Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats
Abstract
:1. Introduction
2. Results
2.1. Clinical Observations, Body Weights and Food Consumption
2.2. Urine Analysis
2.3. Hematology and Serum Biochemistry
2.4. Organ Weights and Relative Organ Weights
2.5. Histopathology
3. Discussion
4. Materials and Methods
4.1. Plant and Diet
4.2. Experiment Animals and Breeding Condition
4.3. Study Design and Administration
4.4. Clinical Observations, Body Weight and Food Consumption
4.5. Urinalysis
4.6. Hematology and Serum Biochemistry
4.7. Histopathology
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, A.; Mujeeb-Kazi, A.; Ogbonnaya, F.C.; He, Z.H.; Rajaram, S. Wheat genetic resources in the post-genomics era: Promise and challenges. Ann. Bot. 2018, 121, 603–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Silva, A.; Ciampitti, I.A.; Slafer, G.A.; Lollato, R.P. Nitrogen utilization efficiency in wheat: A global perspective. Eur. J. Agron. 2020, 114, e126008. [Google Scholar] [CrossRef]
- Anwaar, H.A.; Perveen, R.; Mansha, M.Z.; Abid, M.; Sarwar, Z.M.; Aatif, H.M.; Umar, U.; Sajid, M.; Aslam, H.M.U.; Alam, M.M.; et al. Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi J. Biol. Sci. 2019, 12, 1818–1823. [Google Scholar] [CrossRef]
- Li, H.J.; Zhou, Y.; Xin, W.L.; Wei, Y.Q.; Zhang, J.L.; Guo, L.L. Wheat breeding in northern China: Achievements and technical advances. Crop J. 2019, 7, 718–729. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.; khan, A.S.; Li, M.J.; Khan, S.H.; Kashif, M. Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. J. Integr. Agr. 2019, 18, 2483–2491. [Google Scholar] [CrossRef]
- Ayala, F.; Fedrigo, G.V.; Burachik, M.; Miranda, P.V. Compositional equivalence of event IND-OO412-7 to non-transgenic wheat. Transgenic Res. 2019, 28, 165–176. [Google Scholar] [CrossRef]
- Nuccioa, M.L.; Paulb, M.; Batea, N.J.; Cohna, J.; Cutlerc, S.R. Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Sci. 2018, 273, 110–119. [Google Scholar] [CrossRef]
- Domingo, J.L. Safety assessment of GM plants: An updated review of the scientific literature. Food Chem. Toxicol. 2016, 95, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Feng, Y.Q.; Zhi, Y.; Zhang, L.; Yu, Z.; Jia, X.D. A 90-day toxicity study of GmTMT transgenic maize in Sprague-Dawley rats. Regul. Toxicol. Pharm. 2017, 85, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.H.; Yu, Z.; Jia, X.D.; Zhang, W.Z.; Xu, H.B. Effects of Parental Dietary Exposure to GM Rice TT51 on the Male Reproductive System of Rat Offspring. Biomed. Environ. Sci. 2016, 29, 267–274. [Google Scholar] [PubMed]
