Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening and Evaluation of Potato Genotypes under Saline Condition
2.2. Morphological and Yield Traits
2.3. Physiological Traits in Selected Contrasting Genotypes
2.4. Biochemical Traits in Selected Contrasting Genotypes
2.5. Ionic Content in Selected Contrasting Genotypes
2.6. Statistical Analysis
3. Results
3.1. Differential Genotypic Behaviour under Salinity Stress
3.2. Comparative Response of Contrasting (Tolerant and Sensitive) Genotypes under Salinity Stress
3.2.1. Physiological Stress Parameters
3.2.2. Biochemical Stress Parameters
3.2.3. Ion Concentrations
3.2.4. Correlation Analysis
3.2.5. Genetic Divergence
3.2.6. Potato Traits Priority under Salinity Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, S.; Sharma, V. Reclamation and management of salt-affected soils for safe guarding agricultural productivity. J. Safe Agric. 2017, 1, 1–10. [Google Scholar]
- Mandal, S.; Raju, R.; Kumar, A.; Kumar, P.; Sharma, P.C. Current status of research, technology response and policy needs of salt-affected soils in India—A review. Ind. Soc. Coast. Agric. Res. 2018, 36, 40–53. [Google Scholar]
- Sharma, D.K.; Chaudhari, S.K.; Singh, A. CSSRI Vision 2050; Central Soil Salinity Research Institute: Karnal, India, 2014.
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting Tomato as a Tool to Improve Salt Tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.C.; Kumar, A.; Mann, A. Physiology of Salt Tolerance in Crops. In Managing Salt Affected Soils for Sustainable Agriculture; Minhas, P.S., Yadav, R.K., Sharma, P.C., Eds.; ICAR: New Delhi, India, 2021; pp. 199–226. [Google Scholar]
- Charfeddine, M.; Charfeddine, S.; Ghazala, I.; Bouaziz, D.; Bouzid, R.G. Investigation of the response to salinity of transgenic potato plants overexpressing the transcription factor StERF94. J. Biosci. 2019, 44, 141. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 February 2022).
- Gerbens-Leenes, W.; Hoekstra, A.Y.; Van der Meer, T.H. The water footprint of bioenergy. Proceed. Nat. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [Green Version]
- Bach, S.; Yada, R.Y.; Bizimungu, B.; Sullivan, J.A. Genotype byenvironment interaction effects on fibre components in potato (Solanum tuberosum L.). Euphytica 2012, 187, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Dahal, K.; Li, X.Q.; Tai, H.; Creelman, A.; Bizimungu, B. Improving potato stress tolerance and tuber yield under a climate change scenario—A current overview. Front. Plant Sci. 2019, 10, 563. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef] [Green Version]
- Levy, D.; Veilleux, R.E. Adaptation of potato to high temperatures and salinity—A review. Am. J. Potato Res. 2007, 84, 487–506. [Google Scholar] [CrossRef]
- Hmida-Sayari, A.; Gargouri-Bouzid, R.; Bidani, A.; Jaoua, L.; Savoure, A.; Jaoua, S. Overexpression of [delta]–pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci. 2005, 169, 746–752. [Google Scholar] [CrossRef]
- Chourasia, K.N.; Lal, M.K.; Tiwari, R.K.; Dev, D.; Kardile, H.B.; Patil, V.U.; Kumar, A.; Vanishree, G.; Kumar, D.; Bhardwaj, V.; et al. Salinity Stress in Potato: Understanding physiological, biochemical and molecular responses. Life 2021, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Evers, D.; Lefevre, I.; Legay, S.; Lamoureux, D.; Hausman, J.F.; Rosales, R.O.G.; Marca, L.R.T.; Hoffmann, L.; Bonierbale, M.; Schafleitner, R. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 2010, 61, 2327–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obidiegwu, J.; Bryan, G.; Jones, G.; Prashar, A. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 2015, 6, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keisham, M.; Mukherjee, S.; Bhatla, S.C. Mechanisms of Sodium Transport in Plants—Progresses and Challenges. Int. J. Mol. Sci. 2018, 19, 647. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, K.; Mondal, S.; Ray, S.; Samal, P.; Pradhan, B.; Chattopadhyay, K.; Kar, M.K.; Swain, P.; Sarkar, R.K. Tissue tolerance coupled with ionic discrimination can potentially minimize the energy cost of salinity tolerance in rice. Front. Plant Sci. 2020, 11, 265. [Google Scholar] [CrossRef]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Weatherley, P.E. Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol. 1950, 49, 81–87. [Google Scholar] [CrossRef]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, A.K.; Singh, K.; Lata, C.; Kumar, A.; Krishnamurthy, S.L.; Kumar, P. Diurnal changes and effect of elevated CO2 on gas exchange under individual and interactive salt and water stress in wheat (Triticum aestivum). Indian J. Agric. Sci. 2019, 89, 763. [Google Scholar]
- Bates, L.S.; Walden, R.P.; Teare, I.D. Rapid determination of proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Jain, S.; Jain, V. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J. Plant Biochem. Biotechnol. 2013, 22, 27–34. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Rao, M.V.; Watkins, C.B.; Brown, S.K.; Weeden, N.F. Active oxygen species metabolism in White Angel x Rome. Beauty apple selections resistant and susceptible to superficial scald. J. Am. Soc. Hortic. Sci. 1998, 123, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Singh, D. The relative importance of characters affecting genetic divergence. Indian J. Genet. Plant Breed. 1981, 41, 237–245. [Google Scholar]
- Sheoran, O.P.; Tonk, D.S.; Kaushik, L.S.; Hasija, R.C.; Pannu, R.S. Statistical Software Package for Agricultural Research Workers. In Recent Advances in Information Theory, Statistics & Computer Applications; Hooda, D.S., Hasija, R.C., Eds.; Department of Mathematics Statistics, CCS HAU: Hisar, India, 1998; pp. 139–143. [Google Scholar]
- IRRI. STAR version 2.0.1. In Biometrics and Breeding Informatics; International Rice Research Institute: Los Baños, PH, USA, 2013. [Google Scholar]
- Ahmed, H.A.A.; Sahin, N.K.; Akdogan, G.; Yaman, C.; Köm, D.; Uranbey, S. Variability in salinity stress tolerance of potato (Solanum tuberosum L.) varieties using in vitro screening. Cienc. Agrotecnol. 2020, 44, 1–14. [Google Scholar] [CrossRef]
- Abdelsalam, Z.K.M.; Ezzat, A.S.; Tantawy, I.A.A.; Youssef, N.S.; Gad El-Hak, S.H. Effect of NaCl salinity stress on potato (Solanum tuberosum L.) plantlets grown and development under in vitro conditions. Sci. J. Agric. Sci. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. Soil and aquifer salinization: Toward an integrated approach for salinity management of groundwater. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 377–412. [Google Scholar]
- Hossain, M.; Kawochar, A.; Rahaman, E. Screening of CIP Potato clones for salinity tolerance in pot and field condition. Adv. Plants Agric. Res. 2018, 8, 573–580. [Google Scholar]
- Quan, X.; Liang, X.; Li, H.; Xie, C.; He, W.; Qin, Y. Identification and characterization of wheat germplasm for salt tolerance. Plants 2021, 10, 268. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Ghaffar, A.; Zafar, Z.U.; Javed, M.; Shah, K.H.; Noreen, S.; Manzoor, H.; Iqbal, M.; Hassan, I.F.Z.; Bano, H.; et al. Identification of novel source of salt tolerance in local bread wheat germplasm using morpho-physiological and biochemical attributes. Sci. Rep. 2021, 11, 10854. [Google Scholar] [CrossRef] [PubMed]
- Behra, T.K.; Krishna, R.; Ansari, W.A.; Aamir, M.; Kumar, P.; Kashyap, S.P.; Pandey, S.; Kole, C. Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead. Front. Plant Sci. 2022, 12, 787292. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Beena, A.S.; Awana, M.; Singh, A. Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front. Plant Sci. 2017, 8, 1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhansu, P.; Kulshrestha, N.; Kumar, R.; Raja, A.K.; Pandey, S.K.; Goel, V.; Ram, B. Identification of drought-tolerant co-canes based on physiological Traits, yield attributes and drought tolerance indices. Sugar Tech 2021, 23, 747–761. [Google Scholar] [CrossRef]
