Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Extracts for Honeybee Feeding
4.2. Preparation of Yogurt Products
4.3. The Protocol of the Human Study
4.4. Sampling
4.5. Ethical Permission
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IDF Diabetes Atlas. Available online: https://Diabetesatlas.org/ (accessed on 28 March 2022).
- Tripathy, B.; Sahoo, N.; Sahoo, S.K. Trends in Diabetes Care with Special Emphasis to Medicinal Plants: Advancement and Treatment. Biocatal. Agric. Biotechnol. 2021, 33, 102014. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef] [Green Version]
- Bobiş, O.; Dezmirean, D.S.; Moise, A.R. Honey and Diabetes: The Importance of Natural Simple Sugars in Diet for Preventing and Treating Different Type of Diabetes. Oxid. Med. Cell. Longev. 2018, 2018, 4757893. [Google Scholar] [CrossRef] [Green Version]
- Peixoto Araujo, N.M.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pereira, G.A.; Pastore, G.M. Plants from the Genus Eugenia as Promising Therapeutic Agents for the Management of Diabetes Mellitus: A Review. Food Res. Int. 2021, 142, 110182. [Google Scholar] [CrossRef]
- Alqathama, A.; Alluhiabi, G.; Baghdadi, H.; Aljahani, L.; Khan, O.; Jabal, S.; Makkawi, S.; Alhomoud, F. Herbal Medicine from the Perspective of Type II Diabetic Patients and Physicians: What Is the Relationship? BMC Complement. Med. Ther. 2020, 20, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Martins, N.; Chaudhary, A.; Garg, N.; Sharma, V.; Kuca, K.; Nepovimova, E.; Tuli, H.S.; Bishayee, A.; Chaudhary, A.; et al. Adjunct Use of Honey in Diabetes Mellitus: A Consensus or Conundrum? Trends Food Sci. Technol. 2020, 106, 254–274. [Google Scholar] [CrossRef]
- Nikhat, S.; Fazil, M. History, Phytochemistry, Experimental Pharmacology and Clinical Uses of Honey: A Comprehensive Review with Special Reference to Unani Medicine. J. Ethnopharmacol. 2022, 282, 114614. [Google Scholar] [CrossRef]
- Majtan, J.; Bucekova, M.; Kafantaris, I.; Szweda, P.; Hammer, K.; Mossialos, D. Honey Antibacterial Activity: A Neglected Aspect of Honey Quality Assurance as Functional Food. Trends Food Sci. Technol. 2021, 118, 870–886. [Google Scholar] [CrossRef]
- Meo, S.A.; Ansari, M.J.; Sattar, K.; Chaudhary, H.U.; Hajjar, W.; Alasiri, S. Honey and Diabetes Mellitus: Obstacles and Challenges—Road to Be Repaired. Saudi J. Biol. Sci. 2017, 24, 1030–1033. [Google Scholar] [CrossRef]
- Erejuwa, O.O. Honey: Profile and Features: Applications to Diabetes. In Bioactive Food as Dietary Interventions for Diabetes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 461–494. ISBN 978-0-12-813822-9. [Google Scholar]
- Sadeghi, F.; Salehi, S.; Kohanmoo, A.; Akhlaghi, M. Effect of Natural Honey on Glycemic Control and Anthropometric Measures of Patients with Type 2 Diabetes: A Randomized Controlled Crossover Trial. Int. J. Prev. Med. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Salla, H.R.; Al Habsi, F.S.; Al dholi, H.M.; Al musallami, S.T.; Al Sharji, W.H. A Comparative Study on the Role of Omani Honey with Various Food Supplements on Diabetes and Wound Healing. J. King Saud Univ. Sci. 2020, 32, 2122–2128. [Google Scholar] [CrossRef]
- Zamanian, M.; Azizi-Soleiman, F. Honey and Glycemic Control: A Systematic Review. PharmaNutrition 2020, 11, 100180. [Google Scholar] [CrossRef]
- Kaya, B.; Yıldırım, A. Determination of the Antioxidant, Antimicrobial and Anticancer Properties of the Honey Phenolic Extract of Five Different Regions of Bingöl Province. J. Food Sci. Technol. 2021, 58, 2420–2430. [Google Scholar] [CrossRef] [PubMed]
