Growth Responses of Three European Weeds on Different AMF Species during Early Development
Abstract
:1. Introduction
2. Results
2.1. Echinochloa crus-galli
2.2. Solanum nigrum
2.3. Papaver rhoeas
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Establishment of AMF Isolate Cultures
5.2. Experimental Setup
5.3. Root Colonization
5.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- van der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- van der Heijden, M.G.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Scheublin, T.R.; van Logtestijn, R.S.; van der Heijden, M.G. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 2007, 95, 631–638. [Google Scholar] [CrossRef]
- Wagg, C.; Jansa, J.; Stadler, M.; Schmid, B.; van der Heijden, M.G. Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 2011, 92, 1303–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, N.; Huerd, S. Effects of soil fungi on weed communities in a corn–soybean rotation. Renew. Agric. Food Syst. 2008, 23, 108–117. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Mäder, P.; Dubois, D.; Ineichen, K.; Boller, T.; Wiemken, A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 2004, 138, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Oehl, F.; Jansa, J.; Ineichen, K.; Mäder, P.; van der Heijden, M.G. Arbuscular mycorrhizal fungi as bio-indicators in Swiss agricultural soils. Agrar. Schweiz 2011, 18, 304–311. [Google Scholar]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol. 1997, 135, 575–585. [Google Scholar] [CrossRef]
- Klironomos, J.N. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Li, H.; Smith, F.A.; Dickson, S.; Holloway, R.E.; Smith, S.E. Plant growth depressions in arbuscular mycorrhizal symbioses: Not just caused by carbon drain? New Phytol. 2008, 178, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Ravnskov, S.; Jakobsen, I. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol. 1995, 129, 611–618. [Google Scholar] [CrossRef]
- Li, M. Impact of Arbuscular Mycorrhizal Fungi on Crop and Weed Growth: Potential Implications for Integrated Weed Managment. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2017. [Google Scholar]
- Melander, B.; Rasmussen, I.A.; Bàrberi, P. Integrating physical and cultural methods of weed control—Examples from European research. Weed Sci. 2005, 53, 369–381. [Google Scholar] [CrossRef]
- Mohler, C.L. Ecological bases for the cultural control of annual weeds. J. Prod. Agric. 1996, 9, 468–474. [Google Scholar] [CrossRef]
- Boyetchko, S.M. Impact of soil microorganisms on weed biology and ecology. Phytoprotection 1996, 77, 41–56. [Google Scholar] [CrossRef] [Green Version]
- de Novais, C.B.; Borges, W.L.; da Conceicão Jesus, E.; Júnior, O.J.S.; Siqueira, J.O. Inter-And intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl. Soil Ecol. 2014, 76, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, L.; Kjøller, R.; Vestberg, M.; Rosendahl, S.; Jakobsen, I. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 2004, 164, 357–364. [Google Scholar] [CrossRef]
- Sieverding, E.; Friedrichsen, J.; Suden, W. Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems; Sonderpublikation der GTZ: Eschborn, Germany, 1991. [Google Scholar]
- Tchabi, A.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Efficacy of indigenous arbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa. Appl. Soil Ecol. 2010, 45, 92–100. [Google Scholar] [CrossRef]
- Säle, V.; Palenzuela, J.; Azcón-Aguilar, C.; Sánchez-Castro, I.; da Silva, G.A.; Seitz, B.; Sieverding, E.; van der Heijden, M.G.; Oehl, F. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza 2021, 31, 559–576. [Google Scholar] [CrossRef]
- Vatovec, C.; Jordan, N.; Huerd, S. Responsiveness of certain agronomic weed species to arbuscular mycorrhizal fungi. Renew. Agric. Food Syst. 2005, 20, 181–189. [Google Scholar] [CrossRef]
- Veiga, R.S.; Jansa, J.; Frossard, E.; van der Heijden, M.G. Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 2011, 6, e27825. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, S.; Yousefi, A.R.; Pouryousef, M.; Goicoechea, N. Mycorrhizal impact on competitive relationships and yield parameters in Phaseolus vulgaris L.—weed mixtures. Mycorrhiza 2021, 31, 599–612. [Google Scholar] [CrossRef]
