Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening
2.2. GC-MS Analysis
2.3. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Collection and Identification of Plant Material
4.3. Sample Extraction
4.4. Determination of Plant Extract Yield (%)
4.5. Qualitative Phytochemical Analysis
4.6. GC-MS Analysis
Identification of Compounds
4.7. Antibacterial Activity
4.8. Bacterial Strains, Media, and Controls
4.9. Determination of MIC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naz, S.; Alam, S.; Ahmed, W.; Khan, S.M.; Qayyum, A.; Sabir, M.; Naz, A.; Iqbal, A.; Bibi, Y.; Nisa, S.; et al. Therapeutic potential of selected medicinal plant extracts against multi-drug resistant Salmonella enterica serovar typhi. Saudi J. Biol. Sci. 2022, 29, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar] [PubMed]
- Prasathkumar, M.; Anisha, S.; Dhrisya, C.; Becky, R.; Sadhasivam, S. Therapeutic and pharmacological efficacy of selective Indian medicinal plants—A review. Phytomed. Plus 2021, 1, E100029. [Google Scholar] [CrossRef]
- Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC-MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep. 2020, 10, E16438. [Google Scholar] [CrossRef] [PubMed]
- Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020, 19, 1199–1209. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Altern. Med. 2013, 2013, E376327. [Google Scholar] [CrossRef] [Green Version]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Sofi, H.S.; Rashid, R.; Amna, T.; Hamid, R.; Sheikh, F.A. Recent advances in formulating electrospunnaofiber membranes: Delivering active phytoconstituents. J. Drug Deliv. Sci. Technol. 2020, 60, E102038. [Google Scholar] [CrossRef]
- Koparde, A.A.; Doijad, R.C.; Magdum, C.S. Natural products in drug discovery. In Pharmacognosy: Medicinal Plants; IntechOpen: Rijeka, Croatia, 2019; Available online: https://www.intechopen.com/books/pharmacognosy-medicinal-plants/natural-products-in-drug-discovery (accessed on 13 July 2021).
- Pan, S.Y.; Zhou, S.F.; Gao, S.H.; Yu, Z.L.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ma, D.L.; Han, Y.F.; Fong, W.F.; et al. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Altern. Med. 2013, 2013, E627375. [Google Scholar] [CrossRef] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Valinger, D.; Benković, M.; Tušek, A.J.; Jurina, T.; Komes, D.; GajdošKljusurić, J. Integrated approach for bioactive quality evaluation of medicinal plant extracts using HPLC-DAD, spectrophotometric, near infrared spectroscopy and chemometric techniques. Int. J. Food Prop. 2017, 20, S2463–S2480. [Google Scholar] [CrossRef]
- Nivetha, K.; Prasanna, G. GC-MS and FT-IR analysis of Nigella sativa L. seeds. Int. J. Adv. Res. Biol. Sci. 2016, 3, 45–54. [Google Scholar]
- Sourabh, P.; Thakur, J.; Sharma, P.; Uniyal, P.L.; Pandey, A.K. Habitat distribution modelling for reintroduction of endangered medicinal plants-Ephedra gerardiana, Lilium polyphyllum, Crepidiumacuminatum, Pittosporum eriocarpum and Skimmia anquetilia in India. Int. J. Ecol. Environ. Sci. 2018, 44, 207–216. [Google Scholar]
- WFO. Skimmia anquetilia N.P. Taylor & Airy. World Flora Online. Available online: http://www.worldfloraonline.org/taxon/wfo-0000504241 (accessed on 13 July 2021).