- Tian, J.; Fan, B.L.; Ke, X.H.; Tian, M.X.; Yuan, Y.; Yang, W.X.; Tang, X.Q.; Zhuo, Q.; Yang, X.G.; Liu, J.F. Study on one-generation reproductive development toxicity of GmDREB3 gene modified wheat in Wistar rats. Chin. J. Food Hyg. 2019, 31, 313–319. [Google Scholar]
- Tian, J.; Fan, B.L.; Ke, X.H.; Yuan, Y.; Yang, W.X.; Tang, X.Q.; Qu, J.J.; Qu, W.; Fu, S.H.; Zheng, Y.H.; et al. Two generation reproduction toxicity study of GmDREB3 gene modified wheat in Wistar rats. Food Chem. Toxicol. 2021, 153, 112310. [Google Scholar] [CrossRef] [PubMed]
- OECD. Repeated Dose 90-day Oral Toxicity Study in Rodents. In OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1998. [Google Scholar]
- Rai, K.K.; Rai, N.; Rai, S.P. Prediction and validation of DREB transcription factors for salt tolerance in Solanum lycopersicum L.: An integrated experimental and computational approach. Environ. Exp. Bot. 2019, 165, 1–18. [Google Scholar] [CrossRef]
- Pandey, B.; Sharma, P.; Saini, M.; Pandey, D.M.; Sharma, I. Isolation and characterization of dehydration responsive element-binding factor 2 (DREB2) from Indian wheat (Triticum aestivum L.) cultivars. Aust. J. Crop Sci. 2014, 8, 44–54. [Google Scholar]
- Hichri, I.; Muhovski, Y.; Clippe, A.; Zizkova, E.; Dobrev, P.I.; Motyka, V.; Lutts, S. SIDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ. 2016, 39, 62–79. [Google Scholar] [CrossRef]
- Muneer, S.; Jeong, B.R. Proteomic analysis of salt-stress responsive proteins in roots of tomato (Lycopersiconesculentum L.) plants towards silicon efficiency. Plant Growth Regul. 2019, 77, 133–146. [Google Scholar] [CrossRef]
- Zhao, J.P.; Han, C.; Ren, S.; Wang, T.L.; Zhang, X.S.; Zhao, J.; Shen, Y.; Liu, T.T.; Zhuo, Q.; Li, Y. Comparison of nutritional component between transgenic wheat with drought-tolerance gene GmDREB3 and its non-transgenic counterpart. Food Nutr. Chin. 2017, 23, 21–24. [Google Scholar]
- Li, Y.; Han, C.; Mao, H.M.; Shi, L.L.; Chen, C.; Zhao, J.P.; Zhuo, Q. Effect of GmDREB3 gene modified wheat on immune system of rats. Food Nutr. Chin. 2018, 24, 20–25. [Google Scholar]
- Ozuna, C.V.; Barro, F. Safety evaluation of transgenic low-gliadin wheat in Sprague Dawley rats: An alternative to the gluten free diet with no subchronic adverse effects. Food Chem. Toxicol. 2017, 107, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Papineni, S.; Murray, J.A.; Ricardo, E.; Dunville, C.M.; Sura, R.K.; Thomas, J. Evaluation of the safety of a genetically modified DAS-444Ø6-6 soybean meal and hulls in a 90-day dietary toxicity study in rats. Food Chem. Toxicol. 2017, 109, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Papineni, S.; Passage, J.K.; Ekmay, R.D.; Thomas, J. Evaluation of 30% DAS-444Ø6-6 soybean meal in a subchronic rat toxicity study. Regul. Toxicol. Pharmacol. 2018, 94, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.H.; Yu, Z.; Jia, X.D.; Xu, H.B. A two-generation reproduction study with transgenic Bt rice TT51 in Wistar rats. Food Chem. Toxicol. 2014, 65, 312–320. [Google Scholar] [CrossRef]
