Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS
Abstract
:1. Introduction
2. Results
2.1. Genotyping and SNP Density
2.2. Molecular Diversity
2.3. Genetic Differentiation
2.4. Population Structure
3. Discussion
3.1. Genotyping by Sequencing
3.2. Molecular Diversity
3.3. Mixed Ancestry Is a Potential Cause for Low Genetic Diversity among Populations
3.4. Geographic Origin Showed No Congruence with Genetic Structure
4. Materials and Methods
4.1. Plant Material and DNA Isolation
4.2. GBS and SNP Calling
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stringer, L. Reviewing the International Year of Deserts and Desertification 2006: What contribution towards combating global desertification and implementing the United Nations Convention to Combat Desertification? J. Arid Environ. 2008, 72, 2065–2074. [Google Scholar] [CrossRef] [Green Version]
- Yirdaw, E.; Tigabu, M.; Monge Monge, A.A. Rehabilitation of degraded dryland ecosystems–review. Silva Fenn. 2017, 51, 1673. [Google Scholar] [CrossRef] [Green Version]
- Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; LOTZE-CAMPEN, H.; Müller, C.; Reichstein, M. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 2007, 13, 679–706. [Google Scholar] [CrossRef]
- Morton, S.; Cullen, P.; Bourne, G.; Cristofani, P.; Possingham, H.; Young, M.D. Sustaining Our Natural Systems and Biodiversity. 2002. Available online: https://publications.csiro.au/rpr/pub?list=BRO&pid=procite:78417c7a-70a5-4ffd-ae4d-6b695b8c3a16 (accessed on 1 April 2022).
- Nevill, P.G.; Tomlinson, S.; Elliott, C.P.; Espeland, E.K.; Dixon, K.W.; Merritt, D.J. Seed production areas for the global restoration challenge. Ecol. Evol. 2016, 6, 7490–7497. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Bhat, N. Alteration of the Rhanterium epapposum plant community in Kuwait and restoration measures. Int. J. Environ. Stud. 2008, 65, 139–155. [Google Scholar] [CrossRef]
- Böer, B.; Sargeant, D. Desert perennials as plant and soil indicators in Eastern Arabia. Plant Soil 1998, 199, 261–266. [Google Scholar] [CrossRef]
- CBD. Convention on biological diversity. U. N. Treaty Ser. 1992, 1760, 1–30619. [Google Scholar]
- Al Salameen, F.; Habibi, N.; Al Amad, S.; Kumar, V.; Dashti, J.; Talebi, L.; Al Doaij, B. Genetic diversity analysis of Rhanterium eppaposum Oliv. by ISSRs reveals a weak population structure. Curr. Plant Biol. 2020, 21, 100138. [Google Scholar] [CrossRef]
- Brown, G.M. Vegetation Ecology and Biodiversity of Degraded Desert Areas in North-Eastern Arabia. Habilitation Thesis, University of Rostock, Rostock, Germany, 2001. [Google Scholar]
- Malallah, G.; Al-Dosari, M.; Murin, A. Determination of chromosome numbers in Kuwaiti flora II. THAISZIA-KOSICE- 2001, 10, 137–150. [Google Scholar]
- Demirci, B.; Yusufoglu, H.S.; Tabanca, N.; Temel, H.E.; Bernier, U.R.; Agramonte, N.M.; Alqasoumi, S.I.; Al-Rehaily, A.J.; Başer, K.H.C.; Demirci, F. Rhanterium epapposum Oliv. essential oil: Chemical composition and antimicrobial, insect-repellent and anticholinesterase activities. Saudi Pharm. J. 2017, 25, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Al-Salameen, F.; Al-Amad, S.; Al-Hashash, H. Determination of genetic variation of Rhanterium epapposum in Kuwait desert using RAPD and SRAP DNA-based markers. Kuwait J. Sci. 2014, 41, 163–175. [Google Scholar]