- Gondwal, M.; Prakash, O.; Vivekanand; Pant, A.K.; Padalia, R.C.; Mathela, C.S. Essential oil composition and antioxidant activity of leaves and flowers of Skimmia anquetilia NP Taylor & Airy Shaw. J. Essent. Oil Res. 2012, 24, 83–90. [Google Scholar]
- Naine, S.J.; Devi, C.S.; Mohanasrinivasan, V.; Doss, C.G.P.; Kumar, D.T. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent. Appl. Microbiol. Biotechnol. 2016, 100, 2869–2882. [Google Scholar] [CrossRef]
- Abo-Dahab, N.F. Analysis of bioactive compounds of Aspergillus terreus var. Aureus isolated from Artemisia annua L. Afr. J. Mycol. Biotechnol. 2014, 19, 17–29. [Google Scholar]
- Peng, W.; Li, D.; Zhang, M.; Ge, S.; Mo, B.; Li, S.; Ohkoshi, M. Characteristics of antibacterial molecular activities in poplar wood extractives. Saudi J. Biol. Sci. 2017, 24, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Devi, M.A.; Nameirakpam, B.; Devi, T.B.; Mayanglambam, S.; Singh, K.D.; Sougrakpam, S.; Rajashekar, Y. Chemical compositions and insecticidal efficacies of four aromatic essential oils on rice weevil Sitophilus oryzae L. Int. J. Trop. Insect Sci. 2020, 40, 549–559. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Rai, V.K.; Sinha, P.; Yadav, K.S.; Shukla, A.; Saxena, A.; Bawankule, D.U.; Yadav, N.P. Anti-psoriatic effect of Lavandula angustifolia essential oil and its major components linalool and linalyl acetate. J. Ethnopharmacol. 2020, 261, E113127. [Google Scholar] [CrossRef]
- Shen, D.Y.; Kuo, P.C.; Huang, S.C.; Hwang, T.L.; Chan, Y.Y.; Shieh, P.C.; Wu, T.S. Constituents from the leaves of Clausenalansium and their anti-inflammatory activity. J. Nat. Med. 2017, 71, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Rodanant, P.; Surarit, R.; Laphookhieo, S.; Kuvatanasuchati, J. In vitro evaluation of the antibacterial and anti-inflammation activities of Clausenalansium (Lour.) Skeels. Songklanakarin J. Sci. Technol. 2015, 37, 43–48. [Google Scholar]
- Sujana, N.; Ramanathan, S.A.; Vimala, V.E.; Sundaram, M.E.; Pemaiah, B. Antitumour potential of Passifloraincarnata against ehrlich ascites carcinoma. Int. J. Pharm. Pharm. Sci. 2012, 4, 10–13. [Google Scholar]
- Thirumalaisamy, R.; Ammashi, S.; Muthusamy, G. Screening of anti-inflammatory phytocompounds from Cratevaadansonii leaf extracts and its validation by in silico modeling. J. Genet. Eng. Biotechnol. 2018, 16, 711–719. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Subramaniam, P. Phytochemical profiling of leaf, stem, and tuber parts of Solenaamplexicaulis (Lam.) Gandhi using GC-MS. Int. Sch. Res. Not. 2014, 2014, E567409. [Google Scholar]
- Ross, S.A.; Krishnaven, K.; Radwan, M.M.; Takamatsu, S.; Burandt, C.L. Constituents of Zanthoxylum flavum and their antioxidant and antimalarial activities. Nat. Prod. Commun. 2008, 3, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, H.; Shanmugam, V.K. Anti-inflammatory activity screening of Kalanchoe pinnata methanol extract and its validation using a computational simulation approach. Inform. Med. Unlocked 2019, 14, 6–14. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Ali, A.; Alshehri, S.; Ghoneim, M.M.; Alam, P. Determination of thymol in commercial formulation, essential oils, traditional, and ultrasound-based extracts of Thymus vulagris and Origanum vulgare using a greener HPTLC approach. Molecules 2022, 27, 1164. [Google Scholar] [CrossRef]