- Odjegba, V.J.; Chukwunwike, I.C. Physiological responses of Amaranthus hybridus L. under salinity stress. Indian J. Innov. Dev. 2012, 1, 742–748. [Google Scholar]
- Wang, Z.; Hong, Y.; Zhu, G.; Li, Y.; Niu, Q.; Yao, J.; Hua, K.; Bai, J.; Zhu, Y.; Shi, H.; et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter. EMBO J. 2020, 39, e103256. [Google Scholar] [CrossRef]
- Agurla, S.; Gahir, S.; Munemasa, S.; Murata, Y.; Raghavendra, A.S. Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv. Exp. Med. Biol. 2018, 1081, 215–232. [Google Scholar]
- Hnilickova, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Yadav, T.; Kumar, A.; Yadav, R.K.; Yadav, G.; Kumar, R.; Kushwaha, M. Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J. Biol. Sci. 2020, 27, 2010. [Google Scholar] [CrossRef] [PubMed]
- Sanwal, S.K.; Mann, A.; Kesh, H.; Kaur, G.; Kumar, R.; Rai, A.K. Genotype environment interaction analysis for fruit yield in okra (Abelmoschus esculentus L.) under alkaline environments. Indian J. Genet. 2021, 81, 101–110. [Google Scholar] [CrossRef]
- Najafi, F.; Khavari-Nejad, R.A.; Rastgar-Jazii, F.; Sticklen, M. Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pak. J. Biol. 2007, 10, 2752–2755. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Zhang, B.; Chen, Q.; Yang, P.; Wang, L.; Qian, B. Effect of Salt Stress on Photosynthetic and Antioxidant Characteristics in Purslane (Portulaca oleracea). Int. J. Agric. Biol. 2020, 24, 1309–1314. [Google Scholar]
- Elhakem, A.H. Growth, water relations, and photosynthetic activity are associated with evaluating salinity stress tolerance of wheat cultivars. Int. J. Agron. 2020, 2020, 8882486. [Google Scholar] [CrossRef]
- Ran, X.; Wang, X.; Gao, X.; Liang, H.; Liu, B.; Huang, X. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.). PLoS ONE 2021, 16, e0260086. [Google Scholar] [CrossRef]
- Alkhatib, R.; Abdo, N.; Mheidat, M. Photosynthetic and ultrastructural properties of eggplant (Solanum melongena) under salinity stress. Horticulturae 2021, 7, 181. [Google Scholar] [CrossRef]
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of Potato to Water Shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Li, D.; Feng, S.; Yang, J.; Zhang, J.; Wang, D.; Gan, Y. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol. 2019, 19, 357. [Google Scholar] [CrossRef]
- Dwivedi, S.K.; Arora, A.; Singh, V.P.; Singh, G.P. Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: Membrane stability, water relations and photosynthesis. Photosynthetica 2018, 56, 478–486. [Google Scholar] [CrossRef]
- Kumar, M.; Hasan, M.; Arora, A.; Gaikwad, K.; Kumar, S.; Rai, R.D.; Singh, A. Sodium chloride-induced spatial and temporal manifestation in membrane stability index and protein profiles of contrasting wheat (Triticum aestivum L.) genotypes under salt stress. Ind. J. Plant Physiol. 2015, 20, 271–275. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Dai, H.; Zheng, W.; Cao, F.; Zhang, G.; Sun, D.; Wu, F. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem. 2013, 63, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Mishra, B.; Gupta, S.R.; Rathore, A. Physiological response to salinity and alkalinity of rice genotypes of varying salt tolerance grown in field Lysimeters. J. Stress Physiol. Biochem. 2013, 9, 54–65. [Google Scholar]
- Sahoo, M.R.; Devi, T.R.; Dasgupta, M.; Nongdam, P.; Prakash, N. Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in Chinese potato. Sci. Rep. 2020, 10, 5404. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, L.; Chen, D.; Liang, M.; Liu, Z.; Shao, H.; Long, X. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE 2013, 8, e62085. [Google Scholar] [CrossRef]
