
Citation: Tayade, R.; Yoon, J.; Lay, L.;

Khan, A.L.; Yoon, Y.; Kim, Y.

Utilization of Spectral Indices for

High-Throughput Phenotyping.

Plants 2022, 11, 1712. https://

doi.org/10.3390/plants11131712

Academic Editors: Sindhuja

Sankaran and Michael Gomez

Selvaraj

Received: 30 May 2022

Accepted: 24 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Utilization of Spectral Indices for
High-Throughput Phenotyping
Rupesh Tayade 1,† , Jungbeom Yoon 2,†, Liny Lay 1,†, Abdul Latif Khan 3, Youngnam Yoon 4,*
and Yoonha Kim 1,*

1 Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
rupesh.tayade@gmail.com (R.T.); layliny22@gmail.com (L.L.)

2 Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science,
Rural Development Administration, Wanju 55365, Korea; beomi7944@korea.kr

3 Department of Engineering Technology, University of Houston, Texas, TX 77204, USA; latifkust@gmail.com
4 Crop Production Technology Research Division, National Institute of Crop Science,

Rural Development Administration, Miryang 50424, Korea
* Correspondence: yoonyn@korea.kr (Y.Y.); kyh1229@knu.ac.kr (Y.K.); Tel./Fax: +82-53-950-5710 (Y.K.)
† These authors contributed equally to this work.

Abstract: The conventional plant breeding evaluation of large sets of plant phenotypes with precision
and speed is very challenging. Thus, consistent, automated, multifaceted, and high-throughput
phenotyping (HTP) technologies are becoming increasingly significant as tools to aid conventional
breeding programs to develop genetically improved crops. With rapid technological advancement,
various vegetation indices (VIs) have been developed. These VI-based imaging approaches, linked
with artificial intelligence and a variety of remote sensing applications, provide high-throughput
evaluations, particularly in the field of precision agriculture. VIs can be used to analyze and predict
different quantitative and qualitative aspects of vegetation. Here, we provide an overview of the
various VIs used in agricultural research, focusing on those that are often employed for crop or
vegetation evaluation, because that has a linear relationship to crop output, which is frequently
utilized in crop chlorophyll, health, moisture, and production predictions. In addition, the following
aspects are here described: the importance of VIs in crop research and precision agriculture, their
utilization in HTP, recent photogrammetry technology, mapping, and geographic information system
software integrated with unmanned aerial vehicles and its key features. Finally, we discuss the
challenges and future perspectives of HTP technologies and propose approaches for the development
of new tools to assess plants’ agronomic traits and data-driven HTP resolutions for precision breeding.

Keywords: hyperspectral image; vegetation indices; high-throughput phenotyping; remote sensing;
unmanned aerial vehicles

1. Introduction

By 2050, the human population is projected to reach 9.7 billion, and the increasing food
demand for the rising population would require a 25% to 70% increase in crop production
compared to its current levels [1]. Achieving this target, however, poses a challenge to
plant breeders, because food production will have to grow at a rate of 2.4% each year, but
the actual growth rate is only 1.3%, with yields stagnating in up to 40% of cereal fields [2].
To increase crop production while reducing its impact on the environment, sustainable
intensification in agriculture needs to be developed by adopting modern techniques [3].
One of the easiest ways to maximize the efficiency of major food and feed crops worldwide
is to boost plant breeding and propagation.

In recent years, high-throughput phenotyping (HTP) has attracted considerable atten-
tion, leading to the creation of many new protocols for documenting different plant traits
of particular interest [4]. The crop improvement research field, however, must adapt to
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address the growing threats posed by climate change [5]. The effects of climate change
vary depending on geographical areas, demanding targeted strategies for the world’s
numerous agroecological regions. Due to inadequate access to capital and the adoption of
less productive farming methods, farmers from low-income countries are highly vulnerable
to climate change [6]. As the growing crop production will increase the environmental
footprint of agriculture, a sustainable intensification of agricultural practices will be re-
quired. Agricultural practices including modern plant breeding, crop cultivation, crop
management [3], and HTP methods are ideally suited for improving crop productivity,
as well as developing climate-resilient crops. Due to constant environmental changes
and their impact on plant growth, it is necessary to gather data from more plant samples
to identify common structural and physiological features. For this reason, HTP aims to
characterize a large number of populations accurately [7]. Together with HTP, modern
plant breeding or new genomics tools, such as genomic selection technology, have been
considered the frontiers of crop breeding programs [8]. The current progress in sensors,
aeronautics, and computing systems are paving the way for the development of effective
field-based phenotyping platforms [9].

Most common HTP platforms consist of the utilization of unmanned vehicles contain-
ing various image sensors which are: (i) red-green-blue (RGB) imaging, (ii) infrared (IR)
imaging, (iii) hyperspectral imaging, (iv) thermal imaging, (v) fluorescence imaging, (vi)
light detection and ranging (LiDAR), and (vii) satellite imaging [10] (Figure 1). Among
them, RGB and hyperspectral imaging tools are widely used to evaluate the quantitative
and qualitative attributes of plants. In most cases, raw image data need to be converted
to other indexes, because plants show different reflectance values at specific wavelengths
depending on their growth stages and conditions (Kim et al., 2021). Typically, vegetation
indices (VIs) are broadly used to measure plant health and growth conditions (soil property,
water or moisture, and nutrient content).