- Gul, R.; Jan, S.U.; Faridullah, S.; Sherani, S.; Jahan, N. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. Sci. World J. 2017, 2017, E5873648. [Google Scholar] [CrossRef] [Green Version]
- Valgas, C.; Souza, S.M.D.; Smânia, E.F.; Smânia, A., Jr. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Bousmaha-Marroki, L.; Boutillier, D.; Marroki, A.; Grangette, C. In vitro anti-staphylococcal and anti-inflammatory abilities of Lacticaseibacillus rhamnosus from infant gut microbiota as potential probiotic against infectious women mastitis. Probiotics Antimirob. Proteins 2021, 13, 970–981. [Google Scholar] [CrossRef] [PubMed]
Phytoconstituent | Name of the Assay | Methanol Extract |
---|---|---|
Alkaloids | Mayer’s test | + |
Wagner’s test | + | |
Dragendorff’s test | + | |
Carbohydrates | Benedict’s test | − |
Cardiac steroidal glycosides | Keller–Kiliani test | + |
Flavonoids | Shinoda test | − |
Alkaline reagent test | + | |
Lead acetate test | + | |
Proteins and amino acids | Xanthoproteic test | + |
Ninhydrin test | − | |
Tannins | Ferric chloride test | − |
Gelatin test | − |
S. N. | Retention Time (min) | Phytocompounds | CAS Number | Peak Area (%) | RSI | Molecular Formula | Molecular Weight (g/mol) |
---|---|---|---|---|---|---|---|
1. | 3.490 | 1,3,5-Cycloheptatriene | 544-25-2 | 3.76 | 914 | C7H8 | 92.14 |
2. | 5.150 | 2-Propenoic acid, butyl ester | 141-32-2 | 0.86 | 890 | C7H12O2 | 128.16 |
3. | 8.453 | Geijerene | 6902-73-4 | 0.62 | - | C12H18 | 162.2713 |
4. | 10.595 | Linalyl acetate | 115-95-7 | 1.85 | 937 | C12H20O2 | 196.29 |
5. | 10.950 | Linalool | 78-70-6 | 1.65 | 858 | C10H18O | 154.25 |
6. | 11.813 | Glycerol 1,2-diacetate | 102-62-5 | 0.79 | 941 | C7H12O5 | 176.16 |
7. | 12.152 | Geranyl acetate | 105-87-3 | 0.44 | 925 | C12H20O2 | 196.29 |
8. | 12.891 | Methyl (2E,5E)-2,5-octadecadienoate | 56846-97-0 | 0.64 | - | C19H30O2 | 294.5 |
9. | 14.636 | 3,7,11-Trimethyl-3-hydroxy-6,10-dodecadien-1-yl acetate | 0 | 0.57 | 939 | C17H30O3 | 282.41 |
10. | 15.493 | 3-Hydroxypropanoic acid 1-butyl ester | 0 | 0.76 | 819 | C7H14O3 | 146.18 |
11. | 18.489 | Hexadecanoic acid, methyl ester | 112-39-0 | 0.64 | 916 | C17H34O2 | 270.45 |
12. | 19.255 | 2H-1-Benzopyran-2-one, 5,7-dimethoxy- | 487-06-9 | 0.61 | 984 | C11H10O4 | 206.19 |
13. | 20.051 | 7H-Furo [3,2-g][1]benzopyran-7-one, 4-methoxy- | 484-20-8 | 2.79 | 942 | C12H8O4 | 216.18 |
14. | 20.204 | 5,10-Pentadecadienal, (Z,Z)- | 64275-49-6 | 1.69 | 911 | C15H26O | 222.37 |
15. | 20.312 | Photocitral A | 55253-28-6 | 2.55 | 948 | C10H16O | 152.23 |
16. | 21.391 | 2H-1-Benzopyran-2-one, 7-methoxy-6-(3-methyl-2-butenyl)- | 581-31-7 | 1.32 | 923 | C15H16O3 | 244.28 |
17. | 21.439 | Tetradecanoic acid | 544-63-8 | 0.33 | - | C14H28O2 | 228 |
18. | 21.559 | 2R-Acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol | 0 | 23.9 | 932 | C17H30O3 | 282.4 |
19. | 21.799 | 1,3,3-Trimethyl-2-hydroxymethyl-3,3-dimethyl-4-(3-methylbut-2-enyl)-cyclohexene | 0 | 1.59 | 946 | C15H26O | 222.37 |
20. | 22.027 | Pentanedioic acid, 2,2-dimethyl-, dimethyl ester | 13051-32-6 | 0.93 | 824 | C8H14O4 | 174.19 |