- Assaha, D.V.; Ueda, A.; Saneoka, H.; Al-Yahyai, R.; Yaish, M.W. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017, 8, 509. [Google Scholar] [CrossRef]
- Aazami, M.A.; Rasouli, F.; Ebrahimzadeh, A. Oxidative damage, antioxidant mechanism and gene expression in tomato responding to salinity stress under in vitro conditions and application of iron and zinc oxide nanoparticles on callus induction and plant regeneration. BMC Plant Biol. 2021, 21, 597. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. The response of salinity stress-induced a. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci. 2020, 11, 559876. [Google Scholar] [CrossRef]
- Al Hassan, M.; Chaura, J.; Donat-Torres, M.P.; Boscaiu, M.; Vicente, O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 2017, 9, plx009. [Google Scholar] [CrossRef]
- Sarker, U.; Islam, M.T.; Rabbani, M.G.; Oba, S. Phenotypic divergence in vegetable amaranth for total antioxidant capacity, antioxidant profile, dietary fiber, nutritional and agronomic traits. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 67–76. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, J.J.; Bi, Y.F. Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol. Biol. Rep. 2014, 32, 185–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abogadallah, G.M.; Serag, M.M.; Quick, W.P. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiol. Plant 2010, 138, 60–73. [Google Scholar] [CrossRef]
- Correa-Aragunde, N.; Foresi, N.; Delledonne, M.; Lamattina, L. Auxin induces redox regulation of ascorbate peroxidase 1 activity by S-nitrosylation/denitrosylation balance resulting in changes of root growth pattern in Arabidopsis. J. Exp. Bot. 2013, 64, 3339–3349. [Google Scholar] [CrossRef] [Green Version]
- Lokhande, V.H.; Niknam, T.D.; Penna, S. Biochmical, physiological and growth changes in response to salinity in callus cultures of Sesuvim portulacastrum L. Plant Cell Tissue Organ Cult. 2010, 102, 17–25. [Google Scholar] [CrossRef]
- Zouari, M.; Ahmed, C.B.; Elloumi, N.; Bellassoued, K.; Delmail, D.; Labrousse, P.; Abdallah, F.B.; Rouina, B.B. Impact of proline application on cadmium accumulation, mineral nutrition and enzymatic antioxidant defense system of Oleaeuropaea L. CvChemlali exposed to cadmium stress. Ecotoxicol. Environ. Saf. 2016, 128, 195–205. [Google Scholar] [CrossRef]
- Gharsallah, C.; Fakhfakh, H.; Grubb, D.; Gorsane, F. Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 2016, 8, plw055. [Google Scholar] [CrossRef] [Green Version]
- Sanwal, S.K.; Kaur, G.; Mann, A.; Kumar, R.; Rai, A.K. Response of okra (Abelmoschus esculentus L.) genotypes to salinity stress in relation to seedling stage. J. Soil Salin. Water Qual. 2019, 11, 217–223. [Google Scholar]
- Mustafa, Z.; Ayyub, C.M.; Amjad, M.; Ahmad, R. Assessment of biochemical and ionic attributes against salt stress in eggplant (Solanum melongena L.) genotypes. J. Anim. Plant Sci. 2017, 27, 503–509. [Google Scholar]
- Plazas, M.; Nguyen, T.; González-Orenga, S.; Fita, A.; Vicente, O.; Prohens, J.; Boscaiu, M. Comparative analysis of the responses to water stress in eggplant (Solanum melongena) cultivars. Plant Physiol. Biochem. 2019, 143, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Queiros, F.; Rodrigues, J.A.; Almeida, J.M.; Almeida, D.; Fidalgo, F. Differential responses of the antioxidant defence system and ultrastructurein a salt-adapted potato cell line. Plant Physiol. Biochem. 2011, 49, 1410–1419. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Sanwal, S.K.; Sehrawat, N.; Kumar, A.; Kumar, N.; Mann, A. Assessing the effect of salinity stress on root and shoot physiology of chickpea genotypes using hydroponic technique. Indian J. Genet. 2021, 81, 586–589. [Google Scholar]
- Kumar, S.; Li, G.; Yang, J.; Huang, X.; Ji, Q.; Liu, Z.; Ke, W.; Hou, H. Effect of salt stress on growth, physiological parameters, and ionic concentration of Water Dropwort (Oenanthe javanica) cultivars. Front. Plant Sci. 2021, 12, 660409. [Google Scholar] [CrossRef]
