Lime Rate in Clayey Soils Influences Chemical Fertility and Sugarcane Yield
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Location, Soil, and Climatic Characterization of Experimental Areas
4.2. Treatments and Experimental Design
4.3. Soil Chemical Analysis
4.4. Foliar Diagnosis
4.5. Sugarcane Stalk and Sugar Yields and Agronomic Efficiency Index (AEI)
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOStat Area, Production and Productivity of Sugarcane, Food and Agriculture Organization of the United Nations, Statistics Division. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 11 August 2022).
- Conab. Companhia Nacional Do Abastecimento. Acompanhamento Da Safra Brasileira de Cana de Açúcar. Safra; Conab: Brasília, Brazil, 2021. [Google Scholar]
- Monteiro, L.A.; Sentelhas, P.C. Potential and Actual Sugarcane Yields in Southern Brazil as a Function of Climate Conditions and Crop Management. Sugar Tech. 2014, 16, 264–276. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Rossato, O.B.; Foltran, R.; Martello, J.M.; Nascimento, C.A.C.D. Soil Fertility, Sugarcane Yield Affected by Limestone, Silicate, and Gypsum Application. Commun. Soil Sci. Plant Anal. 2017, 48, 2314–2323. [Google Scholar] [CrossRef]
- Bernardo, R.; Lourenzani, W.L.; Satolo, E.G.; Caldas, M.M. Analysis of the Agricultural Productivity of the Sugarcane Crop in Regions of New Agricultural Expansions of Sugarcane. Gest. Prod. 2019, 26, e3554. [Google Scholar] [CrossRef]
- Schaefer, C.E.G.R.; Fabris, J.D.; Ker, J.C. Minerals in the Clay Fraction of Brazilian Latosols (Oxisols): A Review. Clay Miner. 2008, 43, 137–154. [Google Scholar] [CrossRef]
- Caires, E.F.; Haliski, A.; Bini, A.R.; Scharr, D.A. Surface Liming and Nitrogen Fertilization for Crop Grain Production under No-till Management in Brazil. Eur. J. Agron. 2015, 66, 41–53. [Google Scholar] [CrossRef]
- Miotto, A.; Tiecher, T.; Kaminski, J.; Brunetto, G.; De Conti, L.; Tiecher, T.L.; Martins, A.P.; Rheinheimer dos Santos, D. Soil Acidity and Aluminum Speciation Affected by Liming in the Conversion of a Natural Pasture from the Brazilian Campos Biome into No-Tillage System for Grain Production. Arch. Agron. Soil Sci. 2020, 66, 138–151. [Google Scholar] [CrossRef]
- Cunha, G.O.M.; Almeida, J.A.; Ernani, P.R.; Pereira, E.R.; Brunetto, G. Composition, Chemical Speciation and Activity of Ions in the Solution of Brazilian Acid Soils. Rev. Bras. Ciências Agrárias—Brazilian J. Agric. Sci. 2018, 13, e5542. [Google Scholar] [CrossRef]
- Hepler, P.K. Calcium: A Central Regulator of Plant Growth and Development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Alberdi, M.; Ivanov, A.G.; Reyes-Díaz, M. Al3+-Ca2+ Interaction in Plants Growing in Acid Soils: Al-Phytotoxicity Response to Calcareous Amendments. J. Soil Sci. Plant Nutr. 2010, 10, 217–243. [Google Scholar]
- Koch, M.; Busse, M.; Naumann, M.; Jákli, B.; Smit, I.; Cakmak, I.; Hermans, C.; Pawelzik, E. Differential Effects of Varied Potassium and Magnesium Nutrition on Production and Partitioning of Photoassimilates in Potato Plants. Physiol. Plant. 2019, 166, 921–935. [Google Scholar] [CrossRef]
- Cakmak, I.; Kirkby, E.A. Role of Magnesium in Carbon Partitioning and Alleviating Photooxidative Damage. Physiol. Plant. 2008, 133, pp. 692–704. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Chapter 7 Ameliorating Soil Acidity of Tropical Oxisols by Liming For Sustainable Crop Production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Cantarella, H.; van Raij, B.; Quaggio, J.A. Soil and Plant Analyses for Lime and Fertilizer Recommendations in Brazil. Commun. Soil Sci. Plant Anal. 1998, 29, 1691–1706. [Google Scholar] [CrossRef]