- Heppell, K.; Shumway, D.; Koide, R. The effect of mycorrhizal infection of Abutilon theophrasti on competitiveness of offspring. Funct. Ecol. 1998, 12, 171–175. [Google Scholar] [CrossRef]
- Koide, R.; Li, M.; Lewis, J.; Irby, C. Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. Oecologia 1988, 77, 537–543. [Google Scholar] [CrossRef]
- Koide, R.T.; Lu, X. Mycorrhizal infection of wild oats: Maternal effects on offspring growth and reproduction. Oecologia 1992, 90, 218–226. [Google Scholar] [CrossRef]
- Koide, R.T.; Lu, X. On the cause of offspring superiority conferred by mycorrhizal infection of Abutilon theophrasti. New Phytol. 1995, 131, 435–441. [Google Scholar] [CrossRef]
- Stanley, M.R.; Koide, R.T.; Shumway, D.L. Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field. Oecologia 1993, 94, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, C.; Prati, D. Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl. Ecol. 2014, 15, 534–542. [Google Scholar] [CrossRef]
- Rinaudo, V.; Bàrberi, P.; Giovannetti, M.; van der Heijden, M.G. Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 2010, 333, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Schenck, N.; Smith, G.S. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 1982, 92, 193–201. [Google Scholar] [CrossRef]
- El Omari, B.; El Ghachtouli, N. Arbuscular mycorrhizal fungi-weeds interaction in cropping and unmanaged ecosystems: A review. Symbiosis 2021, 83, 279–292. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.T.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 2010, 13, 394–407. [Google Scholar] [CrossRef]
- Bender, S.F.; van der Heijden, M.G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 2015, 52, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Köhl, L.; van der Heijden, M.G. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching. Soil Biol. Biochem. 2016, 94, 191–199. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, M.G. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 2010, 91, 1163–1171. [Google Scholar] [CrossRef]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef]
- Oehl, F.; Sanchez-Castro, I.; de Sousa, N.M.F.; da Silva, G.A.; Palenzuela, J. Dominikia bernensis, a new arbuscular mycorrhizal fungus from a swiss no-till farming site, and D. aurea, D. compressa and D. indica, three new combinations in Dominikia. Nova Hedwig. 2015, 101, 65–76. [Google Scholar] [CrossRef]
- Oehl, F.; Sanchez-Castro, I.; Palenzuela, J.; da Silva, G.A.; Sieverding, E. Glomus compressum, a new arbuscular mycorrhizal fungus from different agro-ecosystems in central europe. Nova Hedwig. 2014, 99, 429–439. [Google Scholar] [CrossRef]
- Oehl, F.; da Silva, G.A.; Goto, B.T.; Costa Maia, L.; Sieverding, E. Glomeromycota: Two new classes and a new order. Mycotaxon 2011, 116, 365–379. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Palenzuela, J.; Ineichen, K.; da Silva, G.A. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2011, 2, 191–199. [Google Scholar] [CrossRef]
- Baltruschat, H.; Santos, V.M.; da Silva, D.K.A.; Schellenberg, I.; Deubel, A.; Sieverding, E.; Oehl, F. Unexpectedly high diversity of arbuscular mycorrhizal fungi in fertile Chernozem croplands in Central Europe. Catena 2019, 182, 104135. [Google Scholar] [CrossRef]
- Wijayawardene, N.; Hyde, K.; Dai, D.; Sánchez-García, M.; Goto, B.; Saxena, R.; Erdoğdu, M.; Selçuk, F.; Rajeshkumar, K.; Aptroot, A.; et al. Outline of Fungi and fungus-like taxa—2021. Mycosphere 2022, 13, 53–453. [Google Scholar] [CrossRef]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 2012, 193, 970–984. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Ris, E.A.; Boller, T.; Wiemken, A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol. 2005, 165, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Koske, R.; Gemma, J. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486. [Google Scholar] [CrossRef]
- Plenchette, C.; Fortin, J.; Furlan, V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. I. Mycorrhizal dependency under field conditions. Plant Soil 1983, 70, 199–209. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org/ (accessed on 5 May 2022).