- Dumas, A.-A.; Lapointe, A.; Dugrenier, M.; Provencher, V.; Lamarche, B.; Desroches, S. A Systematic Review of the Effect of Yogurt Consumption on Chronic Diseases Risk Markers in Adults. Eur. J. Nutr. 2017, 56, 1375–1392. [Google Scholar] [CrossRef]
- Roustazadeh, A.; Mir, H.; Jafarirad, S.; Mogharab, F.; Hosseini, S.A.; Abdoli, A.; Erfanian, S. A Dietary Pattern Rich in Fruits and Dairy Products Is Inversely Associated to Gestational Diabetes: A Case-Control Study in Iran. BMC Endocr. Disord. 2021, 21, 41. [Google Scholar] [CrossRef]
- Mohamed, T.H.; Tammam, A.A.; Bakr, I.A.; El-Gazzar, F.E. Antioxidant, Phenolic Compounds and Antimicrobial Activity of Yoghurt and Bioyoghurt Fortified with Sedr Honey. Pak. J. Food Sci. 2016, 26, 161–172. [Google Scholar]
- Hamad, M.; Ismail, M.; El-Kadi, S.; Sh, Z.M. Chemical Composition, Microbial Properties and Sensory Evaluation of Bio-Yoghurt Made From Admixture of Cow And Coconut Milk And Honey. Food Dairy Sci. 2016, 2, 246–260. [Google Scholar]
- Mercan, E.; Akın, N. Effect of Different Levels of Pine Honey Addition on Physicochemical, Microbiological and Sensory Properties of Set-Type Yoghurt. Int. J. Dairy Technol. 2017, 70, 245–252. [Google Scholar] [CrossRef]
- Ismail, M.M.; Hamad, M.F.; Elraghy, E.M. Using Goat’s Milk, Barley Flour, Honey, and Probiotic to Manufacture of Functional Dairy Product. Probiotics Antimicrob. Proteins 2018, 10, 677–691. [Google Scholar] [CrossRef]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Antioxidant Activity of Yogurt Made from Milk Characterized by Different Casein Haplotypes and Fortified with Chestnut and Sulla Honeys. J. Dairy Sci. 2014, 97, 6662–6670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho-Bernal, G.I.; Cruz-Cansino, N.d.S.; Ramírez-Moreno, E.; Delgado-Olivares, L.; Zafra-Rojas, Q.Y.; Castañeda-Ovando, A.; Suárez-Jacobo, Á. Addition of Bee Products in Diverse Food Sources: Functional and Physicochemical Properties. Appl. Sci. 2021, 11, 8156. [Google Scholar] [CrossRef]
- Kong, S.; Li, P.; Verpoorte, R.; Wang, J.; Zhu, C.; Dai, Y.; Chen, S. Synergistic Mechanism for the Bioactivity Fortification of Licorice by Honey. J. Ethnopharmacol. 2022, 289, 115048. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-Thinking Functional Food Development through a Holistic Approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional Importance of Bioactive Compounds of Foods with Potential Health Benefits: A Review on Recent Trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Bazarnova, J.; Nilova, L.; Trukhina, E.; Bernavskaya, M.; Smyatskaya, Y.; Aktar, T. Use of Microalgae Biomass for Fortification of Food Products from Grain. Foods 2021, 10, 3018. [Google Scholar] [CrossRef] [PubMed]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef]
- Gani, A.; Jan, R.; Ashwar, B.A.; Ashraf, Z.; Shah, A.; Gani, A. Encapsulation of Saffron and Sea Buckthorn Bioactives: Its Utilization for Development of Low Glycemic Baked Product for Growing Diabetic Population of the World. LWT 2021, 142, 111035. [Google Scholar] [CrossRef]
- Ren, Z.; Gong, H.; Zhao, A.; Zhang, J.; Yang, C.; Wang, P.; Zhang, Y. Effect of Sea Buckthorn on Plasma Glucose in Individuals with Impaired Glucose Regulation: A Two-Stage Randomized Crossover Intervention Study. Foods 2021, 10, 804. [Google Scholar] [CrossRef]