VIs represents the statistical transformation of the initial spectral reflectance, and
they are obtained using two or more wavebands to measure and interpret the incidence
and condition of vegetation, such as the biomass and canopy attributes [11–14]. These
indices allow reliable spatial and temporal intercomparisons of terrestrial photosynthetic
activity and canopy structural variations [14]. The VIs obtained from remote sensing-based
canopies are simple and effective algorithms for the quantitative and qualitative evaluation
of vegetation cover, robustness, and growth dynamics. As they are simple transformations
of spectral bands, they are computed directly without any bias or assumptions regarding
land cover class, soil type, or climatic conditions. VIs assist researchers in monitoring
seasonal, interannual, and long-term structural variations, as well as the phenological
and biophysical parameters of vegetation cover [14]. As previously mentioned, VIs can
predict plant growth conditions using numerous spectral reflectance bands, which can
easily be acquired by spectral cameras, therefore they are particularly adequate in HTP.
However, there is limited information about the use of VIs in the agricultural sector for
multiple traits (physiological, biotic and abiotic), replicated multi environment and large
populations evaluation. Thus, it is of great interest to understand different VI and HTP
applications for crop improvement. In this study, we provide an overview of VIs and HTP
and summarize the utilization of VIs for HTP in the agricultural research on the basis of an
intensive literature survey.
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Figure 1. Different spectral reflectance curves for vegetation, modified from [15]. The main absorp-
tion and reflectance characteristics are represented. 
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Figure 1. Different spectral reflectance curves for vegetation, modified from [15]. The main absorption
and reflectance characteristics are represented.

2. Types of Vegetative Indices in Crop Research

In general, most substances including plants have three interactions/responses to
electromagnetic energy (for example light) that is reflected, transmitted, or absorbed. In
other words, each material or vegetation has its spectral signature/reflectance which can
be measured in three key wavelength bands (Figure 1). In the case of plants, the unique
interaction with solar radiation distinguishes them from other natural materials. Plants
use photosynthesis to generate energy and, as a result, absorb a lot more blue and red
light. On the other hand, they strongly reflect green and near-infrared (NIR) light [10].
Plants consist of various materials—such as water, nutrients, and pigments—therefore,
they present variations across the spectrum, which provide important information related
to water, nutrient, and pigment contents [10,16]. The spectrum variation is often described
as VIs for the prediction of plant growth conditions [11].

Over the years VI research has evolved, and numerous new VIs have been developed
to understand the aerial imagery included in the literature [17–20]. The chronological
information details of most of the vegetation indices developed and reported by researchers
are presented in (Table 1). Among them, 25 are broadly used in plant research because
they are very effective in determining various features, such as leaf greenness, light use
efficiency, leaf pigment, and water content [10,20]. Most VIs are calculated by two or more
reflectance wavelengths, which are normally involved in the concentration of photosyn-
thetic pigments [10]. However, among these VIs, very few have been critically compared or
tested. Therefore, here we describe several selected indices that are most often used for crop
or vegetation evaluation, and that have the linear link with crop yield, pigments, health,
and canopy water content, and are also often used in agricultural production estimation.
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Table 1. Vegetation index types and their equation and utilization in plant phenotyping.

Index/Abbreviations Formula Utilization Crops Reference

Anthocyanin reflectance
index 1 (ARI1) ARI1 = 1

R550
− 1

R700

Estimates anthocyanin
accumulation in leaves

Maple, cotoneaster,
dogwood, and
pelargonium

[21]

Anthocyanin reflectance
index 2 (ARI2) ARI2 = R800

[
1

R550
− 1

R700

] Estimates anthocyanin
accumulation in leaves

Maple, cotoneaster,
dogwood, and
pelargonium

[21]

Atmospherically resistant
vegetation index (ARVI) ARVI = R800 +[R680 −γ(R450−R680)]

R800+[R680−γ(R450−R680)]

Utilized for remote
sensing of vegetation and
atmospheric effect

— [22]

Carotenoid index (CARI) CRI2 = R720
R510
− 1

Detects leaf carotenoid
content Winter wheat [23]

Carotenoid reflectance
index 1 (CRI1) CRI1 = 1

R510
− 1

R550

Detects leaf carotenoid
content

Norway maple,
chestnut, and beech [24]

Carotenoid reflectance
index 2 (CRI2) CRI2 = 1

R510
− 1

R700

Determines carotenoid
content in leaves

Norway maple,
chestnut, and beech [24]

Red-edge chlorophyll
index CIrededge = RNIR

Rred edge − 1

Determines chlorophyll
content in both
anthocyanin-containing
and anthocyanin-free
leaves

Soybean and maize [25,26]

Carter stress index (CTR1) CTR1 = R695
R420

Utilized to derive the
chlorophyll content of
winter wheat under stripe
rust stress

Wheat [27]

Carter stress index (CTR2) CTR2 = R695
R760

Detects the nutritional
status of crops Maize [28]

Cellulose absorption (CAI) CAI = 0.5 (R2000 + R2200)− R2100
Estimates crop residue
cover

Corn, soybean, and
wheat [29,30]

Dual-polarization SAR
vegetation index (DPSVI)

DPSVI =

σvh(i) [
(σvv(max)σvh(i) − σvv(i)σvh(i) + σ2

vh(i))+

(σvv(max)σvv(i) − σ2
vv(i) + σvh(i) + σvv(i) )

]

√
2× σvv(i)

Utilized to estimate
biomass and vegetation

Elephant foot yam,
turmeric, onion, grass,
cassava manioc, millet
crops, and black gram

[31,32]

Enhanced vegetation
index (EVI) EVI = 2.5× (NIR−RED)

(NIR+6 × RED−7.5 × Blue+1)

Utilized to assess canopy
structural variations, leaf
area, canopy type, plant
physiognomy, and canopy
architecture

Grass/shrub, savanna,
and tropical forest
biomes

[14]

Growing degree days
mid-stay-green index
(GDDmidstg,i)

GDDmidstg,i = GDDHeading,i +
OnSenGDDAS,i−GDDHeading,i

2

Utilized for biomass
determination, canopy
temperature, and
greenness indicator

Wheat [33]

Gitelson and Merzlyak
index (GM1) GM1 = R750

R550

Measures biophysical
parameters Sunflower [34]

Gitelson and Merzlyak
index (GM2) GM2 = R750

R700
Detects drought stress Wheat [35]

Global environmental
monitoring index (GEMI)