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended; R Package: Madison, WI, USA, 2021. [Google Scholar]
Gigaspora margarita | Dominikia compressa | |
---|---|---|
Control | p = 0.049 | |
Oehlia diaphana | p = 0.040 | |
Rhizoglomus invermaium | p = 0.040 | |
Funneliformis mosseae | p = 0.049 | |
Dominikia compressa | p = 0.025 | |
Paraglomus laccatum | p = 0.043 | |
Rhizoglomus irregulare | p = 0.049 | |
Claroideoglomus claroideum | p = 0.049 |
Isolate | Mycorrhizal Dependency (%) | |||
---|---|---|---|---|
E. crus-galli | Solanum nigrum | Papaver rhoeas | Leek | |
O.dia1 | −2 ± 16 | −1 ± 18 | 18 ± 9 | 168 ± 30 |
O.dia2 | −23 ± 41 | −10 ± 15 | −2 ± 25 | 160 ± 23 |
O.dia3 | −7 ± 27 | 1 ± 10 | 14 ± 7 | 153 ± 26 |
R.irr1 | −19 ± 17 | −9 ± 8 | 17 ± 5 | 148 ± 33 |
R.irr2 | −21 ± 8 | −3 ± 8 | −7 ± 42 | 124 ± 29 |
R.irr3 | −14 ± 12 | −7 ± 18 | −16 ± 47 | 155 ± 36 |
R.irr4 | −28 ± 34 | −2 ± 11 | 14 ± 19 | 148 ± 32 |
R.inv1 | −3 ± 11 | −6 ± 12 | −4 ± 51 | 135 ± 12 |
R.inv2 | −17 ± 31 | 0 ± 9 | −44 ± 132 | 174 ± 28 |
R.inv3 | −3 ± 15 | 0 ± 8 | −40 ± 61 | 152 ± 24 |
R.inv4 | −15 ± 24 | −4 ± 8 | −5 ± 26 | 163 ± 17 |
F.mos1 | −12 ± 10 | −4 ± 11 | −141 ± 287 | 134 ± 21 |
F.mos2 | −10 ± 13 | −14 ± 21 | −4 ± 20 | 121 ± 27 |
F.mos3 | −2 ± 9 | −9 ± 8 | 1 ± 12 | 129 ± 25 |
F.cal | −10 ± 14 | −4 ± 13 | −13 ± 25 | 143 ± 18 |
F.fra1 | −24 ± 32 | −22 ± 23 | 17 ± 10 | 94 ± 16 |
F.fra2 | −15 ± 15 | 2 ± 11 | −26 ± 103 | 100 ± 23 |
Se.nig1 | −24 ± 35 | −9 ± 22 | −66 ± 110 | 107 ± 29 |
Se.nig2 | −15 ± 22 | −1 ± 3 | −45 ± 127 | 98 ± 32 |
Do.com1 | −12 ± 32 | 10 ± 18 | 7 ± 28 | 93 ± 11 |
Do.com2 | 2 ± 9 | −7 ± 10 | −7 ± 49 | 84 ± 32 |
Cl.can | −15 ± 26 | −4 ± 24 | −166 ± 366 | 104 ± 29 |
Cl.cla1 | −22 ± 21 | −18 ± 18 | 6 ± 8 | 123 ± 23 |
Cl.cla2 | −25 ± 21 | −6 ± 13 | −10 ± 37 | 127 ± 19 |
Cl.cla3 | −24 ± 37 | −4 ± 2 | −467 ± 799 | 125 ± 21 |
E.inf1 | −5 ± 19 | −3 ± 6 | −59 ± 147 | 76 ± 16 |
E.inf2 | −24 ± 32 | 2 ± 14 | −6 ± 23 | 124 ± 27 |
Di.cel1 | −14 ± 10 | −7 ± 15 | −27 ± 38 | n.a. |
Di.cel2 | −5 ± 17 | 1 ± 20 | −162 ± 413 | 111 ± 28 |
Di.cel3 | −9 ± 14 | −10 ± 15 | 16 ± 12 | 110 ± 40 |
Di.epi1 | −16 ± 13 | −12 ± 15 | 13 ± 7 | 101 ± 31 |
Di.epi2 | −13 ± 12 | −7 ± 7 | −94 ± 249 | 119 ± 29 |
Di.epi3 | −18 ± 20 | −1 ± 8 | −128 ± 219 | n.a. |
G.mar1 | −35 ± 50 | −7 ± 8 | −284 ± 643 | 79 ± 16 |
G.mar2 | −46 ± 30 | −8 ± 7 | −49 ± 76 | 89 ± 27 |
Ce.hel1 | −27 ± 20 | −3 ± 13 | 6 ± 9 | 86 ± 13 |
Ce.hel2 | −10 ± 11 | −13 ± 18 | 2 ± 23 | n.a. |
Sc.cal1 | −16 ± 19 | 4 ± 16 | −83 ± 168 | n.a. |
Sc.cal2 | −15 ± 20 | −12 ± 12 | 1 ± 14 | n.a. |
A.eur1 | −16 ± 11 | 3 ± 10 | −15 ± 53 | 93 ± 20 |
A.eur2 | −24 ± 37 | −10 ± 14 | −95 ± 257 | 77 ± 17 |
A.eur3 | −12 ± 28 | −5 ± 8 | 13 ± 17 | n.a. |
P.lac1 | −5 ± 12 | −12 ± 10 | 12 ± 7 | 67 ± 18 |
P.lac2 | −5 ± 10 | −2 ± 13 | −85 ± 254 | n.a. |
AMF Isolate | Species | Family | Order | SAF Accession | Original Accession | Land Use at Origin Site | Vegetation at Origin Site | Soil pH | Soil Type at Origin |
