Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents
Abstract
:1. Introduction
2. Results
2.1. Summary of Seed Collection
2.2. Collection Metric
2.3. Multiplication, Safety Backup and Use
3. Discussion
4. Materials and Methods
4.1. Collecting Approach
4.2. Partnership Approach
4.3. Planning
4.4. Collecting
4.5. Post-Collection Handling
4.6. Data
4.7. Collection Metric
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Godfray, H.C.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss-Fels, K.P.; Stahl, A.; Hickey, L.T. Q&A: Modern crop breeding for future food security. BMC Biol. 2019, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. International Treaty on Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2009. [Google Scholar]
- Maxted, N.; Ford-Lloyd, B.V.; Jury, S.; Kell, S.; Scholten, M. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 3, 333–345. [Google Scholar] [CrossRef]
- Smale, M.; Jamora, N. Valuing genebanks. Food Secur. 2020, 12, 905–918. [Google Scholar] [CrossRef]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2022, 40, 412–431. [Google Scholar] [CrossRef]
- Warschefsky, E.; Penmetsa, R.V.; Cook, D.R.; von Wettberg, E.J.B. Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 2014, 101, 1791–1800. [Google Scholar] [CrossRef]
- Kilian, B.; Dempewolf, H.; Guarino, L.; Werner, P.; Coyne, C.; Warburton, M.L. Crop Science special issue: Adapting agriculture to climate change: A walk on the wild side. Crop Sci. 2020, 61, 32–36. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, R.; Govindaraj, M.; Mahala, R.S.; Satyavathi, C.T.; Srivastava, R.K.; Gumma, M.K.; Kilian, B. Harnessing wild relatives of pearl millet for germplasm enhancement: Challenges and opportunities. Crop Sci. 2020, 61, 177–200. [Google Scholar] [CrossRef]
- National Research Council Committee on Genetic Vulnerability of Major Crops. Genetic Vulnerability of Major Crops; National Academy of Sciences: Washington, DC, USA, 1972. [Google Scholar]
- Alexandra, S.; Jamora, N.; Smale, M.; Ghanem, M.E. The tale of taro leaf blight: A global effort to safeguard the genetic diversity of taro in the Pacific. Food Secur. 2020, 12, 1005–1016. [Google Scholar] [CrossRef]
- Tyack, N.; Dempewolf, H. The economics of crop wild relatives under climate change. In Crop Wild Relatives and Climate Change; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop Wild Relatives—Undervalued, Underutilized and under Threat? BioScience 2011, 61, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Rehman, S.; Amouzoune, M.; Hiddar, H.; Aberkane, H.; Benkirane, R.; Filali-Maltouf, A.; Al-Jaboobi, M.; Acqbouch, L.; Tsivelikas, A.; Verma, R.P.S.; et al. Traits discovery in Hordeum vulgare sbsp. spontaneum accessions and in lines derived from interspecific crosses with wild Hordeum species for enhancing barley breeding efforts. Crop Sci. 2020, 61, 219–233. [Google Scholar] [CrossRef]
- Bradshaw, J.E.; Bryan, G.J.; Ramsay, G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Res. 2006, 49, 49–65. [Google Scholar] [CrossRef]
- Sharma, S.; Schulthess, A.W.; Bassi, F.M.; Badaeva, E.D.; Neumann, K.; Graner, A.; Özkan, H.; Werner, P.; Knüpffer, H.; Kilian, B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. Biology 2021, 10, 982. [Google Scholar] [CrossRef]
- Kilian, B.; Mammen, K.; Millet, E.; Sharma, R.; Graner, A.; Salamini, F.; Hammer, K.; Özkan, H. Aegilops L. In Wild Crop Relatives: Genomic and Breeding Resources; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–76. [Google Scholar]
