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Abstract: Nepenthes are carnivorous pitcher plants that have several ethnobotanical uses, such as
curing stomachache and fever. Here, we prepared different extracts from the stem, leaf, and pitcher
of Nepenthes miranda to further investigate their pharmacological potential. The leaf extract of
N. miranda obtained by 100% acetone (N. miranda-leaf-acetone) was used in this study to analyze the
cytotoxic activities, antioxidation capacity, antibacterial activity, and allantoinase (ALLase) inhibitory
effect of this plant. The cytotoxic effects of N. miranda-leaf-acetone on the survival, apoptosis, and
migration of the cancer cell lines PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1
mammary carcinoma cells were demonstrated. Based on collective data, the cytotoxic activities of
N. miranda-leaf-acetone followed the order: B16F10 > 4T1 > PC-9 cells. In addition, the cytotoxic
activities of N. miranda-leaf-acetone were synergistically enhanced when co-acting with the clinical
anticancer drug 5-fluorouracil. N. miranda-leaf-acetone could also inhibit the activity of ALLase, a
key enzyme in the catabolism pathway for purine degradation. Through gas chromatography–mass
spectrometry, the 16 most abundant ingredients in N. miranda-leaf-acetone were identified. The top six
compounds in N. miranda-leaf-acetone, namely, plumbagin, lupenone, palmitic acid, stigmast-5-en-3-ol,
neophytadiene, and citraconic anhydride, were docked to ALLase, and their docking scores were
compared. The docking results suggested plumbagin and stigmast-5-en-3-ol as potential inhibitors of
ALLase. Overall, these results may indicate the pharmacological potential of N. miranda for further
medical applications.

Keywords: Nepenthes miranda; anticancer; allantoinase; PC-9 pulmonary adenocarcinoma; B16F10
melanoma; 4T1 mammary carcinoma; antioxidation; antibacterial; dihydroorotase

1. Introduction

Phytochemicals obtained from plant extracts play a very prominent role as traditional
medicines with many ethnopharmacological uses [1,2]. Some active ingredients from
plant extracts have been introduced as promising anticancer drugs, such as vincristine,
vinblastine, and paclitaxel [3,4]. Some plant extracts can be used in combination with
clinical anticancer drugs to increase the efficacy of chemotherapy. One significant advantage
of using natural extracts against cancer cells is their multitargeted modes of action [4–6]. The
different active ingredients in a plant extract can provide significant polypharmacological
and synergistic effects for cancer therapies [6].

Nepenthes are carnivorous pitcher plants with passive pitcher-shaped traps, a unique
morphological and anatomical feature linked to carnivory [7]. The genus Nepenthes includes
almost 120 species. To adapt to poor soils, Nepenthes attract, catch, retain, and digest prey
such as insects to obtain supplemental nutrients such as nitrogen and phosphorus. For med-
ical use, Nepenthes exhibit several ethnobotanical properties, such as curing stomachache
and fever [7]. Furthermore, some Nepenthes extracts have significant anticancer and antibac-
terial activities [7–10]. Thus, it is worth determining targets inhibited by Nepenthes extracts,
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such as the extract of Nepenthes miranda used in this study, a new cultivar of a humanmade
hybrid of N. maxima and N. northiana that exhibits unique physiological properties [11], for
further medical applications.

Allantoinase (ALLase; EC 3.5.2.5) plays an essential role in the catabolism pathway
for purine degradation [12]. ALLase is present in a wide variety of organisms and cat-
alyzes the reversible conversion of allantoin to allantoic acid by hydrolytic cleavage of
the five-member hydantoin ring. This ALLase-catalyzed reaction is a key process in the
biosynthesis of ureide, which is required for the utilization of nitrogen in purine-derived
compounds [13]. Structurally, ALLase possesses a binuclear metal center in which two
Fe ions are bridged by a post-translationally carbamylated lysine [14,15]. From a bio-
chemical point of view [16,17], ALLase [18] is a member of the cyclic amidohydrolase
family [19,20], which also includes dihydroorotase (DHOase) [21–27], dihydropyrimid-
inase (DHPase) [28–35], hydantoinase [36–38], and imidase [39–41]. Some of these ami-
dohydrolases are suggested as chemotherapeutic targets for anticancer, antimicrobial,
and antimalarial drug developments because of their involvement in the key reactions
of nucleotide biosynthesis. Thus, exploiting the new inhibitors against these targets is of
considerable interest for drug development.