---|---|---|---|---|---|---|---|---|---|
O.dia1 | Oehlia diaphana | Glomeraceae | Glomerales | SAF106 | 11-FO106 | arable field | winter wheat | 5.3 | Eutric Cambisol |
O.dia2 | Oehlia diaphana | SAF107 | 11-FO290 | arable field | winter barley | 5.6 | Eutric Cambisol | ||
O.dia3 | Oehlia diaphana | SAF108 | 11-FO292 | arable field | winter barley | 5.6 | Eutric Cambisol | ||
R.irr1 | Rhizoglomus irregulare | SAF130 | 11-FO113 | arable field | winter wheat | 5.3 | Haplic Luvisol | ||
R.irr2 | Rhizoglomus irregulare | SAF131 | 11-FO190 | arable field | winter wheat | 7.6 | Vertic Cambisol | ||
R.irr3 | Rhizoglomus irregulare | SAF170 | 11-FO420 | permanent grassland | grassland | 5.5 | Eutric Cambisol | ||
R.irr4 | Rhizoglomus irregulare | SAF96 | 11-FO181 | arable field | winter wheat | 7.6 | Vertic Cambisol | ||
R.inv1 | Rhizoglomus invermaium | SAF205 | 11-FO84 | arable field | grass–clover | 7.1 | Eutric Cambisol | ||
R.inv2 | Rhizoglomus invermaium | SAF206 | 11-FO424 | permanent grassland | grassland | 5.5 | Eutric Cambisol | ||
R.inv3 | Rhizoglomus invermaium | SAF207 | 11-FO432 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
R.inv4 | Rhizoglomus invermaium | SAF147 | 11-FO336 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
F.mos1 | Funneliformis mosseae | SAF87 | 11-FO85 | arable field | grass–clover | 7.1 | Haplic Luvisol | ||
F.mos2 | Funneliformis mosseae | SAF139 | 11-FO239 | arable field | winter barley | 5.6 | Haplic Luvisol | ||
F.mos3 | Funneliformis mosseae | SAF160 | 11-FO418 | permanent grassland | grassland | 5.5 | Eutric Cambisol | ||
F.cal | Funneliformis caledonius | SAF111 | 11-FO269 | arable field | winter barley | 5.6 | Haplic Luvisol | ||
F.fra1 | Funneliformis fragilistratus | SAF109 | 11-FO185 | arable field | winter wheat | 7.6 | Vertic Cambisol | ||
F.fra2 | Funneliformis fragilistratus | SAF110 | 11-FO193 | arable field | winter wheat | 7.6 | Vertic Cambisol | ||
Se.nig1 | Septoglomus nigrum | SAF86 | 11-FO61 | permanent grassland | grassland | 5.7 | Haplic Luvisol | ||
Se.nig2 | Septoglomus nigrum | SAF175 | 11-FO471 | arable field | winter barley | 7.1 | Eutric Cambisol | ||
Do.com1 | Dominikia compressa | SAF145 | 11-FO332 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
Do.com2 | Dominikia compressa | SAF203 | 11-FO352 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
Cl.can | Claroideoglomus candidum | Entrophosporaceae | SAF112 | 11-FO411 | permanent grassland | grassland | 5.5 | Eutric Cambisol | |
Cl.cla1 | Claroideoglomus claroideum | SAF92 | 11-FO55 | permanent grassland | grassland | 5.7 | Haplic Luvisol | ||
Cl.cla2 | Claroideoglomus claroideum | SAF181 | 11-FO94 | permanent grassland | grassland | 7.1 | Haplic Luvisol | ||
Cl.cla3 | Claroideoglomus claroideum | SAF166 | 11-FO370 | arable field | grass–clover | 6.2 | Haplic Luvisol | ||
E.inf1 | Entrophospora infrequens | SAF209 | 11-FO321 | arable field | grass–clover | 6.2 | Eutric Cambisol | ||