- Aberkane, H.; Amri, A.; Belkadi, B.; Filali-Maltouf, A.; Kehel, Z.; Tahir, I.S.A.; Meheesi, S.; Tsivelikas, A. Evaluation of durum wheat lines derived from interspecific crosses under drought and heat stress. Crop Sci. 2020, 61, 119–136. [Google Scholar] [CrossRef]
- El Haddad, N.; Kabbaj, H.; Zaïm, M.; El Hassouni, K.; Tidiane Sall, A.; Azouz, M.; Ortiz, R.; Baum, M.; Amri, A.; Gamba, F.; et al. Crop wild relatives in durum wheat breeding: Drift or thrift? Crop Sci. 2020, 61, 37–54. [Google Scholar] [CrossRef]
- Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.-H. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 2016, 10, 5–24. [Google Scholar] [CrossRef]
- Tin, H.Q.; Loi, N.H.; Labarosa, S.J.E.; McNally, K.L.; McCouch, S.; Kilian, B. Phenotypic response of farmer-selected CWR-derived rice lines to salt stress in the Mekong Delta. Crop Sci. 2020, 61, 201–218. [Google Scholar] [CrossRef]
- Tin, H.Q.; Loi, N.H.; Bjornstad, Å.; Kilian, B. Participatory selection of CWR-derived salt-tolerant rice lines adapted to the coastal zone of the Mekong Delta. Crop Sci. 2020, 61, 277–288. [Google Scholar] [CrossRef]
- Humphries, A.W.; Ovalle, C.; Hughes, S.; del Pozo, A.; Inostroza, L.; Barahona, V.; Yu, L.; Yerzhanova, S.; Rowe, T.; Hill, J.; et al. Characterization and pre-breeding of diverse alfalfa wild relatives originating from drought-stressed environments. Crop Sci. 2020, 61, 69–88. [Google Scholar] [CrossRef]
- Simon, P.W.; Rolling, W.R.; Senalik, D.; Bolton, A.L.; Rahim, M.A.; Mannan, A.T.M.M.; Islam, F.; Ali, A.; Nijabat, A.; Naveed, N.H.; et al. Tapping into wild carrot diversity for new sources of abiotic stress tolerance to strengthen vegetable breeding in Bangladesh and Pakistan. Crop Sci. 2020, 61, 163–176. [Google Scholar] [CrossRef]
- Sharma, S.; Lavale, S.A.; Nimje, C.; Singh, S. Characterization and identification of annual wild Cicer species for seed protein and mineral concentrations for chickpea improvement. Crop Sci. 2020, 61, 305–319. [Google Scholar] [CrossRef]
- Kouassi, A.B.; Kouassi, K.B.A.; Sylla, Z.; Plazas, M.; Fonseka, R.M.; Kouassi, A.; Fonseka, H.; N’guetta, A.S.-P.; Prohens, J. Genetic parameters of drought tolerance for agromorphological traits in eggplant, wild relatives, and interspecific hybrids. Crop Sci. 2020, 61, 55–68. [Google Scholar] [CrossRef]
- Plazas, M.; Vilanova, S.; Gramazio, P.; Rodríguez-Burruezo, A.; Fita, A.; Herraiz, F.J.; Ranil, R.; Fonseka, R.; Niran, L.; Fonseka, H.; et al. Interspecific hybridization between eggplant and wild relatives from different genepools. J. Am. Soc. Hortic. Sci. 2016, 141, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Dida, M.M.; Oduori, C.A.; Manthi, S.J.; Avosa, M.O.; Mikwa, E.O.; Ojulong, H.F.; Odeny, D.A. Novel sources of resistance to blast disease in finger millet. Crop Sci. 2020, 61, 250–262. [Google Scholar] [CrossRef]
- Abdallah, F.; Kumar, S.; Amri, A.; Mentag, R.; Kehel, Z.; Mejri, R.K.; Triqui, Z.E.A.; Hejjaoui, K.; Baum, M.; Amri, M. Wild Lathyrus species as a great source of resistance for introgression into cultivated grass pea (Lathyrus sativus L.) against broomrape weeds (Orobanche crenata Forsk. and Orobanche foetida Poir.). Crop Sci. 2020, 61, 263–276. [Google Scholar] [CrossRef]
- Ochieng, G.; Ngugi, K.; Wamalwa, L.N.; Manyasa, E.; Muchira, N.; Nyamongo, D.; Odeny, D.A. Novel sources of drought tolerance from landraces and wild sorghum relatives. Crop Sci. 2020, 61, 104–118. [Google Scholar] [CrossRef]