- Habibi, N.; Salameen, A. Role of ISSR markers for conservation of Rhanterium eppaposum Oliv. In Proceedings of the International Symposium and Workshop on Native Seeds in Restoration of Dryland Ecosystems, Kuwait City, Kuwait, 20–23 November 2017. [Google Scholar]
- Fadila, A.S.; Nazima, H.; Vinod, K.; Sami, A.A.; Leena, T.; Bashayer, A.D.; Jamal, D. Genetic Characterization of Haloxylon Salicornicum and Rhanterium Eppaposum Native Plant Species of Kuwait by DNA Markers; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2018. [Google Scholar]
- Omar, S.A.; Misak, R.; King, P.; Shahid, S.A.; Abo-Rizq, H.; Grealish, G.; Roy, W. Mapping the vegetation of Kuwait through reconnaissance soil survey. J. Arid Environ. 2001, 48, 341–355. [Google Scholar] [CrossRef]
- Zaman, S.; Padmesh, S.; Tawfiq, H. Germination ecology of Rhanterium epapposum olive. Am. J. Appl. Sci. 2010, 7, 1321–1326. [Google Scholar]
- Habibi, N.; Rahman, M.H.; Al Salameen, F. Synoptic Overview on Application of Molecular Genetic Markers in Acacia. Res. J. Biotechnol. 2020, 15, 152–166. [Google Scholar] [CrossRef]
- Habibi, N.; Al Salameen, F.; Rahman, M.; Kumar, V.; Al Amad, S.; Shajan, A.; Zakir, F.; Razzack, N.A.; Tinwala, W.H. Draft Genome Sequence and SSR mining data of Acacia pachyceras Schwartz. Data Brief 2022, 42, 108031. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Habibi, N.; Chittora, M.; Purohit, S. Molecular Analysis of Variability among Genotypes of Abrus precatorius L. with Different Seed Coat Colours Using RAPD and ISSR Markers. Ind. J. Biotechnol. 2013, 12, 273–276. Available online: http://hdl.handle.net/123456789/19273 (accessed on 1 April 2022).
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N. DNA Marker Technology for Conservation of Plant Genetic Resources in Kuwait. In Proceedings of the 13th International Conference on Development of Drylands Converting Dryland Areas from Grey into Green, Jodhpur, India, 11–14 February 2019. [Google Scholar]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Peterson, G.W.; Dong, Y.; Horbach, C.; Fu, Y.-B. Genotyping-by-sequencing for plant genetic diversity analysis: A lab guide for SNP genotyping. Diversity 2014, 6, 665–680. [Google Scholar] [CrossRef]
- Abdullah, M.T. Conserving the Biodiversity of Kuwait through DNA Barcoding the Flora; University of Edinburgh: Edinburgh, UK, 2017. [Google Scholar]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-sequencing in plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.A.; Pacheco, I.; Shinya, P.; Zapata, P.; Silva, C.; Aradhya, M.; Velasco, D.; Ruiz, D.; Martínez-Gómez, P.; Infante, R. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). Front. Plant Sci. 2017, 8, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaubitz, J.C.; Casstevens, T.M.; Lu, F.; Harriman, J.; Elshire, R.J.; Sun, Q.; Buckler, E.S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 2014, 9, e90346. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Lipka, A.E.; Glaubitz, J.; Elshire, R.; Cherney, J.H.; Casler, M.D.; Buckler, E.S.; Costich, D.E. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013, 9, e1003215. [Google Scholar] [CrossRef] [Green Version]
- Tinker, N.A.; Bekele, W.A.; Hattori, J. Haplotag: Software for haplotype-based genotyping-by-sequencing analysis. G3 Genes Genomes Genet. 2016, 6, 857–863. [Google Scholar] [CrossRef] [Green Version]
- Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 2012, 7, e32253. [Google Scholar] [CrossRef] [Green Version]