GEMI = eta(1 − 0.25× eta) − (RED−0.125)
(1−Red)

where eta =
2(NIR2−RED2)+1.5 × NIR+0.5 × RED

NIR+RED+0.5

Useful to compare
observations under
varying atmospheric and
illumination conditions;
more sensitive to actual
surface conditions than SR
or NDVI over the bulk of
the range of vegetation
conditions

— [36]

Green atmospherically
resistant index (GARI) GARI = NIR−[Green−γ(Blue−Red)]

NIR+[Green−γ(Blue−Red)]

Measures the rate of
photosynthesis and
monitors plant stress

Maple, chestnut [37]

Green chlorophyll index
(GCI) GCI =

( RNIR
RGreen

)
×−1

Measures leaf chlorophyll
and carotenoids content

Maple, chestnut, wild
vine, and beech [38]

Green difference
vegetation index (GDVI) GDVI = NIR− Green

Utilized to improve
in-season estimates of N
requirements

Corn [39]

Green leaf index (GLI) GLI = (Green−Red)+(Green−Blue)
(2× Green)+Red+Blue

Utilized to map and
document the extent and
intensity of goose impacts
on wheat fields

Wheat [40]
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Table 1. Cont.

Index/Abbreviations Formula Utilization Crops Reference

Green optimized
soil-adjusted vegetation
index (GOSAVI)

GOSAVI = NIR−Green
NIR+Green+0.16

Utilized to improve
in-season estimates of N
requirements

Corn [39]

Green ratio vegetation
index (GRVI) GRVI = NIR

Green

Utilized to improve
in-season estimates of N
requirements

Corn [39]

Green soil-adjusted
vegetation index (GSAVI) GSAVI = 1.5 × (NIR−Green)

(NIR+Green+0.5)

Utilized to improve and
predict nitrogen
requirements

Corn [39]

Green vegetation index
(GVI)

GVI =
(−0.2848 × TM1) + (−0.2435 × TM2) +
(−0.5436 × TM3) + (0.7243 × TTM4) +
(0.0840 × TM5) + (−0.1800 × TM7)

Minimizes the effects of
background soil while
emphasizing green
vegetation to estimate and
correct atmospheric haze
and moisture effects

Wheat [41]

Greenness index (G) G = R554
R667

Evaluates corn nitrogen
status under different
sulfur levels

Corn [42]

Hyperspectral narrow
bands (HNB) HNB = R2−R1

R1+R2

Utilized to determine
biophysical (biomass, leaf
area index) and
biochemical quantities
(leaf nitrogen and plant
pigments)

Wheat, maize, rice,
barley, soybeans, pulses,
cotton, and alfalfa

[43,44]

Hyperspectral vegetation
indices (HVIij) HVIij = Rj−Ri

Rj+Ri

Utilized to determine
biophysical (biomass, leaf
area index) and
biochemical quantities
(leaf nitrogen and plant
pigments)

Wheat, maize, rice,
barley, soybeans, pulses,
cotton, and alfalfa

[43,44]

Infrared percentage
vegetation index (IPVI) IPVI = NIR

NIR−Red

Significant in the
monitoring of global
biomass

— [45]

Index R780/R700 and
R780/R740

I = R780
R700

and R780
R740

Determine the above
nitrogen and biomass Wheat [46]

Leaf area index (LAI) LAI = (3.618 × EVI − 0.118)
Utilized to estimate foliage
cover and to forecast crop
growth and yield

Winter barley and
wheat, spring barley,
peas, grass, maize, and
beets

[47]

Lichtenthaler index (LIC1) LIC1 = R790−R680
R790+R680

Detects bacterial wilt
disease in Brinjal Brinjal [48]

Lichtenthaler index (LIC2) LIC2 = R440
R690

Measures leaf nitrogen
content Wheat [49]

Lignin cellulose
absorption index (LCAI)

LCAI = 100 × [(R2185 to 2225 − R2145 to 2185) +
(R2185 to 2225 − R2295 to 2365)]

Utilized to quantify crop
residue cover and classify
tillage intensity over
diverse lands

Corn, soybean, wheat,
tall fescue, and alfalfa [50]

Modified chlorophyll
absorption in reflectance
index (MCARI)

MCARI = [(R700 − R670)−
0.2 × (R700 − R550)] ×

(
R700
R670

)
Utilized to identify in-field
heterogeneity for field
segmentation as a feature
of plant morphology and
chlorophyll stress status

Cotton [51]

Modified chlorophyll
absorption in reflectance
index (MCARI1)

MCARI1 = 1.2×
[2.5 × (R790 − R670)−1.3 × (R790 − R550)]

Determines nitrogen and
chlorophyll levels in
bean-plant leaves

Bean [52]

Modified chlorophyll
absorption ratio index
improved (MCARI2)

MCARI2 = 1.5 [2.5 (R800−R670)−1.3 (R800−R550)]√
(2 ×R800+1)2 −(6 ×R800−

√
R670)−0.5

Predicts the LAI of crop
canopies

Corn, wheat, and
soybean [53]

Modified nonlinear index
(MNLI) MNLI = (NIR2−Red)×(1+L)

NIR2+Red+L

Utilized to interpret soil
background and improve
crop discrimination, crop
yield, crop stress,
pest/disease surveillance,
and disaster management

— [54]
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Table 1. Cont.