- Scarpare, F.V.; de Jong van Lier, Q.; de Camargo, L.; Pires, R.C.M.; Ruiz-Corrêa, S.T.; Bezerra, A.H.F.; Gava, G.J.C.; Dias, C.T.S. Tillage Effects on Soil Physical Condition and Root Growth Associated with Sugarcane Water Availability. Soil Tillage Res. 2019, 187, 110–118. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Magalhães, P.S.G.; Bordonal, R.O.; Cherubin, M.R.; Castioni, G.A.; Rossi Neto, J.; Franco, H.C.J.; Carvalho, J.L.N. Untrafficked Furrowed Seedbed Sustains Soil Physical Quality in Sugarcane Mechanized Fields. Eur. J. Soil Sci. 2021, 72, 2150–2164. [Google Scholar] [CrossRef]
- Tenelli, S.; Bordonal, R.O.; Cherubin, M.R.; Cerri, C.E.P.; Carvalho, J.L.N. Multilocation Changes in Soil Carbon Stocks from Sugarcane Straw Removal for Bioenergy Production in Brazil. GCB Bioenergy 2021, 13, 1099–1111. [Google Scholar] [CrossRef]
- Battie Laclau, P.; Laclau, J.P. Growth of the Whole Root System for a Plant Crop of Sugarcane under Rainfed and Irrigated Environments in Brazil. F. Crop. Res. 2009, 114, 351–360. [Google Scholar] [CrossRef]
- Marasca, I.; Lemos, S.V.; Silva, R.B.; Guerra, S.P.S.; Lanças, K.P. Soil Compaction Curve of an Oxisol Under Sugarcane Planted After In-Row Deep Tillage. Rev. Bras. Cienc. Solo 2015, 39, 1490–1497. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Silva, B.M.; de Oliveira, G.C.; Benevenute, P.A.N.; da Silva, R.F.; Curi, N.; da Silva Moretti, B.; Silva, S.H.G.; Norton, L.D.; Pereira, V.M. Deep Furrow and Additional Liming for Coffee Cultivation under First Year in a Naturally Dense Inceptisol. Geoderma 2020, 357, 113934. [Google Scholar] [CrossRef]
- Li, X.; Wei, B.; Xu, X.; Zhou, J. Effect of Deep Vertical Rotary Tillage on Soil Properties and Sugarcane Biomass in Rainfed Dry-Land Regions of Southern China. Sustainability 2020, 12, 10199. [Google Scholar] [CrossRef]
- Everton, M.A.; de Risely, F.A.; da Luis, A.S.D.; da Antonio, C.S.J.; de Emmerson, R.M.; Leonardo, R.B.; de Jessika, L.O.S.; Regina, M.Q.L. Soil Porosity and Density in Sugarcane Cultivation under Different Tillage Systems. Afr. J. Agric. Res. 2016, 11, 2689–2696. [Google Scholar] [CrossRef]
- Martins, M.B.; de Almeida Prado Bortolheiro, F.P.; Testa, J.V.P.; Sartori, M.M.P.; Crusciol, C.A.C.; Lanças, K.P. Fuel Consumption Between Two Soil Tillage Systems for Planting Sugarcane. Sugar Tech 2021, 23, 219–224. [Google Scholar] [CrossRef]
- Parecido, R.J.; Soratto, R.P.; Perdoná, M.J.; Gitari, H.I.; Dognani, V.; Santos, A.R.; Silveira, L. Liming Method and Rate Effects on Soil Acidity and Arabica Coffee Nutrition, Growth, and Yield. J. Soil Sci. Plant Nutr. 2021, 21, 2613–2625. [Google Scholar] [CrossRef]
- de Vargas, J.P.R.; dos Santos, D.R.; Bastos, M.C.; Schaefer, G.; Parisi, P.B. Application Forms and Types of Soil Acidity Corrective: Changes in Depth Chemical Attributes in Long Term Period Experiment. Soil Tillage Res. 2019, 185, 47–60. [Google Scholar] [CrossRef]
- van Raij, B.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Interpretação de Resultados de Análise de Solo. In Recomendações de adubação e calagem para o Estado de São Paulo; van Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Editora IAC: Campinas, Brazil, 1997; pp. 7–12. [Google Scholar]
- Spironello, A.; van Raij, B.; Penatti, C.P.; Cantarella, H.; Morelli, J.L.; Orlando Filho, J.; de Landell, M.G.A.; Rossetto, R. Cana de Açúcar. In Recomendações de Adubação e Calagem para o Estado de São Paulo; van Raij, B., Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Editora IAC: Campinas, Brazil, 1996; pp. 59–61. [Google Scholar]
- Calegari, A.; Tiecher, T.; Hargrove, W.L.; Ralisch, R.; Tessier, D.; de Tourdonnet, S.; Guimarães, M.D.F.; dos Santos, D.R. Long-Term Effect of Different Soil Management Systems and Winter Crops on Soil Acidity and Vertical Distribution of Nutrients in a Brazilian Oxisol. Soil Tillage Res. 2013, 133, 32–39. [Google Scholar] [CrossRef]