- Snell, C.; Bernheim, A.; Berge, J.B.; Kuntz, M.; Pascal, G.; Paris, A.; Ricroch, A.E. Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: A literature review. Food Chem. Toxicol. 2012, 50, 1134–1148. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 23, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, C.; Long, G.; Wolf, J.; Okerberg, C.; Herbert, R. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol. Pathol. 2002, 30, 93–96. [Google Scholar] [CrossRef] [Green Version]
Sex | Group | WBC | RBC | Hb | LYMP | MONO | NEUT | EO | BAS | HCT | PLT | APTT | PT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(×109/L) | (×1012/L) | (g/L) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (s) | (s) | ||
Gm | 2.6 ± 1.1 | 7.66 ± 0.51 | 134 ± 32 | 70.0 ± 6.1 | 2.3 ± 0.9 | 25.8 ± 6.1 | 1.9 ± 0.9 | 0.0 ± 0.0 | 40.4 ± 2.2 ## | 817 ± 227 | 11.8 ± 3.7 | 12.9 ± 0.8 | |
Female | Jimai22 | 2.7 ± 1.2 | 7.75 ± 0.48 | 144 ± 9 | 68.7 ± 4.9 | 2.1 ± 0.8 | 26.6 ± 4.3 | 2.7 ± 2.0 | 0.0 ± 0.0 | 41.3 ± 2.2 | 792 ± 161 | 12.5 ± 5.9 | 12.3 ± 0.5 |
Control | 2.8 ± 1.2 | 7.91 ± 0.54 | 149 ± 10 | 67.2 ± 8.0 | 2.0 ± 0.8 | 29.0 ± 8.6 | 1.9 ± 0.8 | 0.0 ± 0.0 | 43.7 ± 2.8 | 846 ± 109 | 12.2 ± 0.8 | 12.8 ± 0.5 | |
Gm | 4.9 ± 1.6 | 8.40 ± 0.28 | 146 ± 5 * | 64.0 ± 4.8 | 2.4 ± 0.6 | 31.2 ± 4.6 | 2.4 ± 0.7 | 0.0 ± 0.0 | 41.7 ± 1.2 **## | 894 ± 90 | 10.9 ± 0.8 | 12.8 ± 2.0 | |
Male | Jimai22 | 4.9 ± 1.4 | 8.68 ± 0.49 | 151 ± 7 | 60.6 ± 6.9 | 2.8 ± 0.7 | 34.1 ± 6.7 | 2.5 ± 0.8 | 0.0 ± 0.0 | 43.4 ± 1.5 | 881 ± 105 | 11.5 ± 1.1 | 13.0 ± 0.41 |
Control | 5.5 ± 1.3 | 8.36 ± 0.34 | 148 ± 6 | 63.3 ± 4.5 | 2.2 ± 0.5 | 32.1 ± 4.4 | 2.1 ± 0.8 | 0.0 ± 0.0 | 44.3 ± 1.8 | 863 ± 99 | 12.5 ± 1.6 | 12.9 ± 0.57 |
Sex | Group | Glu | BUN | Cr | CHOL | TG | ALT | AST | TP | ALB | ALB/GLO | K+ | Na+ | Cl− | Ca2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mmol/L) | (mmol/L) | (μmol/L) | (mmol/L) | (mmol/L) | (U/L) | (U/L) | (g/L) | (g/L) | (mmol/L) | (mmol/L) | (mmol/L) | (mmol/L) | |||
Gm | 6.03 ± 0.98 # | 4.12 ± 0.57 *## | 64.9 ± 5.5 | 2.04 ± 0.48 **## | 0.50 ± 0.16 a | 31 ± 12 # | 85 ± 18 ## | 60.8 ± 2.6 # | 32.3 ± 1.5 | 1.13 ± 0.05 a | 4.43 ± 1.57 | 140.2 ± 1.4 | 103.1 ± 1.5 | 2.54 ± 0.09 ## | |