- Ge, X.; Tang, N.; Huang, Y.; Chen, X.; Dong, M.; Rui, X.; Zhang, Q.; Li, W. Fermentative and Physicochemical Properties of Fermented Milk Supplemented with Sea Buckthorn (Hippophae eleagnaceae L.). LWT 2022, 153, 112484. [Google Scholar] [CrossRef]
- Sun, B.; Yan, H.; Li, C.; Yin, L.; Li, F.; Zhou, L.; Han, X. Beneficial Effects of Walnut (Juglans regia L.) Oil-Derived Polyunsaturated Fatty Acid Prevents a Prooxidant Status and Hyperlipidemia in Pregnant Rats with Diabetes. Nutr. Metab. 2020, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Pu, X.; Sun, J.; Shi, X.; Cheng, W.; Wang, B. Effect of Lactobacillus Plantarum on Functional Characteristics and Flavor Profile of Fermented Walnut Milk. LWT 2022, 160, 113254. [Google Scholar] [CrossRef]
- Kennas, A.; Amellal-Chibane, H.; Kessal, F.; Halladj, F. Effect of Pomegranate Peel and Honey Fortification on Physicochemical, Physical, Microbiological and Antioxidant Properties of Yoghurt Powder. J. Saudi Soc. Agric. Sci. 2020, 19, 99–108. [Google Scholar] [CrossRef]
- Abdelmonem, A.M.; Rasheed, S.M.; Mohamed, A.S. Bee-Honey and Yogurt: A Novel Mixture for Treating Patients with Vulvovaginal Candidiasis during Pregnancy. Arch. Gynecol. Obstet. 2012, 286, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Guldas, M.; Gurbuz, O.; Cakmak, I.; Yildiz, E.; Sen, H. Effects of Honey Enrichment with Spirulina Platensis on Phenolics, Bioaccessibility, Antioxidant Capacity and Fatty Acids. LWT 2022, 153, 112461. [Google Scholar] [CrossRef]
- Dżugan, M.; Sowa, P.; Kwaśniewska, M.; Wesołowska, M.; Czernicka, M. Physicochemical Parameters and Antioxidant Activity of Bee Honey Enriched With Herbs. Plant Foods Hum. Nutr. 2017, 72, 74–81. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Abou-Shaara, H.F.; Ansari, M.J. Effects of Sugar Feeding Supplemented with Three Plant Extracts on Some Parameters of Honey Bee Colonies. Saudi J. Biol. Sci. 2021, 28, 2076–2082. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Pignatti, G.; Karabagias, I.K.; Martinelli, E.; Souto, E.B.; Santini, A.; Lucini, L. Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture 2021, 11, 1136. [Google Scholar] [CrossRef]
- Sowa, P.; Tarapatskyy, M.; Puchalski, C.; Jarecki, W.; Dżugan, M. A Novel Honey-Based Product Enriched with Coumarin from Melilotus Flowers. J. Food Meas. Charact. 2019, 13, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Tlak Gajger, I.; Vlainić, J.; Šoštarić, P.; Prešern, J.; Bubnič, J.; Smodiš Škerl, M.I. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. Insects 2020, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Shumkova, R.; Balkanska, R.; Koynarski, T.; Hristov, P. Application of the Natural Products NOZEMAT HERB and NOZEMAT HERB PLUS Can Decrease Honey Bee Colonies Losses during the Winter. Diversity 2021, 13, 228. [Google Scholar] [CrossRef]
- Amadarshanie, D.B.T.; Gunathilaka, T.L.; Silva, R.M.; Navaratne, S.B.; Peiris, L.D.C. Functional and Antiglycation Properties of Cow Milk Set Yogurt Enriched with Nyctanthes Arbor-Tristis L. Flower Extract. LWT 2022, 154, 112910. [Google Scholar] [CrossRef]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, Physicochemical and Sensory Properties of Probiotic Yoghurt Made from Whole Milk Powder Reconstituted in Aqueous Fennel Extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Bakr Shori, A. Storage Quality and Antioxidant Properties of Yogurt Fortified with Polyphenol Extract from Nutmeg, Black and White Pepper. Electron. J. Biotechnol. 2022, 57, 24–30. [Google Scholar] [CrossRef]