- Rheinheimer, D.S.; Santos, E.J.S.; Kaminski, J.; Bortoluzzi, E.C.; Gatiboni, L.C. Alterações de Atributos Do Solo Pela Calagem Superficial e Incorporada a Partir de Pastagem Natural. Rev. Bras. Ciência Solo 2000, 24, 797–805. [Google Scholar] [CrossRef]
- Rheinheimer, D.S.; Tiecher, T.; Gonzatto, R.; Zafar, M.; Brunetto, G. Residual Effect of Surface-Applied Lime on Soil Acidity Properties in a Long-Term Experiment under No-till in a Southern Brazilian Sandy Ultisol. Geoderma 2018, 313, 7–16. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 6th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2017. [Google Scholar]
- Li, W.; Johnson, C.E. Relationships among PH, Aluminum Solubility and Aluminum Complexation with Organic Matter in Acid Forest Soils of the Northeastern United States. Geoderma 2016, 271, 234–242. [Google Scholar] [CrossRef]
- Bossolani, J.W.; dos Santos, F.L.; Meneghette, H.H.A.; Sanches, I.R.; Moretti, L.G.; Parra, L.F.; Lazarini, E. Soybean in Crop Rotation with Maize and Palisade Grass Intercropping Enhances the Long-Term Effects of Surface Liming in No-till System. J. Soil Sci. Plant Nutr. 2021, 21, 119–130. [Google Scholar] [CrossRef]
- Miransari, M. Soil Microbes and the Availability of Soil Nutrients. Acta Physiol. Plant. 2013, 35, 3075–3084. [Google Scholar] [CrossRef]
- Auler, A.C.; Caires, E.F.; Pires, L.F.; Galetto, S.L.; Romaniw, J.; Charnobay, A.C. Lime Effects in a No-Tillage System on Inceptisols in Southern Brazil. Geoderma Reg. 2019, 16, e00206. [Google Scholar] [CrossRef]
- Garcia, A.; Crusciol, C.A.C.; McCray, J.M.; Nascimento, C.A.C.; Martello, J.M.; de Siqueira, G.F.; Tarumoto, M.B. Magnesium as a Promoter of Technological Quality in Sugarcane. J. Soil Sci. Plant Nutr. 2020, 20, 19–30. [Google Scholar] [CrossRef]
- Joris, H.A.W.; Caires, E.F.; Scharr, D.A.; Bini, A.R.; Haliski, A. Liming in the Conversion from Degraded Pastureland to a No-till Cropping System in Southern Brazil. Soil Tillage Res. 2016, 162, 68–77. [Google Scholar] [CrossRef]
- Rolim, G.S.; Sentelhas, P.C.; Barbieri, V. Planilhas No Ambiente Exceltm Para Os Cálculos de Balanços Hídricos: Normal, Seqüencial, de Cultura e de Produtividade Real e Potencial. Rev. Bras. Agrometeorol. 1998, 6, 133–137. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance; Publications in Climatology No 3; Laboratory of Climatology: Philadelphia, PA, USA, 1957; Volume 10, 66p. [Google Scholar]
- Soil Survey Staff. Soil Survey Manual Soil Science Division Staff Agriculture Handbook No. 18; Soil Survey Staff: Washington, DC, USA, 2017. [Google Scholar]
- van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação Da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Gee, G.W.; Or, D. Particle Size Analysis. In Methods of Soil Analysis: Physical Methods; Dane, J.H., Toop, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; de Oliveira, S.A. Avaliação Do Estado Nutricional Das Plantas: Princípios e Aplicações, 2nd ed.; Associação Brasileira para Pesquisa da Potassa e do Fosfato: Piracicaba, Brazil, 1997. [Google Scholar]
- Tanimoto, T. The Press Method of Cane Analysis. Hawaii. Plant. Rec. 1964, 57, 133–150. [Google Scholar]
- Fernandes, A.C. Cálculos Na Agroindústria Da Cana-de-Açúcar, 3rd ed.; STAB—Açúcar, Álcool e Subprodutos: Piracicaba, Piracicaba, 2011. [Google Scholar]
- Kaiser, H.F. The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Manly, B.F.J. Multivariate Statistical Methods: A Primer, 2nd ed.; Chapman & Hall: New York, NY, USA, 1994. [Google Scholar]
- StatStatsoft Statistica 7.0 Software 2005.