- Gao, H.J.; Yang, H.Y.; Bai, J.P.; Liang, X.Y.; Lou, Y.; Zhang, J.L.; Wang, D.; Zhang, J.L.; Niu, S.Q.; Chen, Y.L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front. Plant Sci. 2015, 5, 787. [Google Scholar] [CrossRef] [PubMed]
- Jaarsma, R.; de Vries, R.S.; de Boer, A.H. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS ONE 2013, 8, e60183. [Google Scholar] [CrossRef]
- Sanwal, S.K.; Kumar, A.; Mann, A.; Kaur, G. Differential response of pea (Pisum sativum) genotypes exposed to salinity in relation to physiological and biochemical attributes. Indian J. Agric. Sci. 2018, 88, 149–156. [Google Scholar]
- Sanwal, S.K.; Mann, A.; Kumar, A.; Kesh, H.; Kaur, G.; Rai, A.K.; Kumar, R.; Sharma, P.C.; Kumar, A.; Bahadur, A.; et al. Salt Tolerant Eggplant Rootstocks Modulate Sodium Partitioning in Tomato Scion and Improve Performance under Saline Conditions. Agriculture 2022, 12, 183. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [CrossRef]
- Ouertani, R.N.; Abid, G.; Karmous, C.; Ben Chikha, M.; Boudaya, O.; Mahmoudi, H.; Mejri, S.; Jansen, R.K.; Ghorbel, A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AoB Plants 2021, 13, plab034. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ali, Q.; Iqbal, M.S.; Nasir, I.A.; Wang, X. Salt tolerance of potato genetically engineered with the Atriplex canescens BADH Gene. Biol. Plant 2020, 64, 271–279. [Google Scholar] [CrossRef]
Name | Parentage | Release Year | Maturity Group | Tuber Color | Tuber Shape | Flesh Color | Uses # |
---|---|---|---|---|---|---|---|
K. Kundan * | Ekishirazu × Katahdin | 1958 | Medium | White | Round to ovoid | Cream | T |
K. Safed | Clonal selection from Phulwa | 1958 | Late | White | Round | Light yellow | T |
K. Red | Clonal selection from Darjeeling Red Round | 1958 | Medium | Red | Round | Yellow | T |
K. Kuber | (S. curtilobum × S. tuberosum) × S. andigenum | 1958 | Medium | White | Ovoid | White | T |
K. Kumar | Lumbri × Katahdin | 1958 | Late | White | Ovoid | White | T |
K. Neela | Katahdin × Shamrock | 1963 | Late | White | Ovoid | White | T |
K. Sindhuri | Kufri Red × Kufri Kundan | 1967 | Late | Red | Round | Cream | T |
K. Jyoti | 3069d (4) × 2814a (1) | 1968 | Medium | White | Ovoid | White | T |
K. Jeevan | M 109-3 × Seedling 698-D | 1968 | Late | White | Ovoid | White | T |
K. Chamatkar | Ekishirazu × Phulwa | 1968 | Late | White | Round | Yellow | T |
K. Khasigaro | Taborky × Seedling 698-D | 1968 | Late | White | Round to ovoid | Cream | T |
K. Sheetman | Craigs Defiance × Phulwa | 1968 | Medium | White | Ovoid | Cream | T |
K. Alankar | Kennebec × ON 2090 | 1968 | Medium | White | Ovoid | White | T |
K. Naveen | 3070d (4) × Seedling 692-D | 1968 | Late | White | Ovoid | White | T |
K. Chandramukhi | Seedling 4485 × Kufri Kuber | 1968 | Early | White | Ovoid | White | T |
K. Muthu | 3046 (1) × M109-3 | 1971 | Medium | White | Round to ovoid | White | T |
K. Lauvkar | Serkov × Adina | 1972 | Early | White | Round | White | T |
K. Badshah | Kufri Jyoti × Kufri Alankar | 1979 | Medium | White | Ovoid | White | T |
K. Bahar | Kufri Red × Gineke | 1980 | Medium | White | Round to ovoid | White | T |
K. Lalima | Kufri Red × AG 14 (Wis. × 37) | 1982 | Medium | Red | Round | White | T |
K. Sherpa | Ultimus × Adina | 1983 | Medium | White | Round | Cream | T |
K. Swarna | Kufri Jyoti × (VTn)2 62.33.3 | 1985 | Medium | White | Round to ovoid | White | T |
K. Megha | SLB/K-37 × SLB/Z-73 | 1989 | Late | White | Round to ovoid | White | T |
K. Ashoka | EM/C-1020 × Allerfruheste Gelbe | 1996 | Early | White | Ovoid | White | T |
K. Sutlej | Kufri Bahar × Kufri Alankar | 1996 | Medium | White | Ovoid | White | T |
K. Jawahar | Kufri Neelamani × Kufri Jyoti | 1996 | Medium | White | Round to ovoid | White | T |
