - | 6.35 | Iron (Fe) | ppm | 48.9 |
Electrical conductivity (EC) | dS/m | 2.1 | Manganese (Mn) | ppm | 66.5 |
Organic carbon (OC) | % | 0.85 | Copper (Cu) | ppm | Trace |
Cation exchange capacity (CEC) | Cmol/kg | 10 | Calcium (Ca) | Cmol/kg | 7.8 |
Nitrogen (N) | % | 0.12 | Sulfur (S) | ppm | 2.8 |
Phosphorus (P) | ppm | 8.43 | Calcium (Ca) | Cmol/kg | 3.1 |
Potassium (K) | Cmol/kg | 0.55 | Sand | % | 60 |
Sodium (Na) | Cmol/kg | 0.55 | Silt | % | 2 |
Zinc (Zn) | ppm | 0.79 | Clay | % | 38 |
Magnesium (Mg) | Cmol/kg | 2.01 | Texture | Sandy clay | |
Boron (Bo) | ppm | 1.5 |
Treatments | Survival Rate (%) | Plant Height (cm) | Number of Leaves per Plant | Stem Diameter (mm) |
---|---|---|---|---|
B. subtilis | 98.0 ± 1.11 a | 6.4 ± 0.27 d | 8.9 ± 0.27 b | 3.4 ± 0.10 c |
Rhizatech® | 100.0 ± 0.00 a | 9.3 ± 0.43 a | 10.2 ± 0.28 a | 4.0 ± 0.12 a |
Trichotech® | 99.0 ± 1.11 a | 7.0 ± 0.44 d | 8.9 ± 0.37 b | 3.5 ± 0.11 bc |
Bio-cure B® | 96.7 ± 1.92 a | 8.5 ± 0.48 ab | 9.9 ± 0.38 a | 3.9 ± 0.12 a |
Trichoderma | 100.0 ± 0.00 a | 7.6 ± 0.38 abc | 10.1 ± 0.29 a | 3.6 ± 0.11 bc |
Native AMF | 100.0 ± 0.00 a | 8.8 ± 041 ab | 9.8 ± 0.25 a | 3.8 ± 0.10 ab |
Control (Water) | 89.7 ± 0.33 b | 6.3 ± 0.26 d | 8.6 ± 0.23 b | 3.4 ± 0.09 c |
Mean | 97.6 | 7.7 | 9.5 | 3.7 |
p-value | 0.005 | <0.001 | <0.001 | <0.001 |
Treatments | Root Diameter (mm) | Root Length (cm) | Root Collar Diameter (mm) | Number of Roots |
---|---|---|---|---|
B. subtilis | 5.6 ± 0.35 ab | 13.1 ± 0.45 a | 7.0 ± 0.18 a | 4.9 ± 0.53 |
Rhizatech® | 6.5 ± 0.28 a | 13.2 ± 0.58 a | 7.1 ± 0.21 a | 4.6 ± 0.41 |
Trichotech® | 5.5 ± 0.39 ab | 12.2 ± 0.48 a | 6.2 ± 0.21 b | 4.6 ± 0.48 |
Bio-cure B® | 6.22 ± 0.33 a | 12.8 ± 0.44 a | 7.0 ± 0.17 a | 4.0 ± 0.33 |
Trichoderma | 5.6 ± 0.31 ab | 12.4 ± 0.56 a | 6.8 ± 0.16 ab | 5.8 ± 0.60 |
Native AMF | 6.0 ± 0.24 ab | 13.5 ± 0.51 a | 6.7 ± 0.17 ab | 4.9 ± 0.44 |
Control | 5.1 ± 0.32 ab | 10.1 ± 0.54 b | 6.7 ± 0.15 ab | 5.0 ± 0.39 |
Mean | 5.8 | 12.5 | 6.8 | 4.8 |
p value | 0.035 | <0.001 | 0.018 | 0.238 |
Treatments | DQI | RFW (g) | SFW (g) | RDW (g) | SDW (g) |
---|---|---|---|---|---|
B. subtilis | 0.4 ± 0.05 a | 2.2 ± 0.19 a | 2.4 ± 0.18 de | 0.4 ± 0.04 a | 0.6 ± 0.06 cd |
Rhizatech® | 0.5 ± 0.04 a | 3.0 ± 0.14 a | 4.3 ± 0.35 a | 0.5 ± 0.03 a | 1.0 ± 0.11 a |
Trichotech® | 0.4 ± 0.05 a | 2.8 ± 0.51 a | 2.7 ± 0.30 cd | 0.4 ± 0.04 a | 0.7 ± 0.08 bc |
Bio-cure B® | 0.5 ± 0.06 a | 3.0 ± 0.20 a | 3.7 ± 0.34 ab | 0.5 ± 0.04 a | 0.9 ± 0.09 ab |
Trichoderma | 0.4 ± 0.03 a | 2.6 ± 0.18 a | 3.5 ± 0.32 bc | 0.4 ± 0.03 a | 0.8 ± 0.06 bc |
Native AMF | 0.4 ± 0.06 a | 2.4 ± 0.19 a | 3.0 ± 0.25 bcd | 0.4 ± 0.04 a | 0.7 ± 0.07 bc |
Control | 0.2 ± 0.02 b | 1.3 ± 0.11 b | 1.7 ± 0.15 e | 0.2 ± 0.02 b | 0.4 ± 0.04 d |
Mean | 0.41 | 2.46 | 3.04 | 0.40 | 0.73 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dushimimana, C.; Sakha, M.A.; Korir, M.J.; Jefwa, J.M.; Vandenabeele, J.; Magomere, T.; Mutitu, E.W.; Mulatya, J.; Olubayo, F.; Smagghe, G.; et al. Early Growth Performance of In Vitro Raised Melia volkensii Gürke Plantlets in Response to Beneficial Microorganisms under Semi-Arid Conditions. Plants 2022, 11, 1300. https://doi.org/10.3390/plants11101300
Dushimimana C, Sakha MA, Korir MJ, Jefwa JM, Vandenabeele J, Magomere T, Mutitu EW, Mulatya J, Olubayo F, Smagghe G, et al. Early Growth Performance of In Vitro Raised Melia volkensii Gürke Plantlets in Response to Beneficial Microorganisms under Semi-Arid Conditions. Plants. 2022; 11(10):1300. https://doi.org/10.3390/plants11101300
Chicago/Turabian StyleDushimimana, Constantin, Michael Ajanja Sakha, Mercy Jebiwott Korir, Joyce Mnyazi Jefwa, Jan Vandenabeele, Titus Magomere, Eunice Wanjiru Mutitu, Jackson Mulatya, Florence Olubayo, Guy Smagghe, and et al. 2022. "Early Growth Performance of In Vitro Raised Melia volkensii Gürke Plantlets in Response to Beneficial Microorganisms under Semi-Arid Conditions" Plants 11, no. 10: 1300. https://doi.org/10.3390/plants11101300
APA StyleDushimimana, C., Sakha, M. A., Korir, M. J., Jefwa, J. M., Vandenabeele, J., Magomere, T., Mutitu, E. W., Mulatya, J., Olubayo, F., Smagghe, G., & Werbrouck, S. P. O. (2022). Early Growth Performance of In Vitro Raised Melia volkensii Gürke Plantlets in Response to Beneficial Microorganisms under Semi-Arid Conditions. Plants, 11(10), 1300. https://doi.org/10.3390/plants11101300