Index/Abbreviations Formula Utilization Crops Reference

Modified red-edge
normalized difference
vegetation index
(MRENDVI)

MRENDVI = R750−R705
ρ750+ρ705 −2× ρ445

Utilized to estimate
chlorophyll content and
determine the variation in
reflectance caused by
chlorophyll absorption

Eucalyptus [55]

Modified red-edge simple
ratio (MRESR) MRESR = R750−R445

R705−R445

Utilized to estimate
pigment content and
carotenoid/chlorophyll
ratios in green leaves

Wide species [56]

Modified simple ratio
(MSR) MSR =

( NIR
Red )−1(√
NIR
Red

)
+1

Advantageous in field
data evaluation and less
sensitivity to canopy
optical and geometrical
properties

Jackpine and black
spruce [57]

Modified soil-adjusted
vegetation index 2
(MSAVI2)

MSAVI2 =
2×NIR+1−

√
(2 ×NIR+1)2−8(NIR−Red)

2

Reduces soil noise and
increases the dynamic
range of the vegetation
signal

Cotton [58]

Modified triangular
vegetation index
improved (MTVI2)

MTVI2 =
1.5 [ 1.2(R800−R550)−2.5 (R670−R550)]√

(2 × R800 +1)2−(6 × R800−5×
√

R670 )−0.5

Determines chlorophyll
content variations and
linearly related to green
LAI

Corn, wheat, and
soybean [53,59]

Modified triangular
vegetation index (MTVI)

MTVI =
1.2[1.2(R800 − R550)− 2.5(R670 − R550)

Determines chlorophyll
content variations and
linearly related to green
LAI

Corn, wheat, soybean [53]

Moisture stress index
(MSI) MSI = R1599

R819

Determines leaf and
canopy water content

California live oak, blue
spruce, sweetgum,
soybean, maple, apricot,
mulberry, and cherry
laurel

[60,61]

Nonlinear index (NLI) NLI = NIR2−Red
NIR2+Red

Linearizes relationships
with surface parameters
that tend to be nonlinear

Corn and aspen [62]

Normalized difference
infrared index (NDII) NDII = R819−R1649

R819 +R1649

Estimates leaf and canopy
water content, and
correlates spectral
response to ambient soil
salinity

Smooth cordgrass [63]

Normalized difference
lignin index (NDLI) NDLI =

log( 1
R1754

)−log
(

1
R1680

)
log( 1

R1754
)+log

(
1

R1680

)
Determines biochemical
concentration (nitrogen
and lignin) and canopy
structural features

Wide species [64–66]

Normalized difference
nitrogen index (NDNI) NDNI =

log( 1
R1510

)−log
(

1
R1680

)
log( 1

R1510
)+log

(
1

R1680

)
Determines biochemical
concentration (nitrogen
and lignin) and canopy
structural features

Wide species [64]

Normalized difference
vegetation index
(NDVI)

NDVI = RNIR−RRED
RNIR+RRED

Predicts chlorophyll
content in rice plants
under stress from heavy
metal condition

Rice [67]

Normalized difference
water index (NDWI) NDWI = (R857−R1241)

(R857 + R1241)

Detects vegetation liquid
or water content

Corn, soybean, and
redwood [68,69]

Normalized multiband
drought index (NMDI) NMDI = R860−(R1640−R2130)

R860+(R1640 +R2130)

Monitors soil and
vegetation moisture from
space, detects fires

— [70,71]

Normalized
phaeophytization index
(NPQI)

NPQI = R415−R435
R415+R435

Detects mite effects on
apple trees Apple [72]

Normalized pigment
chlorophyll index (NPCI) NPCI = R680−R430

R680+R430

Evaluates chlorophyll loss
and leaf senescence
caused by aphid feeding

Wheat [73]

Plant biochemical index
(PBI) PBI = R810

R560

Determine total
chlorophyll and nitrogen
concentrations

Rice, sorghum, mung
bean, and pigeon pea [74]
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Table 1. Cont.

Index/Abbreviations Formula Utilization Crops Reference

Photochemical reflectance
index (PRI) PRI = R531−R570

R531+R570

Rapidly evaluates leaf
water status to estimate
the water stress index of
crops

Quinoa [72]

Plant senescence
reflectance index (PSRI) PSRI = R680−R500

R750

Estimates pigment content
depending on the onset,
stage, relative rates, and
kinetics of leaves and
fruits

Maple, chestnut,
potato, coleus, lemon,
and apple

[75]

Reflectance at 1200 nm
(Ratio1200)

Ratio1200 =
2 × Avg (R1180 to 1220)

Avg (R1090 to 1110)+Avg (R1265 to 1285)

Determine shoot biomass,
phenology, morphology,
and canopy structural
parameters

Wheat [33]

Red-edge normalized
difference vegetation
index (RENDVI)

RENDVI = R750−R705
R750+R705

Quantitative estimation of
pigments

Horse chestnut and
Norway maple [76]

Red-edge position index
(REPI) — Estimates chlorophyll

concentration in fields Slash pine [77]

Red-green ratio index
(RGRI) RGRI = ∑699

i=600 Ri

∑599
j=500 Rj

or RRED:RGREEN

Determines chlorophyll,
xanthophyll cycle,
anthocyanin contents, and
the change in
photochemical

Sunflower, Douglas,
and coast live oak [78]

Renormalized difference
vegetation index (RDVI) RDVI = (NIR−Red)√

(NIR+Red)

Utilized to investigate
healthy vegetation,
suitable for larger
vegetation coverages and
denser canopies

Corn, wheat, and
soybean [53,79]

Simple ratio index (SR) SR = RNIR
RRED

Utilized to estimate crop
growth and to forecast
grain yield

Wheat [80]

Simple ratio pigment
index (SRPI) SRPI = R430

R680

Utilized for large-area
monitoring of plants’ N
status in wheat, allows the
precise application of
fertilizers

Wheat [81]

Soil-adjusted vegetation
index (SAVI) SAVI = 1.5 ×(NIR−Red)

(NIR+Red+0.5)

Best used in areas with
relatively sparse
vegetation where the soil
is visible through the
canopy

Cotton and range grass [82]

Structure-insensitive
pigment index (SIPI) SIPI = R800−R445

R800−R680

Detects pest damage on
wheat through the
identification of
chlorophyll loss and
estimates carotenoids and
chlorophyll content ratio

Maize, wheat, tomato,
soybean, sunflower,
and sugar beet

[83,84]

Sum green index (SGI) −

Detects changes in
vegetation greenness and
vegetation canopy
opening

Wheat [85]

Standardized LAI
determining index
(sLAIDI)

sLAIDI =
(

R1050−R1250
R1050+R1250

) Determine LAI, more
accurately extract
biochemical parameters

Apple, peach, citrus,
and orchard [86,87]