Antimicrobial drug resistance is an increasing threat to global public health [42].
Growing concern worldwide in human and animal infections caused by antibiotic-resistant
microorganisms has spurred the interest of the scientific community in antibiotic develop-
ment. Multidrug resistance among ESKAPE organisms [42–44], i.e., Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp., is of particular concern because they are responsible for many life-
threatening hospital infections [42]. Antibiotic-resistant K. pneumoniae are a major cause
of hospital- and community-acquired infections, including sepsis, liver abscesses, and
pneumonia [45–47]. It has been established that the utilization of allantoin as a nitrogen
source is a very important virulence determinant in K. pneumoniae for liver abscesses [48].
Thus, the pharmacological inhibition of the allantoin-degradation pathway may be useful
in decreasing the virulence of K. pneumonia, and possibly other pathogens [48,49]. In this
study, we first found the plant extract of N. miranda capable of inhibiting the activity of
ALLase, which was a key enzyme for allantoin degradation.

The top cause of death by cancer worldwide is lung cancer [50–52]. Non-small cell
lung cancer (NSCLC) is the most common type of lung cancer and accounts for about
85% of all lung cancers. Treatments for NSCLC include surgery, chemotherapy, radia-
tion therapy, and targeted therapy [52]. However, NSCLCs are relatively insensitive to
chemotherapy. In addition, several adverse effects caused by modern chemotherapy hinder
cancer treatment and lead to other unavoidable critical disorders. Therefore, natural com-
pounds as potential anticancer agents and alternative medicines are also being used for
cancer treatment [5,53,54]. Accordingly, we examined here the cytotoxicity of N. miranda
on the survival, migration, and apoptosis of human NSCLC PC-9 adenocarcinoma cells. In
addition, the anti-PC-9 effects of the co-use of the extract of N. miranda in combination with
other anticancer agents were also demonstrated. For comparison, the cytotoxic effects of
the N. miranda extract against B16F10 melanoma and 4T1 mammary carcinoma cells were
also demonstrated.

The chemical composition of the leaf extract of N. miranda was analyzed via gas
chromatography–mass spectrometry (GC–MS). Through GC–MS, the 16 most abundant
ingredients in the leaf extract of N. miranda were identified. The top four contents, plumba-
gin (28.52%), lupenone (11.45%), palmitic acid (5.49%), and stigmast-5-en-3-ol (5.06%),
especially plumbagin and lupenone, are anticancer compounds. This might be why N. mi-
randa-leaf-acetone possesses strong anticancer activities. Further studies should directly
focus on determining whether and how the extract of N. miranda can be used as an alterna-
tive medicine.
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2. Results
2.1. Antioxidant Activity

Various parts of N. miranda, i.e., the leaf, stem, and pitcher, were collected, dried, cut
into small pieces, pulverized into powder, and extracted using different solvents (water,
methanol, ethanol, and acetone). Pharmacological potentials and antioxidant activity are
usually correlated [55,56]. Therefore, we analyzed the antioxidant activities of different
extracts of N. miranda using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay.
DPPH assay is the most common method to assess the antioxidant capacity of plants. The
antioxidant capacities of different N. miranda extracts were described by IC50 values. IC50
values of different extracts of N. miranda were calculated from the DPPH titration curves by
determining the extract concentration needed to achieve the midpoint value for inhibition
(Figure 1); a lower IC50 value indicated higher radical scavenging activity (Table 1). IC50
values of water extracts of N. miranda were too low to determine. As compared to their
IC50 values, the antioxidant capacity of extracts of N. miranda mainly followed the order:
stem > leaf > pitcher. N. miranda-stem-acetone showed the highest antioxidant capacity
with an IC50 value of 59.7 ± 3.2 µg/mL. The second highest was N. miranda-leaf-acetone,
with an IC50 value of 66.0 ± 2.8 µg/mL.
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Figure 1. Antioxidant activity of different extracts of N. miranda. The antioxidant activities of extracts
from stems, leaves, and pitchers prepared using (A) methanol, (B) ethanol, and (C) acetone were
evaluated by DPPH radical scavenging assay.