Lime Rates | Stalks Yield | Sugar Yield | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Increase (Mg ha−1) 1 | AEI (%) 2 | Increase (Mg ha−1) | AEI (%) | |||||||||
CT | DT | MDT | CT | DT | MDT | CT | DT | MDT | CT | DT | MDT | |
2016 | Macatuba | |||||||||||
LRR | 10.4 | 9.5 | 11.8 | - | - | - | 1.8 | 1.5 | 1.9 | - | - | - |
2× LRR | 20.2 | 17.7 | 15.7 | 194 | 186 | 133 | 3.8 | 2.8 | 2.7 | 207 | 187 | 143 |
3× LRR | 24.2 | 27.6 | 16.6 | 232 | 290 | 141 | 4.5 | 4.0 | 3.2 | 245 | 266 | 170 |
2017 | ||||||||||||
LRR | 14.1 | 11.9 | 23.0 | - | - | - | 2.9 | 2.3 | 3.8 | - | - | - |
2× LRR | 26.6 | 24.4 | 28.2 | 189 | 204 | 123 | 4.8 | 4.1 | 4.8 | 163 | 177 | 126 |
3× LRR | 27.9 | 33.0 | 30.6 | 198 | 276 | 133 | 4.6 | 5.6 | 5.3 | 156 | 242 | 138 |
2018 | ||||||||||||
LRR | 14.7 | 13.1 | 25.6 | - | - | - | 2.7 | 2.5 | 4.5 | - | - | - |
2× LRR | 29.9 | 26.8 | 33.4 | 204 | 204 | 131 | 4.8 | 5.2 | 5.1 | 178 | 213 | 113 |
3× LRR | 34.9 | 36.4 | 34.2 | 238 | 277 | 134 | 5.3 | 6.0 | 5.6 | 194 | 246 | 123 |
2019 | ||||||||||||
LRR | 17.5 | 25.5 | 38.9 | - | - | - | 3.3 | 4.8 | 7.0 | - | - | - |
2× LRR | 33.7 | 39.1 | 50.0 | 192 | 153 | 128 | 5.9 | 7.0 | 8.7 | 180 | 145 | 124 |
3× LRR | 44.3 | 52.6 | 53.0 | 253 | 206 | 136 | 7.5 | 9.1 | 9.1 | 229 | 191 | 130 |
Complete 3 | ||||||||||||
LRR | 14.2 | 15.0 | 24.8 | - | - | - | 2.7 | 2.8 | 4.3 | - | - | - |
2× LRR | 27.6 | 27.0 | 31.8 | 195 | 180 | 128 | 4.8 | 4.8 | 5.3 | 180 | 173 | 124 |
3× LRR | 32.8 | 37.4 | 33.6 | 232 | 249 | 135 | 5.5 | 6.2 | 5.8 | 203 | 224 | 135 |
2016 | Piraju | |||||||||||
LRR | 26.0 | 22.6 | 27.3 | 4.4 | 4.5 | 4.7 | ||||||
2× LRR | 29.2 | 25.4 | 41.2 | 112 | 113 | 151 | 5.2 | 4.9 | 7.4 | 119 | 110 | 159 |
3× LRR | 28.5 | 27.0 | 45.3 | 110 | 120 | 166 | 6.0 | 5.5 | 8.7 | 137 | 124 | 186 |
2017 | ||||||||||||
LRR | 29.5 | 26.3 | 27.7 | 5.7 | 4.9 | 5.6 | ||||||
2× LRR | 40.0 | 33.8 | 36.5 | 136 | 128 | 132 | 8.1 | 7.0 | 7.3 | 143 | 144 | 129 |
3× LRR | 41.1 | 40.9 | 47.5 | 139 | 156 | 172 | 8.3 | 7.9 | 9.6 | 147 | 162 | 170 |
2018 | ||||||||||||
LRR | 35.7 | 37.9 | 44.5 | 6.5 | 6.7 | 8.3 | ||||||
2× LRR | 39.4 | 44.1 | 55.1 | 111 | 116 | 124 | 7.8 | 8.5 | 10.2 | 120 | 128 | 123 |
3× LRR | 52.0 | 54.7 | 67.0 | 146 | 144 | 150 | 9.9 | 10.0 | 12.6 | 152 | 150 | 152 |
2019 | ||||||||||||
LRR | 20.9 | 33.0 | 37.4 | 3.4 | 5.6 | 5.7 | ||||||