K. Chipsona-1 | ME ×.750826 × MS/78-79 | 1998 | Medium | White | Ovoid | White | C, F |
K. Pukhraj | Craigs Defiance × JE×/B-687 | 1998 | Early | White | Ovoid | Yellow | T |
K. Giriraj | SLB/J-132 × E×/A 680-16 | 1998 | Medium | White | Ovoid | White | T |
K. Anand | Kufri Ashoka × PH/F-1430 | 1999 | Medium | White | Ovoid to oblong | White | T |
K. Kanchan | SLB/Z-405(a) × Pimpernel | 1999 | Medium | Red | Ovoid to oblong | Cream | T |
K. Shailja | Kufri Jyoti × E×/A 680-16 | 2005 | Medium | White | Round to ovoid | White | T |
K. Pushkar | QB/A 9-120 × Spatz | 2005 | Medium | White | Round to ovoid | Light yellow | T |
K. Arun | Kufri Lalima × MS/82-797 | 2005 | Medium | Red | Ovoid | Cream | T |
K. Chipsona-3 | MP/91-86 × Kufri Chipsona-2 | 2006 | Medium | White | Round to ovoid | Cream | C, F |
K. Himalini | I-1062 × Tollocan | 2006 | Medium | White | Ovoid to oblong | Cream | T |
K. Surya | Kufri Lauvkar × LT-1 | 2006 | Early | Yellow | Oblong | Yellow | T |
K. Lalit | 85-P-670 × CP 3192 | 2007 | Medium | Light red | Round | Light yellow | T |
K. Himsona | MP/92-35 × Kufri Chipsona-2 | 2008 | Medium | White | Round to ovoid | Cream | C |
K. Sadabahar | MS/81-145 × PH/F-1545 | 2008 | Medium | White | Oblong | White | T |
K. Girdhari | Kufri Megha × Bulk pollen of 10 genotypes | 2008 | Medium | White | Ovoid to oblong | Pale yellow | T |
K. Frysona | MP/92-30 × MP/90-94 | 2009 | Medium | White | Long oblong | White | F |
K. Chipsona-4 | Atlantic × MP/92-35 | 2010 | Medium | White | Round | White | C |
K. Mohan | MS/92-1090 × CP 1704 (Claudia) | 2015 | Medium | White | Ovoid | White | T |
K. Lima | C90.266 × C93.154 | 2018 | Medium | Creamy white | Ovoid | Cream | T |
K. Neelkanth | MS/89-1095 × CP 3290 | 2018 | Medium | Purple | Ovoid | Yellow | T |
K. Ganga | MS/82-638 × JX576 | 2018 | Medium | Creamy white | Ovoid | Cream | T |
K. Sangam | Kufri Himsona × Kufri Pukhraj | 2020 | Medium | Creamy white | Ovoid | White | T, C, F |
K. Thar-3 | JN 2207 × Kufri Jyoti | 2020 | Medium | White | Oval | Cream | T |
K. Manik | Kufri Arun × CP3192 | 2020 | Medium | Red | Round | Yellow | T |
K. Thar-1 | Kufri bahar × CP 1785 | 2020 | Medium | Creamy white | Round to oval | Cream | T |
K. Thar-2 | CIP389468.3 × 88.052 | 2020 | Medium | Light yellow | Ovoid | Light yellow | T |
K. Fryom | Kufri Chipsona-1 × MP/92-35 | 2020 | Medium | White | Oblong | White | F |
Parameters | Initial Soil Status | Final Soil Status | |
---|---|---|---|
Control Treatment | Saline Treatment | ||
2020 | |||
ECe (dS m−1) | 1.28 | 1.42 | 6.24 |
pHs | 7.52 | 7.56 | 7.50 |
2021 | |||
ECe (dS m−1) | 1.36 | 1.54 | 6.46 |
pHs | 7.81 | 7.78 | 7.88 |
Variables | Mean Squares | F Values | Significance | |||
---|---|---|---|---|---|---|
Genotypes | G × E | Genotypes | G × E | Genotypes | G × E | |
Df | 15 | 15 | 15 | 15 | Pr (>F) | Pr (>F) |
Plant height (cm) | 96.05 | 12.52 | 4.10 | 0.53 | 0.000 | 0.911 |
Stem number (nos) | 4.60 | 0.63 | 5.94 | 0.81 | 0.000 | 0.660 |
Yield/plant (g) | 40,103.05 | 9613.05 | 3.87 | 0.93 | 0.000 | 0.539 |
RWC (%) | 46.52 | 32.85 | 1058.77 | 747.68 | 0.000 | 0.000 |
MSI (%) | 100.18 | 84.75 | 1.84 | 1.56 | 0.049 | 0.113 |
SPAD | 70.40 | 17.54 | 3.66 | 0.91 | 0.000 | 0.556 |
Proline (µg g−1 FW) | 4128.90 | 3507.76 | 53.74 | 45.66 | 0.000 | 0.000 |
H2O2 (µmoles g−1 FW) | 0.11 | 0.08 | 110.15 | 78.74 | 0.000 | 0.000 |
MDA (nmol g−1 FW) | 37.57 | 15.84 | 204.58 | 86.26 | 0.000 | 0.000 |
CAT (units g−1 FW) | 13.29 | 9.69 | 310.72 | 226.45 | 0.000 | 0.000 |
APX (units g−1 FW) | 247.10 | 322.85 | 581.65 | 759.98 | 0.000 | 0.000 |
SOD (units g−1 FW) | 795.79 | 594.60 | 596.46 | 445.67 | 0.000 | 0.000 |
POX (units g−1 FW) | 119.84 | 87.03 | 422.44 | 306.80 | 0.000 | 0.000 |
Pn (µmol CO2/m2/s) | 19.32 | 3.25 | 12.64 | 2.13 | 0.000 | 0.020 |
E (mmol H2O/m2/s) | 0.33 | 0.33 | 24.67 | 24.57 | 0.000 | 0.000 |
gS (mol H2O/m2/s) | 0.01 | 0.00 | 9.84 | 8.58 | 0.000 | 0.000 |