Transformed chlorophyll
absorption reflectance
index (TCARI)

TCARI =
3
[
(R700 − R670)− 0.2(R700 − R550)

(
R700
R670

)] Predicts the LAI of crop
canopies — [53]

Triangular vegetation
index (TVI) TVI R120(R750−R550)−200(R670−R550)

2

Estimates the green leaf
area index and canopy
chlorophyll density

— [88]

Transformed difference
vegetation index (TDVI) TDVI = 1.5

[
(NIR−Red)√

NIR2+Red+0.5

] Useful for monitoring
vegetation cover in urban
environments

Cotton [89]

Triangular greenness
index (TGI)

TGI =
( λRed−λBlue )(RRed−RGreen)−( λRed−λGreen)(ρRed−ρBlue)

2

Detects leaf chlorophyll
content and green
vegetation

Corn, soybean,
sorghum, dandelion,
sweetgum, tulip tree,
and small-leaf linden

[90]
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Table 1. Cont.

Index/Abbreviations Formula Utilization Crops Reference

Visible atmospherically
resistant index (VARI) VARI = Green−Red

Green+Red−Blue

Estimates the fraction of
vegetation in
environments with low
sensitivity to atmospheric
effects

Wheat [24]

Vogelmann red-edge
index 1 (VREI1) VREI1 = R740

R720

Quantifies leaf-level
chlorophyll content Sugar maple [91]

Vogelmann red-edge
index 2 (VREI2) VREI2 = R734−R747

R715+R726

Quantifies leaf-level
chlorophyll content Sugar maple [91]

Water band index (WBI) WBI = R970
R900

Estimates water status and
relative water content

Gerbera, pepper, and
bean [92,93]

Wide dynamic range
vegetation index (WDRVI) WDRVI = (a ×NIR−Red)

(a × NIR+Red)

Aids in the robust
characterization of crops
physiological and
phenological
characteristics, dry matter
content, water content,
leaf mesophyll structure
index, and some other less
influential factors

Wheat and maize [24,94]

World view improved
vegetation index (WV-VI) WV−VI = (NIR2−Red)

(NIR2 +Red)

Determines moisture
content, vegetation health;
distinguishes natural
features from man-made
objects and supports land
mapping

— [95]

Zarco-Tejada and Miller
(ZMI) ZMI = R750

R710
Estimates leaf nitrogen Potato [96]

Note: ‘—’ Information is not available, all the equation details can be found in the respective publication.

2.1. Determination of Leaf Greenness

The VIs associated with leaf greenness determine photosynthetic pigments, which
are present in green vegetation. They record chlorophyll and utilize the red and NIR
wavelength spectrum to assess green vegetation. The following two VIs are widely used by
researchers as leaf greenness determinants.

i. Normalized difference vegetation index (NDVI): Typically a simple and suitable
indicator, first proposed by Rouse Jr. et al. [97], this index calculates and differentiates
vegetation from non-vegetation zones based on reflectance in the red and NIR wavelengths.
NDVI is sensitive to chlorophyll content. The values of this index are in the range (−1.0–1.0).
The common range for healthy green vegetation is 0.2 to 0.9. The following Equation (1) is
used for its calculation:

NDVI =
RNIR − RRED
RNIR + RRED

(1)

where RNIR and RRED represent NIR wavebands and spectral reflectance in the red respectively.
ii. Modified chlorophyll absorption in reflectance index (MCARI): MCARI is an

alternative index that was originally defined by [98], and was mainly developed to study
variations in chlorophyll content. However, researchers consider MCARI as very sensitive
to low chlorophyll content, as it is influenced by non-photosynthetic materials/pigments,
background noise, and reflectance. The value of this index ranges from −1 to 1. The
common range for healthy green vegetation is 0.2 to 0.7. The following Equation (2) is used
to define this index:

MCARI = [(R700 − R670)− 0.2 × (R700 − R550)] ×
(

R700

R670

)
(2)

where R denotes the reflectance for chlorophyll absorption at the 670 nm waveband relative
to the reflectance at the 550 nm and 700 nm wavebands.
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2.2. Determination of Light Use Efficiency

The VIs used to determine light use efficiency are indicators of how well vegetation
can absorb incident light to perform photosynthesis. These VIs are useful in precision
agriculture, as they assist in the estimation of growth and productivity. In addition, they
utilize visible spectrum reflectance measurements to assess the vegetation’s total light
consumption efficiency by taking into account interactions between different pigments. A
couple of well-established light use efficiency VIs are mentioned below.

i. Photochemical reflectance index (PRI): PRI is a reflectance assessment of green
vegetation that is sensitive to variations in carotenoid pigments, particularly xanthophyll.
Changes in carotenoid pigments are indicative of per unit energy absorbed during pho-
tosynthesis as light use efficiency, or of the rate of carbon dioxide absorbed by green
vegetation. The range for a PRI is −1 to 1, where healthy vegetation generally often
ranges between −0.2 and 0.2. PRI was originally known as the “physiological reflectance
index” [99–101] and the equation below is used for its calculation:

PRI =
R531 − R570

R531 + R570
(3)

where R denotes the reflectance at the waveband of concern, particularly light absorption
for xanthophyll at the 531 nm waveband, and to minimize the effects of chloroplast mobility,
a reference waveband was employed at 570 nm.

ii. Red-green ratio index (RGRI): This index uses the broad wavelengths called red
band (600–699 nm), and green band (500–599 nm), and is a reflectance measurement that
compares anthocyanin-induced leaf redness to chlorophyll. The red-green ratio has been
used to forecast the development of vegetation in canopies, and also to determine leaf
production and stress and, in some instances, flowering. The range of an RGRI is from 0.1
to >8, where healthy green vegetation usually falls between values of 0.7 to 3. This index is
defined by the equation below proposed by [78]:

RGRI = RRED : RGREEN (4)

where R is the reflectance, RED refers to a broad range red band at 600–699 nm, and GREEN
to a broad range green band at 500–599 nm.