Female | Jimai22 | 6.33 ± 0.95 | 4.72 ± 0.76 | 67.4 ± 7.4 | 1.64 ± 0.35 | 0.57 ± 0.18 a | 29 ± 6 | 86 ± 18 | 61.6 ± 3.0 | 33.1 ± 1.6 | 1.19 ± 0.08 a | 4.00 ± 0.32 | 139.9 ± 1.7 | 103.3 ± 1.4 | 2.53 ± 0.07 |
Control | 5.21 ± 0.96 | 5.22 ± 1.03 | 68.2 ± 7.9 | 1.59 ± 0.35 | 0.52 ± 0.16 | 39 ± 8 | 113 ± 12 | 58.2 ± 3.6 | 31.3 ± 1.9 | 1.17 ± 0.07 | 4.53 ± 0.52 | 140.0 ± 2.6 | 103.4 ± 1.6 | 2.44 ± 0.08 | |
Gm | 6.85 ± 0.86 ##a | 4.89 ± 0.55 | 61.4 ± 6.3 | 1.88 ± 0.56 * | 0.60 ± 0.24 | 34 ± 6 a | 85 ± 9 #a | 57.4 ± 2.7 | 28.7 ± 1.2 | 1.00 ± 0.06 | 4.39 ± 0.68 | 139.7 ± 0.8 ## | 100.8 ± 1.5 ## | 2.53 ± 0.08 | |
Male | Jimai22 | 6.62 ± 0.93 a | 4.71 ± 0.57 | 60.7 ± 5.1 | 1.52 ± 0.35 | 0.74 ± 0.46 | 32 ± 5 a | 90 ± 13 a | 58.2 ± 2.5 | 29.2 ± 1.4 | 1.01 ± 0.09 | 4.39 ± 0.47 | 140.2 ± 1.0 | 101.2 ± 1.6 | 2.52 ± 0.07 |
Control | 5.85 ± 0.84 | 4.51 ± 0.59 | 58.0 ± 4.5 | 1.76 ± 0.46 | 0.83 ± 0.38 | 38 ± 7 | 94 ± 12 | 57.7 ± 2.3 | 28.5 ± 1.01 | 0.98 ± 0.05 | 4.37 ± 0.34 | 143.2 ± 1.1 | 103.0 ± 1.2 | 2.50 ± 0.04 |
Organ | Gm | Jimai22 | Control | |||
---|---|---|---|---|---|---|
Weights (g) | Relative Weights (%) | Weights (g) | Relative Weights (%) | Weights (g) | Relative Weights (%) | |
Body weight | 354.2 ± 36.4 | 348.4 ± 33.1 | 302.0 ± 28.2 | |||
Heart | 1.02 ± 0.13 # | 0.288 ± 0.034 | 1.02 ± 0.11 | 0.293 ± 0.029 | 0.93 ± 0.11 | 0.310 ± 0.035 |
Liver | 9.32 ± 1.14 **## | 2.648 ± 0.378 ** | 8.29 ± 0.84 | 2.379 ± 0.099 | 7.91 ± 1.04 | 2.631 ± 0.370 |
Spleen | 0.75 ± 0.10 # | 0.213 ± 0.022 | 0.71 ± 0.09 | 0.205 ± 0.020 | 0.66 ± 0.10 | 0.220 ± 0.034 |
Kidneys | 2.11 ± 0.018 ## | 0.598 ± 0.056 | 2.06 ± 0.23 | 0.592 ± 0.059 | 1.89 ± 0.15 | 0.630 ± 0.061 |
Brain | 1.89 ± 0.25 | 0.538 ± 0.088 ## | 1.89 ± 0.06 | 0.546 ± 0.056 | 1.87 ± 0.08 | 0.623 ± 0.059 |
Uterus | 0.62 ± 0.21 | 0.178 ± 0.068 | 0.70 ± 0.29 | 0.203 ± 0.084 | 0.61 ± 0.17 | 0.202 ± 0.056 |
Ovaries | 0.21 ± 0.03 | 0.061 ± 0.009 # | 0.21 ± 0.04 | 0.059 ± 0.009 | 0.22 ± 0.04 | 0.073 ± 0.017 |
Adrenals | 0.103 ± 0.024 * | 0.030 ± 0.007 * | 0.085 ± 0.018 | 0.024 ± 0.005 | 0.094 ± 0.026 | 0.031 ± 0.009 |
Thymus | 0.461 ± 0.078 ## | 0.131 ± 0.023 | 0.424 ± 0.139 | 0.122 ± 0.037 | 0.353 ± 0.086 | 0.117 ± 0.029 |
Organ | Gm | Jimai22 | Control | |||
---|---|---|---|---|---|---|
Weights (g) | Relative Weights (%) | Weights (g) | Relative Weights (%) | Weights (g) | Relative Weights (%) | |
Body weight | 587.1 ± 44.1 | 585.7 ± 69.5 | 524.0 ± 43.6 | |||
Heart | 1.49 ± 0.14 | 0.254 ± 0.023 # | 1.52 ± 0.17 | 0.261 ± 0.027 | 1.44 ± 0.17 | 0.275 ± 0.030 |
Liver | 15.08 ± 1.80 | 2.577 ± 0.327 a | 14.80 ± 2.64 | 2.518 ± 0.254 a | 14.32 ± 1.31 | 2.740 ± 0.218 |
Spleen | 1.11 ± 0.19 | 0.189 ± 0.030 | 1.05 ± 0.17 | 0.179 ± 0.021 | 1.17 ± 0.55 | 0.224 ± 0.103 |