2× LRR | 26.3 | 40.3 | 46.5 | 126 | 122 | 125 | 4.3 | 6.2 | 7.0 | 125 | 111 | 124 |
3× LRR | 41.9 | 54.7 | 65.2 | 201 | 166 | 175 | 6.6 | 8.7 | 10.4 | 192 | 154 | 184 |
Complete | ||||||||||||
LRR | 28.0 | 29.9 | 34.2 | 5.0 | 5.4 | 6.1 | ||||||
2× LRR | 33.7 | 35.9 | 44.9 | 120 | 120 | 131 | 6.4 | 6.7 | 8.0 | 127 | 123 | 132 |
3× LRR | 40.9 | 44.4 | 56.2 | 146 | 148 | 164 | 7.7 | 8.0 | 10.3 | 154 | 148 | 170 |
Soil Tillage System | CT 1 | DT 2 | MDT 3 | |
---|---|---|---|---|
Lime Application | Broadcasted (over the Entire Area) | Broadcasted (over the Entire Area) | Broadcasted on Planting Furrow | Incorporated |
Lime doses | Mg ha−1 | |||
Macatuba (Rhodic Hapludox) | ||||
Control 4 | 0.0 | 0.0 | 0.0 | 0.0 |
LRR 5 | 5.0 | 5.0 | 3.8 | 1.2 |
2× LRR 6 | 10.0 | 10.0 | 7.5 | 2.5 |
3× LRR 7 | 15.0 | 15.0 | 11.3 | 3.7 |
Piraju (Rhodic Hapludox) | ||||
Control | 0.0 | 0.0 | 0.0 | 0.0 |
LRR | 4.0 | 4.0 | 3.0 | 1.0 |
2× LRR | 8.0 | 8.0 | 6.0 | 2.0 |
3× LRR | 12.0 | 12.0 | 9.0 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Campos, M.; Martello, J.M.; de Siqueira, G.F.; Garcia, A.; Scudeletti, D.; Dias, P.P.; Rossetto, R.; Calonego, J.C.; Cantarella, H.; Crusciol, C.A.C. Lime Rate in Clayey Soils Influences Chemical Fertility and Sugarcane Yield. Plants 2022, 11, 2110. https://doi.org/10.3390/plants11162110
de Campos M, Martello JM, de Siqueira GF, Garcia A, Scudeletti D, Dias PP, Rossetto R, Calonego JC, Cantarella H, Crusciol CAC. Lime Rate in Clayey Soils Influences Chemical Fertility and Sugarcane Yield. Plants. 2022; 11(16):2110. https://doi.org/10.3390/plants11162110
Chicago/Turabian Stylede Campos, Murilo, Jorge Martinelli Martello, Gabriela Ferraz de Siqueira, Ariani Garcia, Daniele Scudeletti, Patrícia Pereira Dias, Raffaella Rossetto, Juliano Carlos Calonego, Heitor Cantarella, and Carlos Alexandre Costa Crusciol. 2022. "Lime Rate in Clayey Soils Influences Chemical Fertility and Sugarcane Yield" Plants 11, no. 16: 2110. https://doi.org/10.3390/plants11162110
APA Stylede Campos, M., Martello, J. M., de Siqueira, G. F., Garcia, A., Scudeletti, D., Dias, P. P., Rossetto, R., Calonego, J. C., Cantarella, H., & Crusciol, C. A. C. (2022). Lime Rate in Clayey Soils Influences Chemical Fertility and Sugarcane Yield. Plants, 11(16), 2110. https://doi.org/10.3390/plants11162110