- Mace, E.S.; Cruickshank, A.W.; Tao, Y.; Hunt, C.H.; Jordan, D.R. A global resource for exploring and exploiting genetic variation in sorghum crop wild relatives. Crop Sci. 2020, 61, 150–162. [Google Scholar] [CrossRef]
- García-Fortea, E.; Gramazio, P.; Vilanova, S.; Fita, A.; Mangino, G.; Villanueva, G.; Arrones, A.; Knapp, S.; Prohens, J.; Plazas, M. First successful backcrossing towards eggplant (Solanum melongena) of a New World species, the silverleaf nightshade (S. elaeagnifolium), and characterization of interspecific hybrids and backcrosses. Sci. Hortic. 2019, 246, 563–573. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [Green Version]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Díez, M.J.; Fita, A.; Herraiz, F.J.; Rodríguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Vavilov, N.I. Five Continents, English ed.; Rodin, L.E., Reznik, S., Stapleton, P., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1997; p. 196. [Google Scholar]
- Innes, L.A.; Denton, M.D.; Dundas, I.S.; Peck, D.M.; Humphries, A.W. The effect of ploidy number on vigor, productivity, and potential adaptation to climate change in annual Medicago species. Crop Sci. 2020, 61, 89–103. [Google Scholar] [CrossRef]
- Nhanala, S.E.C.; Yencho, G.C. Assessment of the potential of wild Ipomoea spp. for the improvement of drought tolerance in cultivated sweetpotato Ipomoea batatas (L.) Lam. Crop Sci. 2020, 61, 234–249. [Google Scholar] [CrossRef]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting agriculture to climate change: A Global Initiative to Collect Conserve, and Use Crop Wild Relatives. Agroecol. Sustain. Food Sys. 2014, 28, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.; Wiersema, J.; Kell, S.; Dobbie, S.; Fielder, H.; Castañeda-Álvarez, N.P.; Guarino, L.; Eastwood, R.; Leόn, B.; Maxted, N. A prioritised crop wild relative inventory to help underpin global food security. Biol. Conserv. 2013, 167, 265–275. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16022. [Google Scholar] [CrossRef]
- Crop Wild Relatives Occurrence Data Consortia. A Global Database for the Distributions of Crop Wild Relatives, Version 1.12; Centro Internacional de Agricultura Tropical—CIAT: Cali, Colombia, 2018; Occurrence dataset. Available online: GBIF.org (accessed on 3 October 2020). [CrossRef]
- Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Dulloo, E.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 136. [Google Scholar] [CrossRef] [Green Version]
- Vavilov, I. Centers of origin of cultivated plants. Bull. Appl. Bot. Plant Breed. 1926, 16, 1–248. [Google Scholar]
- Dhankher, O.P.; Foyer, C.H. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018, 41, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, A.; Lane, A.; Hijmans, R.J. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Müller, J.V.; Cockel, C.P.; Gianella, M.; Guzzon, F. Treasuring crop wild relative diversity: Analysis of success from the seed collecting phase of the ‘Adapting Agriculture to Climate Change’ project. Genet. Resour. Crop Evol. 2021, 68, 2749–2756. [Google Scholar] [CrossRef]
- Medeiros, M.B.; Valls, J.F.M.; Abreu, A.G.; Heiden, G.; Ribeiro-Silva, S.; José, S.C.B.R.; Santos, I.R.I.; Passos, A.M.A.; Burle, M.L. Status of the ex situ and in situ conservation of Brazilian crop wild relatives of rice, potato, sweet potato, and finger millet: Filling the gaps of germplasm collections. Agronomy 2021, 11, 638. [Google Scholar] [CrossRef]
- Crop Trust. Crop Wild Relatives Collected by the CWR Project. Available online: https://www.genesys-pgr.org/subsets/9032bc20-291b-4d34-920b-30c0a590aef3 (accessed on 1 June 2021).