Table 1. Antioxidant activities of N. miranda extracts.

Solvent
IC50 (µg/mL)

Stem Leaf Pitcher

Methanol 66.1 ± 2.6 79.3 ± 4.0 137.2 ± 3.9
Ethanol 88.4 ± 3.8 90.2 ± 3.7 193.2 ± 5.2
Acetone 59.7 ± 3.2 66.0 ± 2.8 166.6 ± 4.5

IC50 values were calculated from the titration curves of the DPPH assay by determining the concentration of the
extract needed to achieve the midpoint value for inhibition. Due to <50% inhibition at concentration of 600 µg/mL,
we did not determine the IC50 values of the water extracts of N. miranda.

2.2. Antibacterial Activity

K. pneumoniae, as a major cause of hospital- and community-acquired infections,
including sepsis, liver abscesses, and pneumonia [47], are dangerous ESKAPE organisms
highly correlated with many life-threatening infections. We used the agar well diffusion
method to assess the anti-K. pneumoniae activity of the different extracts of N. miranda.
While the water extract showed no effect, the other extracts of N. miranda exhibited different
activities for suppressing the growth of K. pneumonia, with the zone of inhibition ranging
from 9 to 27 mm (Table 2). The anti-K. pneumoniae activity of extracts of N. miranda mainly
followed the order: stem > leaf > pitcher. Acetone was the best solvent for extracting useful
ingredients in inhibiting the growth of K. pneumoniae.
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Table 2. Inhibition zone of N. miranda extracts.

Solvent
Zone of Inhibition (mm)

Stem Leaf Pitcher

Water 0 0 0
Methanol 22 21 11
Ethanol 21 16 9
Acetone 27 24 16

The water extracts of N. miranda did not inhibit the growth of K. pneumoniae.

2.3. Cytotoxic Activity against Human PC-9 Pulmonary Adenocarcinoma

The most frequent cause of death by cancer worldwide is lung cancer [50]. In addition,
the 5-year survival rate is still very poor for patients with advanced stage. Whether extracts
of N. miranda could cause the death of human pulmonary adenocarcinoma cells remained
uninvestigated; thus, we used NSCLC PC-9 cells to evaluate the anti-cancer activities of
different extracts of N. miranda (Figure 2). The monolayers prepared in 96-well microtitration
plates for PC-9 cells were inoculated with different N. miranda extracts at a concentration
of 200 µg/mL per well. The death rate of PC-9 cells by N. miranda extracts was estimated
with trypan blue staining assay after 0 and 24 h of incubation (Figure 2A). The cytotoxic
capacity of N. miranda extracts followed the order: acetone > methanol > ethanol. The water
extracts of N. miranda did not have any cytotoxic effect on the survival of PC-9 cells (data
not shown). Two acetone extracts, N. miranda-stem-acetone and N. miranda-leaf-acetone,
showed significant PC-9 cell death (100%). Considering that leaves are far more abundant
than stems for N. miranda, N. miranda-leaf-acetone was chosen to examine the phytochemical
composition and other cytotoxic properties (see below).
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Figure 2. The cytotoxic effects of different N. miranda extracts against PC-9 cells. (A) Trypan blue dye
exclusion staining. The cytotoxic effects of different N. miranda extracts against PC-9 cells were estimated
with trypan blue assay after 24 h of incubation. The PC-9 cells incubated with N. miranda-stem-acetone
and N. miranda-leaf-acetone of 200 µg/mL were almost dead. (B) The death rates of PC-9 cells. The
anti-PC-9 activity of N. miranda extracts followed the order: acetone > methanol > ethanol.

2.4. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis of N. miranda-Leaf-Acetone