- Shirasawa, K.; Ban, T.; Nagata, N.; Murakana, T. Impact of genomics on Capsicum breeding. In The Capsicum Genome; Springer: Berlin/Heidelberg, Germany, 2019; pp. 209–219. [Google Scholar]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Warden, C.D.; Adamson, A.W.; Neuhausen, S.L.; Wu, X. Detailed comparison of two popular variant calling packages for exome and targeted exon studies. PeerJ 2014, 2, e600. [Google Scholar] [CrossRef] [Green Version]
- Baral, K.; Coulman, B.; Biligetu, B.; Fu, Y.-B. Genotyping-by-sequencing enhances genetic diversity analysis of crested wheatgrass [Agropyron cristatum (L.) Gaertn.]. Int. J. Mol. Sci. 2018, 19, 2587. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.A.d. Estudos Genéticos-Genômicos em Gramíneas Forrageiras Tropicais dos Gêneros Urochloa e Paspalum: Genetic-Genomic Studies in Tropical Forage Grasses of the Genus Urochloa and Paspalum; Universidade Estadual de Campinas, Instituto de Biologia: Campinas, Brazil, 2017. [Google Scholar]
- Trethowan, R.M.; Mujeeb-Kazi, A. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 2008, 48, 1255–1265. [Google Scholar] [CrossRef]
- Coulondre, C.; Miller, J.H.; Farabaugh, P.J.; Gilbert, W. Molecular basis of base substitution hotspots in Escherichia coli. Nature 1978, 274, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Kalinka, A.; Achrem, M.; Poter, P. The DNA methylation level against the background of the genome size and t-heterochromatin content in some species of the genus Secale L. PeerJ 2017, 5, e2889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckler, E., 4th; Holtsford, T.P. Zea ribosomal repeat evolution and substitution patterns. Mol. Biol. Evol. 1996, 13, 623–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, M.; Levy, A.A. Genome evolution due to allopolyploidization in wheat. Genetics 2012, 192, 763–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, H.; Bihamta, M.R.; Mohammadi, V.; Peyghambari, S.A.; Bai, G.; Zhang, G. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front. Plant Sci. 2017, 8, 1293. [Google Scholar] [CrossRef]
- Schmidt, D.; Pool, J. The effect of population history on the distribution of the Tajima’s D statistic. Popul. Engl. Ed. 2002, 1–8. Available online: https://www.researchgate.net/publication/265073304_The_Effect_of_Population_History_on_the_Distribution_of_the_Tajima’s_D_Statistic (accessed on 1 April 2022).
- Al Salameen, F.; Habibi, N.; Kumar, V.; Al Amad, S.; Dashti, J.; Talebi, L.; Al Doaij, B. Genetic diversity and population structure of Haloxylon salicornicum moq. in Kuwait by ISSR markers. PLoS ONE 2018, 13, e0207369. [Google Scholar] [CrossRef] [Green Version]
- Mezard, C. Meiotic recombination hotspots in plants. Biochem. Soc. Trans. 2006, 34, 531–534. [Google Scholar] [CrossRef]
- Hamrick, J. Isozymes and the analysis of genetic structure in plant populations. In Isozymes in Plant Biology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 87–105. [Google Scholar]
- Wright, S. The average correlation within subgroups of a population. J. Wash. Acad. Sci. 1917, 7, 532–535. [Google Scholar]
- Omar, S.A.; Shahid, S.A. Reconnaissance Soil survey for the state of Kuwait. In Developments in Soil Classification, Land Use Planning and Policy Implications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 85–107. [Google Scholar]