- Eyland, D.; Breton, C.; Sardos, J.; Kallow, S.; Panis, B.; Swennen, R.; Paofa, J.; Tardieu, F.; Welcker, C.; Janssens, S.B.; et al. Filling the gaps in gene banks: Collecting, characterizing, and phenotyping wild banana relatives of Papua New Guinea. Crop Sci. 2020, 61, 137–149. [Google Scholar] [CrossRef]
- Debouck, D.G.; Chaves-Barrantes, N.; Araya-Villalobos, R. New records of Phaseolus microcarpus (Leguminosae: Phaseoleae) for Costa Rica. J. Bot. Res. Inst. Tex. 2019, 13, 209–215. [Google Scholar] [CrossRef]
- Debouck, D.G.; Araya-Villalobos, R.; Chaves-Barrantes, N. Phaseolus angucianae (Leguminosae: Phaseoleae), a new bean species from Fila Cruces of southeastern Costa Rica. J. Bot. Res. Inst. Tex. 2018, 12, 507–520. [Google Scholar] [CrossRef]
- Skelton, A.; Buxton-Kirk, A.; Fowkes, A.; Harju, V.; Forde, S.; Ward, R.; Frew, L.; Wagstaff, O.; Pearce, T.R.; Terry, J.; et al. Potato spindle tuber viroid detected in seed of uncultivated Solanum anguivi, S. coagulans and S. dasyphyllum collected from Ghana, Kenya and Uganda. New Dis. Rep. 2019, 39, 23. [Google Scholar] [CrossRef] [Green Version]
- Royal Botanic Gardens Kew. Kew Seed Information Database (SID) Version 7.1. Available online: http://data.kew.org/sid/ (accessed on 20 April 2021).
- Raubach, S.; Kilian, B.; Dreher, K.; Amri, A.; Bassi, F.M.; Boukar, O.; Cook, D.; Cruickshank, A.; Fatokun, C.; El Haddad, N.; et al. From bits to bites: Advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Sci. 2020, 61, 1538–1566. [Google Scholar] [CrossRef]
- Kaushik, P.; Prohens, J.; Vilanova, S.; Gramazio, P.; Plazas, M. Phenotyping of eggplant wild relatives and interspecific hybrids with conventional and phenomics descriptors provides insight for their potential utilization in breeding. Front. Plant Sci. 2016, 7, 677. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Advances in cereal crop genomics for resilience under climate change. Life 2021, 11, 502. [Google Scholar] [CrossRef]
- De Boef, W.S.; Kpaka, C.L.; Williams, D.E.; Guimarães, E.P. Project Review—Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives; Consultancy Report for the Global Crop Diversity Trust; Global Crop Diversity Trust: Arnhem, The Netherlands, 2019; Available online: https://www.norad.no/om-bistand/publikasjon/2019/adapting-agriculture-to-climate-change-collecting-protecting-and-preparing-crop-wild-relatives/ (accessed on 28 October 2020).
- Intergovernmental Panel on Climate Change. Climate Change 2022 Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Crop Trust. Templeton Pre-Breeding Project. Available online: https://www.croptrust.org/project/the-templeton-pre-breeding-project/ (accessed on 1 December 2021).
- Crop Trust. Biodiversity for Opportunities, Livelihoods and Development (BOLD) Project. Available online: https://www.croptrust.org/project/bold/ (accessed on 1 December 2021).
- Royal Botanic Gardens Kew. Technical Information Sheets. Available online: http://brahmsonline.kew.org/msbp/Training/Resources (accessed on 28 October 2020).
- Crop Trust. Genesys. Available online: https://www.genesys-pgr.org/ (accessed on 28 October 2020).