GC–MS was used to detect individual compounds abundant in N. miranda. Given
that N. miranda-leaf-acetone had high antioxidation activity (Table 1), anti-K. pneumonia
(Table 2), and anti-PC 9 cells (Figure 2), we focused on determining the medicinally active
ingredients in N. miranda-leaf-acetone (Figure 3A) through GC–MS. The GC chromatogram
showed that at least 16 compounds in N. miranda-leaf-acetone were detected (Figure 3B).
These compounds were identified by matching generated spectra with NIST 2011 and Wiley
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10th edition mass spectral libraries (Table 3). The top 16 contents (>0.6%) were as follows:
plumbagin (28.52%), lupenone (11.45%), palmitic acid (5.49%), stigmast-5-en-3-ol (5.06%),
neophytadiene (4.72%), citraconic anhydride (3.96%), lupeol (3.52%), phytol (2.98%), melezi-
tose (2.67%), vitamin E (2.40%), stearic acid (1.91%), linolenic acid (1.79%), squalene (1.60%),
geranyl isovalerate (1.12%), (2,2-dimethyl-1,3-dioxolan-4-yl)-methyl palmitate (0.76%), and
Z-7-hexadecenal (0.67%). Some of these compounds are known to possess anticancer
capacities, such as plumbagin [57–60].
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Figure 3. GC–MS analysis of N. miranda-leaf-acetone. (A) Preparation of the leaves extract. (B) GC
chromatogram of compounds presents in N. miranda-leaf-acetone. Compounds were identified by
matching generated spectra with NIST 2011 and Wiley 10th edition mass spectral libraries. Plumbagin
(28.52%) was the major compound present in N. miranda-leaf-acetone.
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Table 3. GC-MS analysis of N. miranda-leaf-acetone.

Peak No. RT (min) Compound MF CS MW Area (%)

1 15.71 Plumbagin C11H8O3
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Table 3. Cont.

Peak No. RT (min) Compound MF CS MW Area (%)
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2.5. Dose-Dependent Cytotoxic Effects of N. miranda-Leaf-Acetone on the Survival and Migration
of PC-9, 4T1, and B16F10 Cells

PC-9 cells incubated with N. miranda-leaf-acetone of 200 µg/mL were almost com-
pletely killed (Figure 2). Different concentrations of N. miranda-leaf-acetone (0, 40, 80, 100,
and 150 µg/mL) were used to demonstrate further the cytotoxic effects on the survival and
migration of PC-9 cells (Figure 4A). The cytotoxic effects of N. miranda-leaf-acetone against
4T1 mammary carcinoma (Figure 4B) and B16F10 melanoma (Figure 4C) cells were also
investigated and compared. Incubation with N. miranda-leaf-acetone of 0, 40, 80, 100, and
150 µg/mL caused the deaths of PC-9 cells at the rate of 0, 1, 11, 62, and 98%, respectively.
The same concentrations of N. miranda-leaf-acetone used against 4T1 and B16F10 cells were
much more efficient than against PC-9 cells. For example, incubation with N. miranda-leaf-
acetone of 80 µg/mL caused the deaths of 4T1 and B16F10 cells at the rates of 60 and 71%,
while only 11% of PC-9 cells were affected. Accordingly, N. miranda-leaf-acetone was also
useful against 4T1 and B16F10 cells, and the cytotoxic activities of N. miranda-leaf-acetone
followed the order: B16F10 > 4T1 > PC-9 cells.
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Figure 4. Cytotoxic effects of N. miranda-leaf-acetone on the survival and migration of (A) PC-9,
(B) 4T1, and (C) B16F10 Cells. Different concentrations of N. miranda-leaf-acetone (0, 40, 80, 100, and
150 µg/mL) were used to demonstrate the cytotoxic effects on the survival and migration of these
cancer cells. Trypan blue assay was performed to estimate the cell death rates and wound-healing
assay was used to estimate the cell migration capacities. ** p < 0.01 and *** p < 0.001 compared with
the control group.

The in vitro migration capacities of PC-9, 4T1, and B16F10 cells suppressed by
N. miranda-leaf-acetone were estimated with a wound-healing assay (Figure 4). After differ-
ent treatments, cells were incubated for 24 h to allow migration. The wound-healing areas
for PC-9 cells treated with N. miranda-leaf-acetone of 0, 40, 80, 100, and 150 µg/mL were 100,
90, 68, 25, and 4%, respectively. N. miranda-leaf-acetone of 100 µg/mL could completely in-
hibit the migration of 4T1 and B16F10 cells. The inhibitory effects of N. miranda-leaf-acetone
on cancer cell migration were in the order: B16F10 > 4T1 > PC-9 cells.