21. | 22.363 | Isoauraptene | 1088-17-1 | 1.77 | 889 | C15H16O4 | 260.28 |
22. | 22.462 | 10-Pentadecen-5-yn-1-ol, (E)- | 64275-59-8 | 0.68 | 880 | C15H26O | 222.37 |
23. | 23.493 | Nonacos-1-ene | 18835-35-3 | 0.62 | 935 | C29H52 | 400.72 |
24. | 23.663 | 2,6,10,14-Tetramethylpentadecan-6-ol | 104000-14-8 | 0.68 | 892 | C19H40O | 284.5 |
25. | 24.078 | 1-Dodecanol, 3,7,11-trimethyl- | 6750-34-1 | 0.89 | 868 | C15H32O | 228.41 |
26. | 24.220 | 8-(2,3-Dihydroxy-3-methylbutyl)-7-methoxy-2H-chromen-2-one | 5673-37-0 | 8.47 | 813 | C15H18O5 | 278.30 |
27. | 25.122 | 10-Pentadecen-5-yn-1-ol, (E)- | 64275-59-8 | 1.69 | 974 | C15H26O | 222.37 |
28. | 25.254 | Wampetin | 89824-26-0 | 4.73 | 860 | C21H18O6 | 366.4 |
29. | 26.060 | Squalene | 111-02-4 | 9.98 | 933 | C30H50 | 410.72 |
30. | 27.445 | (3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexenyl)-3,5,7-octatrien-2-one | 17974-57-1 | 0.90 | 858 | C18H26O | 258.399 |
31. | 27.747 | Cyclohexene, 1,5,5-trimethyl-6-(2-propenylidene)- | 56248-17-0 | 7.79 | 885 | C12H18 | 162.27 |
32. | 28.608 | Clionasterol acetate | 4651-54-1 | 6.59 | 888 | C31H52O2 | 456.7 |
33. | 30.057 | Ergost-5-en-3-ol, (3ß)- | 4651-51-8 | 0.85 | 890 | C28H48O | 400.7 |
34. | 31.237 | 2-Isopropyl-5-methylcyclohexyl 3-(1-(4-chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate | 0 | 3.43 | 896 | C30H33ClO6 | 525 |
35. | 31.366 | 6ß-Hydroxy-17-oxo-4,5-secoandrostan-4-oic acid | 59251-83-1 | 2.53 | 821 | C19H30O4 | 322.4 |
Concentration (mg mL−1) | Zone of Inhibition (mm) (Mean ± SD) | ||||
---|---|---|---|---|---|
Gram-Negative Bacteria | Gram-Positive Bacteria | ||||
E. coli * | P. aeruginosa * | K. pneumoniae * | S. typhi * | S. aureus ** | |
10 | 13.0 ± 0.57 | 10.0 ± 5.18 | 14.0 ± 0.57 | 7.0 ± 6.08 | 10.0 ± 0.57 |
20 | 14.0 ± 0.57 | 12.0 ± 0.57 | 15.0 ± 0.57 | 7.0 ± 6.08 | 12.0 ± 1.15 |
40 | 14.0 ± 0.57 | 12.0 ± 0.57 | 15.0 ± 0.57 | 8.0 ± 6.65 | 12.0 ± 0.57 |
80 | 13.0 ± 0.57 | 13.0 ± 0.57 | 13.0 ± 0.57 | 9.0 ± 7.57 | 13.0 ± 0.57 |
160 | 19.0 ± 0.57 | 18.0 ± 0.57 | 17.0 ± 0.57 | 8.0 ± 6.92 | 16.0 ± 1.52 |
PC (10 µg) | 26.0 ± 1.0 | 29.0 ± 1.0 | 28.0 ± 0.57 | 29.0 ± 1.73 | 28.0 ± 1.52 |
MIC (mg mL−1) | 8.0 ± 0.56 | 2.0 ± 0.57 | 8.0 ± 0.55 | 32.0 ± 0.57 | 16.0 ± 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabi, M.; Zargar, M.I.; Tabassum, N.; Ganai, B.A.; Wani, S.U.D.; Alshehri, S.; Alam, P.; Shakeel, F. Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia. Plants 2022, 11, 1667. https://doi.org/10.3390/plants11131667
Nabi M, Zargar MI, Tabassum N, Ganai BA, Wani SUD, Alshehri S, Alam P, Shakeel F. Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia. Plants. 2022; 11(13):1667. https://doi.org/10.3390/plants11131667
Chicago/Turabian StyleNabi, Masarat, Mohammed Iqbal Zargar, Nahida Tabassum, Bashir Ahmad Ganai, Shahid Ud Din Wani, Sultan Alshehri, Prawez Alam, and Faiyaz Shakeel. 2022. "Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia" Plants 11, no. 13: 1667. https://doi.org/10.3390/plants11131667
APA StyleNabi, M., Zargar, M. I., Tabassum, N., Ganai, B. A., Wani, S. U. D., Alshehri, S., Alam, P., & Shakeel, F. (2022). Phytochemical Profiling and Antibacterial Activity of Methanol Leaf Extract of Skimmia anquetilia. Plants, 11(13), 1667. https://doi.org/10.3390/plants11131667