2.3. Determination of Leaf Pigment

Leaf pigment VIs are used to determine pigments (anthocyanin and carotenoid), which
are present in higher amounts in stressed vegetation, and they do not record chlorophyll.
The following two VIs are widely used as leaf pigment determinants.

i. Anthocyanin reflectance index 1 (AR1): This index is based on reflectance measure-
ments in the visible spectrum and quantifies stressed vegetation. Typically, alterations of,
or increases in ARI1 suggest canopy modification caused by either new growth or death.
The values of this index ranged from 0 to 0.2; however, it can vary with the plant species
from −∞ to ∞. The estimate of anthocyanin accumulation is calculated by the equation
below described in [21]:

ARI1 =
1

R550
− 1

R700
(5)

where R is the reciprocal reflectance at the waveband of concern, 550 nm and 700 nm.
ii. Carotenoid reflectance index 1 (CRI1): this index is considered as a reflectance

measure sensitive to the carotenoid pigments found in plant leaves and is mostly applicable
in the measurement of stressed vegetation. Typically, stressed or weak vegetation presents
a greater accumulation of carotenoids. The values of this index range from 0 to >15. The
common range for green vegetation is between values of 1 and 12. CRI1 is calculated based
on the well-defined equation mentioned below [24]:
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CRI1 =
1

R510
− 1

R550
(6)

where R is the reciprocal reflectance at the waveband of concern; at 510 nm both carotenoids
and chlorophyll affect reflectance, and at 550 nm, only chlorophyll affects reflectance.

2.4. Determination of Canopy Water Content

The VIs that determines canopy water content use reflectance measurements in the
near-infrared and shortwave infrared ranges. These VIs provide an indication of how
much water is contained within the leafy canopy. The presence of a high water content in
vegetation suggests that plants are healthier and more likely to grow faster and tolerate
extreme conditions (high temperature, fires, and drought). The following VIs are widely
applicable for the measurement of canopy water content.

i. Moisture stress index (MSI): This index is linearly correlated to the relative water
content in leaves. Unlike in other water VIs, the relationship between values of the MSI
is reversed; higher values indicate a higher water stress and a lower water content. The
values of this index range from 0 to >3. The common range for green vegetation is 0.4 to 2.
The following equation is used for the calculation of this index [60,61]:

MSI =
(

R1599

R819

)
(7)

where R is the reflectance at the waveband of concern; water absorbs shortwave infrared
light at wavebands around 1599 nm. Absorption at 819 nm is used as a reference since it
does not get affected by changes in water content.

ii. Normalized multiband drought index (NMDI): This index was initially proposed
for monitoring soil and vegetation moisture from space, as was described in [71]. Index
values range from 0.7 to 1 for dry soil, 0.6 to 0.7 for soil with intermediate moisture, and less
than 0.6 for wet soil. It was developed based on three different wavelengths (NIR, centered
around 860 nm, and two others in the shortwave infrared, centered around 1640 nm and
2130 nm), and is calculated as follows:

NMDI =
R860 − (R1640 − ρ2130)

R860 + (R1640 + ρ2130)
(8)

where R is the reflectance at the waveband of concern, particularly reflectance observed
by a satellite sensor at the 860 nm, 1640 nm, and 2130 nm bands, respectively. It uses the
difference (slope) between two absorption bands (1640 nm and 2130 nm), as the soil and
vegetation water-sensitive band.

Apart from the above-mentioned widely used VIs, with recent technological advance-
ment, several additional VIs have also been developed. Examples include the ratio spectral
index and normalized difference spectral index, which are used for recognizing vegetation
stress caused by hydrocarbon pollution [102], the enhanced vegetation index (EVI) [14,103],
the perpendicular vegetation index, and the atmospherically resistant vegetation index
(ARVI) [104]. Furthermore, these VIs improve sensitivity in high biomass environments by
reducing soil background (brightness, color) and other atmospheric impacts (cloud, leaf
canopy shadow, and cloud shadow). However, different VIs have their own distinct set
of spectra that reveal information regarding specific plant properties. Depending on indi-
vidual research objectives or interests, these VIs can be integrated into agriculture for both
quantitative and qualitative evaluation of vegetation to obtain precise information about
crops. However, most of these indices have indeed been evaluated only for a few species,
so it is unclear whether they will be applicable across a wide range of plant species with
different leaf characteristics and phenotypic, or morphological, expression. Thus, further
comparative and validation studies of the numerous VIs developed for crop assessment
are needed.
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3. Utilization of Vegetation Indices in Crop Research
3.1. Importance in Breeding Programs

The continuous advancement of breeding techniques allows an increase in the pace of
genetic enhancement [105]. The selection of desired plants based on phenotypes has been
performed by farmers and plant breeders long before DNA and molecular markers were
discovered. Crop breeding is a game of numbers: the more crosses and conditions used for
selection, the higher the chance of superior varieties to be found. Plant breeders must be
able to determine the best progeny easily and specifically, by phenotyping vast numbers of
lines. There is a need to improve breeding productivity to satisfy potential future needs.
Advances in high-throughput genotyping have produced fast and inexpensive genomic
knowledge, and this technology has paved the way for the creation of thousands of recom-
binant inbred lines for phenotyping broad mapping populations and diversity panels [106].
As molecular breeding strategies (such as marker-assisted recurrent selection and genomic
selection) concentrate mostly on genotypic information-based choices, phenotypic informa-
tion is still needed [107]. Similarly, to classify promising events in transgenic experiments,
phenotyping is also needed [108,109]. To capitalize on advances in traditional, molecular,
and transgenic breeding, and ensure the genetic enhancement of crops, successful phe-
notyping is likely to be necessary. The demand for efficient phenotyping methods has
been introduced in numerous domains. In many cases, phenotypes are robust predictors
of important biological traits, such as disease and mortality [110]. Molecular biologists
and breeders believe that advanced molecular techniques can only be useful in breeding
if the collection of quantitative traits is based on reliable phenotyping techniques [111].
High-performance phenotyping techniques can transform the plant breeding process by
accelerating the generation advancing process [8].