Collection Metric | Genepool |
---|---|
10 All initial species and sample numbers collected | |
9 | Bambara groundnut |
8 | alfalfa, grass pea, wheat |
7 | barley |
6 | carrot, eggplant, faba bean, lentil, rice rye, sweetpotato |
5 Half of initial species and sample numbers collected | finger millet, pea, sorghum, vetch |
4 | apple, oat |
3 | banana/plantain, pearl millet |
2 | bean, cowpea, pigeon pea, potato |
1 | chickpea |
0 No initial species or samples collected |
Crop | Institute | Total Unique Accessions | Total Species |
---|---|---|---|
Shipped | |||
Alfalfa | South Australian Research and Development Institute (SARDI), Australia | 348 | 24 |
Apple | United States Department of Agriculture (USDA), USA | 43 | 5 |
Bambara groundnut | International Institute of Tropical Agriculture (IITA), Nigeria | 16 | 1 |
Banana | International Musa Germplasm Transit Centre (ITC), Belgium | 114 | 7 |
Barley | International Center for Agricultural Research in the Dry Areas (ICARDA), Lebanon | 378 | 17 |
Carrot | USDA, USA | 83 | 2 |
Chickpea | ICARDA, Lebanon | 8 | 3 |
Cowpea | IITA, Nigeria | 60 | 6 |
Eggplant | World Vegetable Center (WVC), Taiwan | 216 | 19 |
Faba bean | ICARDA, Lebanon | 75 | 5 |
Finger millet | International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India/Niger | 48 | 9 |
Grass pea | ICARDA, Lebanon | 270 | 26 |
Lentil | ICARDA, Lebanon | 64 | 5 |
Oat | ICARDA, Lebanon | 1 | 1 |
Oat | Plant Gene Resources of Canada (PGRC), Canada | 241 | 6 * |
Pea | USDA, USA | 40 | 2 |
Pearl millet | ICRISAT, India/Niger | 170 | 22 * |
Pigeon pea | ICRISAT, India/Niger | 25 | 3 |
Rice | International Rice Research Institute (IRRI), Philippines | 146 | 9 * |
Rye | Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Germany | 72 | 6 |
Sorghum | ICRISAT, India/Niger | 195 | 7 * |
Vetch | ICARDA, Lebanon | 285 | 19 |
Wheat | ICARDA, Lebanon | 388 | 27 |
Total | 3279 | 223 | |
Pending | |||
Bean | International Center for Tropical Agricultural (CIAT), Colombia | 39 | 9 |
Eggplant | WVC, Taiwan | 126 | 15 |
Rice | IRRI, Philippines | 96 | 8 |
Sweetpotato | International Potato Center (CIP), Peru | 21 | 3 |
Total | 282 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eastwood, R.J.; Tambam, B.B.; Aboagye, L.M.; Akparov, Z.I.; Aladele, S.E.; Allen, R.; Amri, A.; Anglin, N.L.; Araya, R.; Arrieta-Espinoza, G.; et al. Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents. Plants 2022, 11, 1840. https://doi.org/10.3390/plants11141840
Eastwood RJ, Tambam BB, Aboagye LM, Akparov ZI, Aladele SE, Allen R, Amri A, Anglin NL, Araya R, Arrieta-Espinoza G, et al. Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents. Plants. 2022; 11(14):1840. https://doi.org/10.3390/plants11141840
Chicago/Turabian StyleEastwood, Ruth J., Beri B. Tambam, Lawrence M. Aboagye, Zeynal I. Akparov, Sunday E. Aladele, Richard Allen, Ahmed Amri, Noelle L. Anglin, Rodolfo Araya, Griselda Arrieta-Espinoza, and et al. 2022. "Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents" Plants 11, no. 14: 1840. https://doi.org/10.3390/plants11141840
APA StyleEastwood, R. J., Tambam, B. B., Aboagye, L. M., Akparov, Z. I., Aladele, S. E., Allen, R., Amri, A., Anglin, N. L., Araya, R., Arrieta-Espinoza, G., Asgerov, A., Awang, K., Awas, T., Barata, A. M., Boateng, S. K., Magos Brehm, J., Breidy, J., Breman, E., Brenes Angulo, A., ... Kilian, B. (2022). Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents. Plants, 11(14), 1840. https://doi.org/10.3390/plants11141840