WUE (instantaneous; µmol/mmol) | 1.15 | 0.21 | 12.15 | 2.22 | 0.000 | 0.015 |
WUE (intrinsic; µmol/mol) | 101.01 | 38.13 | 6.21 | 2.34 | 0.000 | 0.010 |
Root K+/Na+ | 0.31 | 0.34 | 31.38 | 33.83 | 0.000 | 0.000 |
Leaf K+/Na+ | 0.54 | 0.98 | 3.80 | 6.90 | 0.000 | 0.000 |
Tuber K+/Na+ | 4.27 | 0.56 | 57.95 | 7.57 | 0.000 | 0.000 |
Salt-Tolerant Genotypes | Tuber Yield Reduction (<25%) | Moderately Tolerant Genotypes | Tuber Yield Reduction (25–50%) | Salt-Sensitive Genotypes | Tuber Yield Reduction (>50%) |
---|---|---|---|---|---|
K. Thar-2 | 7.16 | K. Megha | 26.56 | K. Manik | 51.71 |
K. Giriraj | 7.81 | K. Sherpa | 26.78 | K. Kanchan | 52.26 |
K. Lalit | 21.21 | K. Sadabahar | 27.06 | K. Alankar | 53.73 |
K. Surya | 23.06 | K. Neela | 28.01 | K. Jeevan | 53.92 |
K. Jawahar | 23.80 | K. Pushkar | 28.58 | K. Mohan | 53.95 |
K. Neelkanth | 23.88 | K. Kundan | 28.61 | K. Sindhuri | 54.97 |
K. Red | 24.80 | K. Lalima | 28.67 | K. Ganga | 55.03 |
K. Thar-1 | 28.87 | K. Arun | 55.62 | ||
K. Chipsona-1 | 29.39 | K. Sangam | 56.07 | ||
K. Chandramukhi | 30.40 | ||||
K. Kuber | 31.53 | ||||
K. Bahar | 32.12 | ||||
K. Swarna | 32.81 | ||||
K. Chipsona-3 | 35.18 | ||||
K. Badshah | 36.39 | ||||
K. Fryom | 37.92 | ||||
K. Muthu | 39.64 | ||||
K. Thar-3 | 39.66 | ||||
K. Jyoti | 40.73 | ||||
K. Chamatkar | 40.96 | ||||
K. Naveen | 41.24 | ||||
K. Chipsona-4 | 42.15 | ||||
K. Shailja | 43.18 | ||||
K. Himsona | 43.29 | ||||
K. Frysona | 44.22 | ||||
K. Pukhraj | 45.93 | ||||
K. Lima | 46.01 | ||||
K. Girdhari | 46.18 | ||||
K. Ashoka | 46.52 | ||||
K. Anand | 48.35 | ||||
K. Himalini | 48.60 | ||||
K. Safed | 48.71 | ||||
K. Kumar | 49.14 | ||||
K. Sutlej | 49.44 | ||||
K. Sheetman | 49.55 | ||||
K. Lauvkar | 49.72 | ||||
K. Khasigaro | 49.88 |
Varieties | Root K+/Na+ | Leaf K+/Na+ | Tuber K+/Na+ | |||
---|---|---|---|---|---|---|
Control | Salinity | Control | Salinity | Control | Salinity | |
K. Thar-2 | 3.86 ± 0.01 | 2.68 ± 0.32 | 3.12 ± 0.99 | 3.08 ± 0.03 | 6.12 ± 0.01 | 5.49 ± 0.06 |
K. Giriraj | 3.94 ± 0.01 | 2.86 ± 0.01 | 3.90 ± 0.01 | 2.79 ± 0.33 | 7.33 ± 0.01 | 5.40 ± 0.01 |
K. Lalit | 3.65 ± 0.02 | 3.09 ± 0.01 | 3.65 ± 0.02 | 2.96 ± 0.03 | 4.05 ± 0.87 | 4.96 ± 0.01 |
K. Surya | 3.43 ± 0.01 | 2.41 ± 0.01 | 4.28 ± 0.02 | 3.04 ± 0.03 | 5.65 ± 0.02 | 4.77 ± 0.03 |
K. Jawahar | 3.98 ± 0.01 | 3.12 ± 0.03 | 4.65 ± 0.03 | 2.90 ± 0.06 | 6.54 ± 0.03 | 5.85 ± 0.03 |
K. Neelkanth | 3.25 ± 0.03 | 3.18 ± 0.01 | 5.09 ± 0.03 | 2.98 ± 0.03 | 5.17 ± 0.03 | 4.97 ± 0.01 |
K. Red | 3.56 ± 0.01 | 2.81 ± 0.01 | 4.82 ± 0.03 | 2.78 ± 0.01 | 4.14 ± 0.02 | 3.54 ± 0.03 |
K. Manik | 3.42 ± 0.01 | 2.64 ± 0.03 | 4.96 ± 0.01 | 2.14 ± 0.03 | 4.72 ± 0.02 | 3.83 ± 0.03 |
K. Kanchan | 3.80 ± 0.02 | 2.58 ± 0.01 | 3.45 ± 0.64 | 2.42 ± 0.01 | 4.21 ± 0.09 | 3.83 ± 0.01 |
K. Alankar | 3.45 ± 0.02 | 2.12 ± 0.01 | 4.70 ± 0.01 | 2.18 ± 0.03 | 5.37 ± 0.03 | 4.42 ± 0.01 |
K. Jeevan | 3.66 ± 0.02 | 2.25 ± 0.03 | 4.10 ± 0.02 | 2.32 ± 0.01 | 6.21 ± 0.05 | 4.71 ± 0.01 |
K. Mohan | 3.45 ± 0.01 | 2.36 ± 0.03 | 3.98 ± 0.01 | 2.16 ± 0.03 | 6.50 ± 0.05 | 6.05 ± 0.09 |
K. Sindhuri | 3.88 ± 0.01 | 2.08 ± 0.01 | 4.58 ± 0.04 | 2.12 ± 0.03 | 6.41 ± 0.01 | 5.39 ± 0.01 |
K. Ganga | 3.68 ± 0.01 | 2.19 ± 0.01 | 4.31 ± 0.05 | 1.96 ± 0.03 | 5.26 ± 0.01 | 4.53 ± 0.03 |
K. Arun | 3.71 ± 0.01 | 2.03 ± 0.01 | 4.80 ± 0.02 | 1.92 ± 0.01 | 4.54 ± 0.01 | 3.93 ± 0.03 |
K. Sangam | 3.82 ± 0.01 | 1.98 ± 0.01 | 4.56 ± 0.02 | 1.98 ± 0.01 | 6.26 ± 0.02 | 5.63 ± 0.03 |
CV (%) | 1.72 | 5.49 | 11.96 | 6.28 | 2.51 | 0.97 |
LSD (p ≤ 0.05) | 0.11 | 0.23 | 0.86 | 0.26 | 0.23 | 0.08 |
Variables | PH | SN | RWC | MSI | PRO | H2O2 | POX | Tuber K+/Na+ | TY |
---|---|---|---|---|---|---|---|---|---|
PH | 0.558 *** | 0.145 | 0.101 | −0.065 | −0.042 | −0.035 | −0.025 | −0.196 | 0.415 ** |
SN | 0.256 | 0.400 ** | 0.257 | −0.385 ** | 0.021 | −0.131 | −0.091 | −0.321 ** | 0.225 |