3.2. Importance in Precision Agriculture

Overall, yield and plant performance are linked to traditional phenotypes—such as
seedling vigor, days to flowering time, and terminal plant height—and a considerable
amount of research tried to measure these phenotypes by HTP [8,9,16,112]. Therefore,
more advancements in phenotyping techniques are needed to enhance breeding programs,
accelerate genetic gains, and simplify the tracking of plants’ health status to minimize
qualitative and quantitative losses during crop development. For phenotyping approaches
to be approved by both breeders and producers, cost-effectiveness is a very important
criterion for adopting the technique. Sustainable intensification in cultivation allows bred
cultivars to obtain an optimum yield capacity, ensure more accurate crop management, and
reduce the use of fertilizers, chemicals, and irrigation [112]. Phenotyping also focuses on
optimizing predictable yields and maintaining the efficiency of crops [3]. In comparison to
plant breeding, precise agriculture is used to enhance management methods, which results
in the collection of suitable genotypes [113]. The main challenges that can be addressed by
field phenotyping are irrigation, fertilization, and disease control to secure crop production.
In phenotyping, various monitoring techniques for the evaluation, severity, and recording
of plant health are essential. Research studies on the development of a suitable combination
of sensors, vehicles, and analysis methods to customize phenotyping, based on specific
interests, are promising in this sector [4].

In plants, phenotypic variation can be the result of a complex web of interactions
between genotypes and the environment [114]. Therefore, precision phenotyping can
determine which component in the set of phenotypes can predict specific parameters in the
field, and the acquisition of phenotypic data allows a more precise description of G × E
interactions [7]. Precise phenotyping facilitates the identification of quantitative trait loci,
which can govern yield across different environmental conditions; but within the context of
a more effective transition from the results of stress-related studies to improved cultivars,
the difficulty of implementing accurate phenotyping is a widely recognized obstacle [115].
Thus, phenotyping techniques capable of revealing plant responses to environmental
challenges, in both in-lab and field experimental conditions, are required [116]. In a
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more general sense, as they represent the technical basis of plant phenomics, precision
phenotyping methods are both intensively and extensively required.

4. Image Processing Software

Manually monitoring crop growth stages and vegetation features on a broad scale is a
time-consuming and laborious technique, and it is difficult to sample the entire area. Nowa-
days, unmanned aerial vehicles (UAVs) are being used more than satellites and manned
aircraft, because these have a lower spatial and temporal resolution and a higher equipment
cost [117]. As a result, UAVs have gained significant popularity, and their use for different
applications related to agriculture, to obtain the required information about crops and field
status is widely studied [118–122]. Furthermore, imaging sensors characterized by a low
weight and high spatial and temporal resolutions have been developed for UAVs in recent
years [123,124], and UAV imaging techniques are readily available, due to the upgrading of
imaging and computation programs [125]. Table 2 presents recent photogrammetry and
mapping software that have been integrated into UAVs, and describes their key parameters,
this information was compiled based on the scientific papers published from 2007 to 2020.
These techniques, which were previously only limited to other aerial vehicles, are now
being used on UAVs, resulting in the promotion of frequent surveying of agricultural fields
at a reasonable cost [125].

Table 2. List of photogrammetry and mapping software used for unmanned aerial vehicles (UAVs).

Photogrammetry and
Mapping Software Features Manufacturer

Agi Soft photoscan Pro

Simple interface, easy to learn for beginners; supports Python script;
distributed, flexible, nonlinear processing; elaborate model editing for
accurate results; includes inbuilt tools to measure distances, areas, and
volumes; produces better quality point clouds, digital elevation models,
orthoimage generation, export, makes accurate measurements; access to
3D modeling presents a wider range of panorama stitching; processes
RGB, NIR, thermal, and multispectral imagery

Agisoft

Precision Mapper

A better option for the agricultural sector; includes tools to analyze crop
health, obtain volumetric measurements, generate orthoimages, point
clouds, and 3D models; offers NDVI enhancements, a canopy cover
calculator, and even finds standing water in a field

Precision Hawk

Maps Made Easy
Free package, easy to operate; generates 3D models, accurate
calculations, and NDVI maps; allows the user to collage, classify, and
add a comment to NDVI maps easily

DRONES MADE
EASY

Drone Deploy Field scanner

Easy to operate, offers cloud-based processing; supports DJI drones;
allows DTM (digital terrain models), 3D models, and orthomosaic
generation; collects NDVI data, and allows the quick view of NDVI maps
even without internet connection

Drone Deploy

PiX4d
Easy to use; supports cameras with a wider range; provides automated
computing such as orthoimage, DSM generation, and cloud service;
image data can be processed even without internet connection

PiX4d

Sentera Ag Vault

Features are similar to those of Pix4D and Drone Deploy; allows data
collection for NIR, NDVI, and NDRE; allows the instant view of RGB and
NIR data after capture; quick tile images can be generated in the field
even without internet connection

SENTERA

Botlink Mapper

Creates high-definition maps, VI maps, and terrain maps to help find wet
and dry areas; NIR photography helps to monitor and analyze the crops’
health status; allows easy collage of aerial images into a single,
high-definition map; creates stunning digital surface and 3D models to
identify high and low points or drainage issues

Botlink

Icaros OneButton Easy to use, very high-quality processing, and program to monitor UAV
flight period Icaros
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The expanding capabilities of UAVs, enhanced by the use of geographic information
systems (GIS) and by technological breakthroughs in imaging methods, have increased
the importance of this type of vehicle in precision agriculture [126]. Table 3 lists some of
the recent pieces of GIS software that have been integrated into UAVs and describes their
key features based on the prime scientific publications related to UAVs and remote sensing
from 2007 to 2020. The change in vegetation features over time and space can be detected
with an UAV fitted with a multispectral camera [126]. In healthy plants, a high reflection of
infrared light and low reflection of red light were observed, whereas the opposite pattern
(i.e., high reflection of red, and low reflection of infrared light) was revealed in unhealthy
plants [126]. UAVs equipped with various sensors assist farmers in monitoring the health
status of crops, irrigation requirements, insect pest incidence, and time of harvesting, and
enable them to instantly take steps toward such issues [127,128]. HTP using a commercial
UAV platform requires the selection of phenotypic traits for the breeding of target plants
and, based on this, the appropriate sensor and UAV are then selected [118–120]. Nuijten
et al. (2019) used a drone with high-resolution optical imagery to comprehend the potential
of drone data for the evaluation of crop productivity on a large scale.