- Varga, T.; Sajtos, Z.; Gajdos, Z.; Jull, A.J.T.; Molnár, M.; Baranyai, E. Honey as an Indicator of Long-Term Environmental Changes: MP-AES Analysis Coupled with 14C-Based Age Determination of Hungarian Honey Samples. Sci. Total Environ. 2020, 736, 139686. [Google Scholar] [CrossRef]
- Sajtos, Z.; Varga, T.; Gajdos, Z.; Burik, P.; Csontos, M.; Lisztes-Szabó, Z.; Jull, A.J.T.; Molnár, M.; Baranyai, E. Rape, Sunflower and Forest Honeys for Long-Term Environmental Monitoring: Presence of Indicator Elements and Non-Photosynthetic Carbon in Old Hungarian Samples. Sci. Total Environ. 2022, 808, 152044. [Google Scholar] [CrossRef]
- Samarghandian, S.; Farkhondeh, T.; Samini, F. Honey and Health: A Review of Recent Clinical Research. Pharmacogn. Res. 2017, 9, 121–127. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.-I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of Microalgae with High Lipid Content and Their Potential as Sources of Nutraceuticals. Phytochem. Rev. 2022, 1–28. [Google Scholar] [CrossRef]
- Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic Potentials and Applications. Mol. Biol. Rep. 2021, 48, 4757–4765. [Google Scholar] [CrossRef]
- Nigam, S.; Singh, R.; Bhardwaj, S.K.; Sami, R.; Nikolova, M.P.; Chavali, M.; Sinha, S. Perspective on the Therapeutic Applications of Algal Polysaccharides. J. Polym. Environ. 2022, 30, 785–809. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.M.; Keshavarz, S.A.; Nasli-Esfahani, E.; Amiri, F.; Janani, L. The Effects of Chlorella Supplementation on Glycemic Control, Lipid Profile and Anthropometric Measures on Patients with Type 2 Diabetes Mellitus. Eur. J. Nutr. 2021, 60, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Nowicka, P. Anti-Diabetic, Anti-Cholinesterase, and Antioxidant Potential, Chemical Composition and Sensory Evaluation of Novel Sea Buckthorn-Based Smoothies. Food Chem. 2021, 338, 128105. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Galli, M.; Adamska-Patruno, E.; Krętowski, A.; Ciborowski, M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020, 12, 2538. [Google Scholar] [CrossRef]
- Verde, A.; Míguez, J.M.; Leao-Martins, J.M.; Gago-Martínez, A.; Gallardo, M. Melatonin Content in Walnuts and Other Commercial Nuts. Influence of Cultivar, Ripening and Processing (Roasting). J. Food Compos. Anal. 2022, 105, 104180. [Google Scholar] [CrossRef]
- Liu, R.; Su, C.; Xu, Y.; Shang, K.; Sun, K.; Li, C.; Lu, J. Identifying Potential Active Components of Walnut Leaf That Action Diabetes Mellitus through Integration of UHPLC-Q-Orbitrap HRMS and Network Pharmacology Analysis. J. Ethnopharmacol. 2020, 253, 112659. [Google Scholar] [CrossRef]
- Alsuhaibani, A.M.A.; Al-Kuraieef, A.N. Effect of Phenolic Compounds and Fatty Acid Contents of Walnut Seeds on Streptozotocin-Induced Diabetes in Rats. J. Food Meas. Charact. 2019, 13, 499–505. [Google Scholar] [CrossRef]
- Shapla, U.M.; Solayman; Alam, N.; Khalil, I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) Levels in Honey and Other Food Products: Effects on Bees and Human Health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- IHC Harmonized Methods of the International Honey Commission. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 3 March 2022).
- Czipa, N.; Phillips, C.J.C.; Kovács, B. Composition of Acacia Honeys Following Processing, Storage and Adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- SPSS SPSS Statistical Program, (IBM SPSS V22.0), New York, the United States. Available online: https://www.ibm.com/support/pages/spss-statistics-220-available-download (accessed on 11 May 2022).