Kidneys | 3.46 ± 0.28 | 0.592 ± 0.055 a | 3.38 ± 0.41 | 0.579 ± 0.048 a | 3.25 ± 0.58 | 0.625 ± 0.122 |
Brain | 2.10 ± 0.08 | 0.359 ± 0.033 # | 2.09 ± 0.09 | 0.361 ± 0.046 | 2.05 ± 0.08 | 0.394 ± 0.039 |
Testis | 4.03 ± 0.53 | 0.688 ± 0.092 | 3.93 ± 0.81 | 0.672 ± 0.109 | 4.06 ± 1.18 | 0.773 ± 0.199 |
Epididymides | 1.67 ± 0.19 | 0.287 ± 0.040 | 1.61 ± 0.21 | 0.278 ± 0.051 | 1.72 ± 0.62 | 0.329 ± 0.118 |
Prostate | 1.49 ± 0.25 | 0.253 ± 0.038 | 1.51 ± 0.26 | 0.262 ± 0.058 | 1.39 ± 0.25 | 0.265 ± 0.043 |
Adrenals | 0.090 ± 0.021 | 0.015 ± 0.004 | 0.084 ± 0.020 | 0.014 ± 0.003 | 0.091 ± 0.025 | 0.018 ± 0.005 |
Thymus | 0.594 ± 0.168 | 0.101 ± 0.028 | 0.571 ± 0.152 | 0.097 ± 0.023 | 0.503 ± 0.119 | 0.096 ± 0.024 |
Histopathological Lesions | Groups | |||||
---|---|---|---|---|---|---|
Gm Group | Jimai22 Group | Control Group | ||||
Sex | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ |
Number | 20 | 20 | 20 | 20 | 20 | 20 |
Lung | ||||||
Slight interstitial inflammation | 0 | 0 | 1 | 0 | 0 | 0 |
Stomach | ||||||
Slight glandular dilatation | 0 | 0 | 0 | 1 | 0 | 0 |
Liver | ||||||
Slight inflammatory cell infiltration | 0 | 1 | 1 | 1 | 0 | 0 |
Slight vacuolation | 1 | 0 | 0 | 1 | 0 | 0 |
Severe vacuolation | 0 | 0 | 0 | 1 | 0 | 0 |
Kidney | ||||||
Slight interstitial inflammatory cell infiltration | 0 | 1 | 1 | 0 | 0 | 1 |
Slight hyaline casts | 2 | 2 | 2 | 1 | 1 | 1 |
Slight calcium deposition | 2 | 0 | 1 | 0 | 1 | 0 |
Testis | ||||||
Severe atrophy | - | 1 | - | 2 | - | 1 |
Epididymis | ||||||
Sperm loss | - | 1 | - | 2 | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Ke, X.-H.; Yuan, Y.; Yang, W.-X.; Tang, X.-Q.; Pei, L.-J.; Fan, J.; Zhuo, Q.; Yang, X.-G.; Liu, J.-F.; et al. Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats. Plants 2022, 11, 1823. https://doi.org/10.3390/plants11141823
Tian J, Ke X-H, Yuan Y, Yang W-X, Tang X-Q, Pei L-J, Fan J, Zhuo Q, Yang X-G, Liu J-F, et al. Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats. Plants. 2022; 11(14):1823. https://doi.org/10.3390/plants11141823
Chicago/Turabian StyleTian, Jie, Xiang-Hong Ke, Yuan Yuan, Wen-Xiang Yang, Xiao-Qiao Tang, Lan-Jie Pei, Jun Fan, Qin Zhuo, Xiao-Guang Yang, Jia-Fa Liu, and et al. 2022. "Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats" Plants 11, no. 14: 1823. https://doi.org/10.3390/plants11141823
APA StyleTian, J., Ke, X. -H., Yuan, Y., Yang, W. -X., Tang, X. -Q., Pei, L. -J., Fan, J., Zhuo, Q., Yang, X. -G., Liu, J. -F., & Fan, B. -L. (2022). Subchronic Toxicity of GmDREB3 Gene Modified Wheat in the Third Generation Wistar Rats. Plants, 11(14), 1823. https://doi.org/10.3390/plants11141823