Remote sensing technology has become one of the most promising HTP technologies,
as it provides nondestructive measurements of crop performance in both controlled and
field environments [16]. In addition to its high flexibility and easy operation, remote
sensing also helps to extract crop phenotypic information quickly and precisely [129]. Thus,
remote sensing imaging products with a high spatial and temporal resolution and a light
weight, have proven to be a valid technology and a suitable aerial platform for precision
agriculture and plant breeding [16].

Finally, novel advances in remote sensing technology are expected to be quickly
accepted and implemented by UAV platforms, making them one of the most important
applications in HTP in the near future.

Table 3. List of recent geographic information system software used for unmanned aerial vehi-
cles (UAVs).

Geographic Information
System Software Features Manufacturer

ArcGIS

Easy operation, compatible with the model builder or Python;
supports visualization, analysis, and maintenance of data in 2D, 3D,
and 4D; wide range of data sharing; users can operate the ArcGIS
system via Web GIS

ESRI

QGIS Features are similar to those of ArcGIS; supports both bitmap and
vector layers; it is free and open-source QGIS

ERDAS Imagine

Simplifies image processing; includes a wide range of tools for the
analysis of image data; allows graphical editing; includes
hyperspectral and multispectral data tools and LiDAR tools; allows
spatial modeling

Hexagon geospatial [130]

ENVI Easy to use; supports visualization, processing, and analysis of all
types of geospatial data L3Harris geospatial [131]

Grass GIS
License-free use, open-source; compatible with SQL programming
language, geocoding, 2D, and 3D raster analysis; provides LiDAR
tools, raster, and vector statistics

Grass Development Team [132]

5. Challenges in High Throughput Phenotyping

The major purpose of phenotyping techniques is to incorporate different phenotypic
methods for evaluating agronomic traits, abiotic and biotic stress, and also assess factors that
contribute to the yield potential of the crop in order to increase the genetic potential and use
in crop improvement. In general, HTP in the plant is still challenging, as the development
and utilization of techniques for the accurate recording of important agronomic, biotic and
abiotic traits, and monitoring of crops have not been promoted to their full potential. In
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this context, there are several challenges for the HTP, for instance, complex/quantitative
traits, root phenotyping, environmental effect, multilocation and replicated trials field plot
measurement. Particularly, employing the HTP at the spatial and temporal resolutions
of tissue or cellular level, morphologies, micro phenotypes, and below the soil traits
is very challenging [133]. The major challenges faced by HTP are the identification of
nondestructive, easy, operational, highly repeatable, robust, efficient, low-cost, and fast
phenotypic tools. Moreover, a huge quantity of data is generated by HTP so storing,
managing, processing these HTP data and making meaningful biological information are
also very challenging [94,134]. However, with the emerging new tools, researchers have
proposed the utilization of VIs, portable tools, multisensor-based hyperspectral imaging,
and their utilization in plant HTP to counter the mentioned challenges. UAVs have a great
potential to determine plants’ phenotypic trait differences among crops and, at the same
time, they allow the collection of different information about vegetation across wide regions
rapidly and cost-effectively, without destroying plants. Vis integrated with UAVs are
attracting increasing attention, and researchers are more interested in implementing these
technologies for the HTP of diverse plant species. Similarly, several publicly available open-
source online databases and repositories (AraPheno, Cleared Leaves DB, PHENOPSIS DB,
PhenoFront, and plant genomics and phenomics research data repository) were developed
to store, manage, and access HTP big data [133]. Besides, novel imagery-based two-
dimensional (2D) and three-dimensional (3D) tools (RootSlice and RootScan) along with X-
ray, microcomputed tomography and computational software (RootReader2D, RhizoTubes,
WinRHIZO, SmartRoot, and RootAnalyzer) have been introduced to analyze plant root
traits [135–138]. Recent reviews [135–137,139] have described the different HTP platforms
and the need for a multidomain approach to address the challenges faced by HTP. With the
advancement of HTP, there seems to be no doubt that plant phenomics has many challenges,
and these need to be addressed in the coming future.

6. Future Prospects

In this study, we reviewed various VIs and UAV platforms used for HTP in agricul-
tural research. Plant phenotyping with the advancement of high throughput is on the
verge of entering the big-data era. Individual phenotypic information is not sufficient for
association analyses. Therefore, complete phenomics information, multiscale (physiology,
structure, omics, genomics, and environmental) interaction will be the foundation of re-
search in the future. In light of the emerging environmental challenges, future research
in plant phenotyping needs to develop new cost-effective technologies based on artificial
intelligence/remote sensing for the advancement of image-based phenotyping. Deep or
machine learning modeling, simulation tools are also needed to consider the development
of new applications of HTP. In addition, it is also important to identify a proper automated
phenotyping system to accurately work across plant species and draw reliable conclu-
sions based on large sample statistics and the analysis of relationships with agronomic
traits. In this context, the importance of collaboration and data sharing at the national
and international levels cannot be overstated. Thus, research on the rapid advancement of
genetic improvement in breeding programs, and on reliable, automatic, comprehensible,
and multifunctional HTP techniques is required. We are already aiming to obtain some
of these important techniques in our laboratory, to assist conventional breeding in the
restructuring of existing phenotypic breeding processes and allow for a gradual shift to a
more high-throughput, data-driven approach.
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