Measured Parameter/Nutrient | Unit | Acacia Honey (Control) | Chlorella Alga honey | Sea Buckthorn Honey | Green Walnut Honey |
---|---|---|---|---|---|
Water content | % (m/m) | 19.2 ± 0.1 a | 18.5 ± 0.1 b | 18.6 ± 0.1 b | 19.0 ± 0.1 c |
Fructose + glucose | % (m/m) | 64.7 ± 0.20 a | 69.1 ± 0.20 b | 65.9 ± 0.6 c | 65.0 ± 0.6 ac |
Fructose | % (m/m) | 34.9 ± 0.4 a | 35.4 ± 0.5 a | 41.0 ± 0.4 b | 36.2 ± 0.2 c |
Glucose | % (m/m) | 29.8 ± 0.3 a | 33.7 ± 0.4 b | 24.9 ± 0.3 c | 28.8 ± 0.3 d |
Free acid content | mmol L−1 | 23.5 ± 0.4 a | 37.5 ± 0.6 b | 75.6 ± 0.4 c | 45.3 ± 0.2 d |
HMF content | mg kg−1 | 1.73 ± 0.20 a | 55.6 ± 2.0 b | 42.3 ± 2.0 c | 4.88 ± 0.3 d |
Diastase activity | Goethe number | 6.07 ± 0.10 a | 4.17 ± 0.12 b | <4.0 c | 8.68 ± 0.1 d |
Boron (B) | mg kg−1 | 3.12 ± 0.20 a | 2.14 ± 0.23 b | 0.71 ± 0.12 c | 2.09 ± 0.19 d |
Calcium (Ca) | mg kg−1 | 62.8 ± 2.9 a | 125 ± 13 b | 131 ± 13 b | 120 ± 26 b |
Copper (Cu) | mg kg−1 | 0.45 ± 0.11 ab | 0.46 ± 0.03 a | 0.36 ± 0.02 b | 0.56 ± 0.09 a |
Iron (Fe) | mg kg−1 | <0.10 a | 0.68 ± 0.11 b | 1.60 ± 0.15 c | 1.28 ± 0.04 d |
Iodine (I) | mg kg−1 | <0.10 a | <0.10 a | 310 ± 10 b | <0.10 a |
Potassium (K) | mg kg−1 | 142 ± 9.0 a | 415 ± 8.0 b | 428 ± 41 b | 321 ± 8.0 c |
Magnesium (Mg) | mg kg−1 | 2.75 ± 0.05 a | 15.7 ± 0.1 b | 27.0 ± 1.7 c | 15.5 ± 0.7 b |
Sodium (Na) | mg kg−1 | 14.0 ± 1.6 a | 55.4 ± 2.1 b | 49.6 ± 3.1 c | 51.9 ± 4.6 bc |
Phosphorus (P) | mg kg−1 | 68.5 ± 4.9 a | 113 ± 3 b | 79.9 ± 6.4 a | 89.6 ± 0.7 c |
Sulfur (S) | mg kg−1 | 19.0 ± 1.5 a | 38.2 ± 0.4 b | 36.8 ± 1.9 b | 38.7 ± 0.5 b |
Zinc (Zn) | mg kg−1 | 0.86 ± 0.04 a | 1.53 ± 0.12 b | 3.55 ± 0.25 c | 2.39 ± 0.25 d |
Item in Detail | Group of Green Algae | Group of Sea Buckthorn | Group of Green Walnut |
Syrup preparing | Water and sugar | Water and sugar | Water and sugar |
- Total volume † | 50 L | 24 L | 400 L |
- Extract, kg or L | 15 L | 8 kg | 40 kg |
Feeding rate | 5 L per day | 2 L per day | 5 L per day |
Feeding period | 8 days | 12 days | 20 days |
Syrup density | 1.20 kg L−1 | 1.25 kg L−1 | 1.20 kg L−1 |
Syrup pH (start) | 5.8 | 4.3 | 4.6 |
Syrup pH (end) | 5.2 | 3.9 | 3.9 |
Baseline | 3 Weeks | 3 Months | |
---|---|---|---|
Signing a statement of consent | ✓ | ||
Recording of anamnesis, somatic status | ✓ | ✓ | |
Blood pressure, heart rate, weight control | ✓ | ✓ | |
SF 36 questionnaire | ✓ | ✓ | |
EuroQol EQ-5D Quality of Life Questionnaire | ✓ | ✓ | |
EORTC QLQ-C30 Questionnaire | ✓ | ✓ | |
Culinary questionnaire | ✓ | ||
Detection of sleep disorders | ✓ | ✓ | |
Detection of viral infections | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prokisch, J.; El-Ramady, H.; Daróczi, L.; Nagy, É.; Badgar, K.; Kiss, A.; Shaikh, A.M.; Gilányi, I.; Oláh, C. Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. Plants 2022, 11, 1391. https://doi.org/10.3390/plants11111391
Prokisch J, El-Ramady H, Daróczi L, Nagy É, Badgar K, Kiss A, Shaikh AM, Gilányi I, Oláh C. Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. Plants. 2022; 11(11):1391. https://doi.org/10.3390/plants11111391
Chicago/Turabian StyleProkisch, József, Hassan El-Ramady, Lajos Daróczi, Éva Nagy, Khandsuren Badgar, Attila Kiss, Ayaz Mukarram Shaikh, Ibolya Gilányi, and Csaba Oláh. 2022. "Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level" Plants 11, no. 11: 1391. https://doi.org/10.3390/plants11111391
APA StyleProkisch, J., El-Ramady, H., Daróczi, L., Nagy, É., Badgar, K., Kiss, A., Shaikh, A. M., Gilányi, I., & Oláh, C. (2022). Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. Plants, 11(11), 1391. https://doi.org/10.3390/plants11111391