- Andrews, S. FastQC: A quality control tool for high throughput sequence data. Available online. Retrieved May 2010, 17, 2018. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Al Salameen, F.; Habibi, N.; Al Amad, S.; Al Doaij, B. Data on draft genome assembly and annotation of Haloxylon salicornicum Moq. Data Brief 2021, 40, 107721. [Google Scholar] [CrossRef] [PubMed]
- Jackman, S.D.; Vandervalk, B.P.; Mohamadi, H.; Chu, J.; Yeo, S.; Hammond, S.A.; Jahesh, G.; Khan, H.; Coombe, L.; Warren, R.L. ABySS 2.0: Resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 2017, 27, 768–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
Al Kabd | SANR | Om Qaser | Al MAqwa | Al Salmi | Mina Abdulla | Mean | |
---|---|---|---|---|---|---|---|
No. of Loci | 10,568 | 10,568 | 10,568 | 10,568 | 10,568 | 10,568 | 10,568 |
No. of usable loci | 8841 | 8078 | 8583 | 8547 | 8838 | 7536 | 8279 |
Polymorphic loci | 2278 | 1730 | 1422 | 1188 | 2283 | 1587 | 3936 |
# Transitions | 1362 | 1063 | 872 | 725 | 1368 | 970 | 2351 |
# Transversions | 927 | 680 | 552 | 467 | 927 | 622 | 1618 |
# Substitutions | 2289 | 1743 | 1424 | 1192 | 2295 | 1592 | 3969 |
# Ts. sites | 1358 | 1061 | 872 | 723 | 1363 | 969 | 2345 |
# Tv. sites | 927 | 680 | 552 | 467 | 927 | 622 | 1618 |
No. of substitution sites | 2278 | 1730 | 1422 | 1188 | 2283 | 1587 | 3936 |
Ts/Tv | 1.46 | 1.56 | 1.57 | 1.47 | 1.47 | 1.55 | 1.45 |
Theta (S) | 610.022 ± 196.21 | 502.972 ± 173.39 | 548.429 ± 235.35 | 458.18 ± 196.68 | 634.56 ± 210.62 | 454.06 ± 154.50 | 763.223 ± 184.03 |
Theta (pi) | 430.148 ± 212.30 | 396.288 ± 198.73 | 490.42 ± 267.94 | 398.57 ± 217.83 | 463.02 ± 230.03 | 374.97 ± 187.43 | 192.107 ± 192.10 |
Tajima’s D (p) | −1.196 (0.09) | −0.908 (0.19) | −0.581 (0.31) | −0.715 (0.26) | −1.123 (0.12) | −0.737 (0.24) | −1.616 (0.02) |
FS (p) | 0.129 (0.35) | 0.769 (0.42) | 2.83 (0.57) | 2.62 (0.56) | 0.573 (0.36) | 0.568 (0.39) | 1.095 (0.00) |
Source of Variation | d.f. | Sum of Squares | Variance Components | Variation (%) |
---|---|---|---|---|
Among populations | 5 | 4901.21 | 9.65 Va | 1.45 |
Among individuals within populations | 87 | 59,994.72 | 31.97 Vb | 4.79 |
Within individuals | 93 | 58,184.50 | 625.63 Vc | 93.76 |
Total | 185 | 123,080.43 | 667.27 |
Al Kabd | SANR | Om Qaser | Al Maqwa | Al Salmi | Mina Abdulla | |
---|---|---|---|---|---|---|
Al Kabd | 0.00000 | |||||
SANR | 0.00569 | 0.00000 | ||||
Om Qaser | 0.01722 | 0.02398 | 0.00000 | |||
Al Maqwa | 0.00544 | 0.00965 | 0.02474 | 0.00000 | ||
Al Salmi | 0.00401 | 0.00614 | 0.02227 | 0.01068 | 0.00000 | |
Mina Abdulla | 0.02726 | 0.03259 | 0.03940 | 0.03320 | 0.02969 | 0.00000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Salameen, F.; Habibi, N.; Al Amad, S.; Al Doaij, B. Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS. Plants 2022, 11, 1435. https://doi.org/10.3390/plants11111435
Al Salameen F, Habibi N, Al Amad S, Al Doaij B. Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS. Plants. 2022; 11(11):1435. https://doi.org/10.3390/plants11111435
Chicago/Turabian StyleAl Salameen, Fadila, Nazima Habibi, Sami Al Amad, and Bashayer Al Doaij. 2022. "Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS" Plants 11, no. 11: 1435. https://doi.org/10.3390/plants11111435
APA StyleAl Salameen, F., Habibi, N., Al Amad, S., & Al Doaij, B. (2022). Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS. Plants, 11(11), 1435. https://doi.org/10.3390/plants11111435