RWC | 0.334 ** | 0.414 ** | 0.318 ** | −0.127 | −0.180 | 0.115 | −0.386 ** | 0.094 | −0.085 |
MSI | 0.331 ** | 0.479 *** | 0.899 *** | 0.055 | −0.263 | −0.199 | −0.069 | −0.102 | 0.147 |
PRO | 0.330 ** | 0.441 ** | 0.790 *** | 0.811 *** | 0.265 | 0.326 ** | 0.242 | 0.349 ** | −0.073 |
H2O2 | −0.305 ** | −0.408 ** | −0.892 *** | −0.796 *** | −0.782 *** | 0.265 | 0.119 | 0.151 | −0.246 |
POX | 0.275 * | 0.439 ** | 0.818 *** | 0.789 *** | 0.892 *** | −0.811 *** | 0.283 * | 0.065 | −0.060 |
Tuber K+/Na+ | −0.183 | −0.198 | 0.060 | 0.012 | 0.093 | −0.135 | 0.068 | 0.755 *** | −0.400 ** |
TY | 0.770 *** | 0.485 *** | 0.536 *** | 0.455 *** | 0.451 *** | −0.449 *** | 0.511 *** | 0.010 | 0.545 *** |
Traits | Contribution (%) | Traits Mean ± SD | Alteration (%) | Direction of Magnitude | |
---|---|---|---|---|---|
Control | Salinity Stress | ||||
Plant height (cm) | 0.028 | 31.18 ± 5.66 | 26.58 ± 7.39 | 14.73 | |
Stem Number (nos) | 0.066 | 4.10 ± 1.29 | 3.48 ± 1.03 | 14.97 | |
Tuber Yield(g) | 0.034 | 380.96 ± 131.66 | 232.64 ± 129.80 | 38.93 | |
RWC (%) | 30.790 | 82.13 ± 1.43 | 72.35 ± 4.83 | 11.91 | |
MSI (%) | 14.695 | 80.23 ± 10.75 | 67.00 ± 4.18 | 16.49 | |
SPAD | 0.023 | 45.71 ± 5.34 | 47.51 ± 5.09 | 3.93 | |
Proline (µg g−1 FW) | 0.761 | 141.64 ± 7.70 | 352.14 ± 49.84 | 148.61 | |
H2O2 (µmoles g−1 FW) | 1.638 | 1.36 ± 0.08 | 2.55 ± 0.24 | 87.62 | |
MDA (nmol g−1 FW) | 4.245 | 17.39 ± 1.76 | 25.17 ± 3.77 | 44.69 | |
CAT (units g−1 FW) | 3.752 | 15.96 ± 1.80 | 19.80 ± 2.03 | 24.05 | |
APX (units g−1 FW) | 10.681 | 78.56 ± 3.98 | 148.70 ± 12.90 | 89.27 | |
SOD (units g−1 FW) | 8.477 | 149.63 ± 6.48 | 236.23 ± 20.09 | 57.88 | |
POX (units g−1 FW) | 15.127 | 26.46 ± 2.39 | 45.29 ± 7.79 | 71.17 | |
Pn (µmol CO2/m2/s) | 0.592 | 16.22 ± 2.18 | 10.83 ± 2.11 | 33.24 | |
E (mmol H2O/m2/s) | 0.191 | 4.67 ± 0.38 | 3.25 ± 0.29 | 30.50 | |
gS (mol H2O/m2/s) | 0.146 | 0.36 ± 0.04 | 0.24 ± 0.03 | 34.50 | |
WUE (instantaneous; µmol/mmol) | 0.118 | 3.50 ± 0.58 | 3.32 ± 0.48 | 5.00 | |
WUE (intrinsic; µmol/mol) | 0.223 | 45.09 ± 6.74 | 45.35 ± 4.54 | 0.57 | |
Root K+/Na+ | 0.394 | 3.66 ± 0.21 | 2.52 ± 0.41 | 31.03 | |
Leaf K+/Na+ | 0.356 | 4.31 ± 0.70 | 2.48 ± 0.44 | 42.40 | |
Tuber K+/Na+ | 7.666 | 5.53 ± 1.03 | 4.83 ± 0.76 | 12.62 |
Dependent Variable | Step and Variables | C(p) | R-Square | Adj R-Square |
---|---|---|---|---|
TY (tubers yield) | 1. PH | 52.68 | 59.21 | 58.32 |
2. PH + POX | 31.79 | 68.87 | 67.48 | |
3. PH + SN + POX | 25.23 | 72.48 | 70.60 | |
4. PH + SN + POX + Tuber K+/Na+ | 20.89 | 75.15 | 72.84 | |
5. PH + SN + PRO + POX + Tuber K+/Na+ | 14.93 | 78.51 | 75.95 | |
6. PH + SN + RWC + H2O2 + Tuber K+/Na+ + MSI | 14.52 | 79.53 | 76.53 | |
7. PH + SN + RWC + H2O2 + POX + Tuber K+/Na+ + MSI | 10.98 | 81.87 | 78.69 | |
8. PH + SN + RWC + PRO + H2O2 + POX + Tuber K+/Na+ + MSI | 9.00 | 83.54 | 80.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanwal, S.K.; Kumar, P.; Kesh, H.; Gupta, V.K.; Kumar, A.; Kumar, A.; Meena, B.L.; Colla, G.; Cardarelli, M.; Kumar, P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. Plants 2022, 11, 1842. https://doi.org/10.3390/plants11141842
Sanwal SK, Kumar P, Kesh H, Gupta VK, Kumar A, Kumar A, Meena BL, Colla G, Cardarelli M, Kumar P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. Plants. 2022; 11(14):1842. https://doi.org/10.3390/plants11141842
Chicago/Turabian StyleSanwal, Satish Kumar, Parveen Kumar, Hari Kesh, Vijai Kishor Gupta, Arvind Kumar, Ashwani Kumar, Babu Lal Meena, Giuseppe Colla, Mariateresa Cardarelli, and Pradeep Kumar. 2022. "Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits" Plants 11, no. 14: 1842. https://doi.org/10.3390/plants11141842
APA StyleSanwal, S. K., Kumar, P., Kesh, H., Gupta, V. K., Kumar, A., Kumar, A., Meena, B. L., Colla, G., Cardarelli, M., & Kumar, P. (2022). Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. Plants, 11(14), 1842. https://doi.org/10.3390/plants11141842