E.inf2 | Entrophospora infrequens | SAF210 | 11-FO313 | arable field | grass–clover | 6.2 | Eutric Cambisol | ||
Di.cel1 | Diversispora celata | Diversisporaceae | Diversisporales | SAF5 | HG-234 | permanent grassland | grassland | 7.0 | Haplic Luvisol |
Di.cel2 | Diversispora celata | SAF151 | 11-FO387 | permanent grassland | grassland | 5.3 | Haplic Luvisol | ||
Di.cel3 | Diversispora celata | SAF152 | 11-FO403 | permanent grassland | grassland | 5.5 | Haplic Luvisol | ||
Di.epi1 | Diversispora epigaea | SAF118 | 11-FO459 | arable field | winter barley | 7.1 | Eutric Cambisol | ||
Di.epi2 | Diversispora epigaea | SAF128 | 11-FO338 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
Di.epi3 | Diversispora epigaea | SAF129 | 11-FO460 | arable field | winter barley | 7.1 | Eutric Cambisol | ||
G.mar1 | Gigaspora margarita | Gigasporaceae | Gigasporales | SAF14-1 | JJ-4 | arable field | winter wheat | 6.2 | Haplic Luvisol |
G.mar2 | Gigaspora margarita | SAF14-2 | JJ-4 | arable field | winter wheat | 6.2 | Haplic Luvisol | ||
Ce.hel1 | Cetraspora helvetica | Racocetraceae | SAF15-1 | JJ17/19 | arable field | winter wheat | 6.2 | Haplic Luvisol | |
Ce.hel2 | Cetraspora helvetica | SAF15-2 | JJ17/19 | arable field | winter wheat | 6.2 | Haplic Luvisol | ||
Sc.cal1 | Scutellospora calospora | Scutellosporaceae | SAF202-1 | 01-FO30 | vineyard | grapevine | 7.7 | Eutric Cambisol | |
Sc.cal2 | Scutellospora calospora | SAF202-2 | 01-FO30 | vineyard | grapevine | 7.7 | Eutric Cambisol | ||
A.eur1 | Archaeospora europaea | Archaeosporaceae | Archaeopsporales | SAF113 | 11-FO107 | arable field | winter wheat | 5.3 | Eutric Cambisol |
A.eur2 | Archaeospora europaea | SAF114 | 11-FO126 | arable field | winter wheat | 7.6 | Vertic Cambisol | ||
A.eur3 | Archaeospora europaea | SAF115 | 11-FO345 | permanent grassland | grassland | 5.8 | Eutric Cambisol | ||
P.lac1 | Paraglomus laccatum | Paraglomeraceae | Paraglomerales | SAF56-1 | BEG21 | permanent grassland | grassland | 7.7 | Calcaric Leptosol |
P.lac2 | Paraglomus laccatum | SAF56-2 | BEG21 | permanent grassland | grassland | 7.7 | Calcaric Leptosol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Säle, V.; Sieverding, E.; Oehl, F. Growth Responses of Three European Weeds on Different AMF Species during Early Development. Plants 2022, 11, 2020. https://doi.org/10.3390/plants11152020
Säle V, Sieverding E, Oehl F. Growth Responses of Three European Weeds on Different AMF Species during Early Development. Plants. 2022; 11(15):2020. https://doi.org/10.3390/plants11152020
Chicago/Turabian StyleSäle, Verena, Ewald Sieverding, and Fritz Oehl. 2022. "Growth Responses of Three European Weeds on Different AMF Species during Early Development" Plants 11, no. 15: 2020. https://doi.org/10.3390/plants11152020
APA StyleSäle, V., Sieverding, E., & Oehl, F. (2022). Growth Responses of Three European Weeds on Different AMF Species during Early Development. Plants, 11(15), 2020. https://doi.org/10.3390/plants11152020