2.6. Co-Treatment of N. miranda-Leaf-Acetone with Epothilone B against PC-9 Cells

Epothilone B [61] is a stabilizing tubulin antagonist with broad anti-tumor activity,
used for the treatment of ovarian cancer, lung cancer, brain cancer, breast cancer, and
gastric cancer. The principal mechanism of epothilone B is the inhibition of microtubule
function [61,62]. Microtubules are essential to cell division, and epothilone B, therefore,
stops cells from properly dividing. Accordingly, we investigated whether this paclitaxel-
like natural product could co-act with N. miranda-leaf-acetone against PC-9 cancer cells.
N. miranda-leaf-acetone of 40 µg/mL, capable of inducing a minor cytotoxic effect, was
selected for this co-treatment experiment (Figure 5). The use of N. miranda-leaf-acetone
and epothilone B (2 nM) led to 2% and 3% cell mortality, respectively. The co-treatment of
N. miranda-leaf-acetone with epothilone B led to 5% cell mortality. This result suggested
no potential synergistic cytotoxic effects because cell mortality was not obviously raised.
The result from the wound-healing assay corroborated this finding. Through the Hoechst
staining assay, the use of N. miranda-leaf-acetone, epothilone B, and co-treatment of N. mi-
randa-leaf-acetone with epothilone B induced apoptosis with DNA fragmentation in PC-9
cells at the rate of 11%, 12%, and 22%, respectively. Thus, epothilone B could suppress PC-9
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cells (Figure 5), but it could not produce an additional cytotoxic effect in co-treatment with
N. miranda-leaf-acetone.
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Figure 5. The co-cytotoxic effects of epothilone B with N. miranda-leaf-acetone. N. miranda-leaf-acetone
(NMLA; 40 µg/mL) and epothilone B (EpoB; 2 nM) were used to investigate the cytotoxic effects
on cell survival, migration, and apoptosis. The collective data suggested no potential synergistic
cytotoxic effects.

2.7. Co-Treatment of N. miranda-Leaf-Acetone with 5-FU Synergistically Induced Apoptosis of
PC-9, B16F10, and 4T1 Cells

Epothilone B and N. miranda-leaf-acetone individually induced PC-9 cell apoptosis
(Figure 5); however, additional efficacy was not found with co-use. We then investigated
whether the clinical anticancer drug 5-FU could synergistically enhance the cytotoxic
activity of N. miranda-leaf-acetone against PC-9, B16F10, and 4T1 cells (Figure 6). Through
the Hoechst staining assay, we found that the use of N. miranda-leaf-acetone (40 µg/mL),
5-FU (5 µM), and co-treatment of N. miranda-leaf-acetone with 5-FU induced apoptosis of
PC-9 cells at the rate of 12%, 12%, and 49%, respectively. This result indicated a potential
synergistic cytotoxic effect because the co-treatment of N. miranda-leaf-acetone with 5-FU
could produce more DNA fragmentations (a nearly 2-fold increase) in PC-9 cells. This was
also true in B16F10 and 4T1 cells. Use of N. miranda-leaf-acetone, 5-FU, and the co-treatment
induced apoptosis at the rates of 30%, 25%, and 74% in B16F10 cells, and 22%, 27%, and
59% in 4T1 cells, respectively. The synergistic cytotoxic effect was in the order: B16F10
> 4T1 > PC-9 cells. Accordingly, we might conclude that N. miranda-leaf-acetone can be
co-used with 5-FU for better anticancer applications. However, this speculation must be
further demonstrated experimentally and clinically.
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Figure 6. The co-cytotoxic effect of the clinical anticancer drug 5-FU with N. miranda-leaf-acetone.
N. miranda-leaf-acetone (NMLA; 40 µg/mL) and 5-FU (5 µM) were used to investigate the cytotoxic
effect on PC-9, B16F10, and 4T1 cells apoptosis. The collective data suggested potential synergistic
anticancer effect when co-treatment.
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2.8. ALLase Inhibitory Potential

ALLase plays an essential role in the catabolism pathway for purine degradation [12].
The ALLase-catalyzed reaction is a key process in the biosynthesis of ureide, which is re-
quired for the utilization of nitrogen in purine-derived compounds. Thus, ALLase may be a
cytotoxic target. Currently, there is still no report regarding the inhibition effect of any plant
extract on the activity of ALLase. In this study, we also attempted to find whether extracts
from N. miranda could inhibit ALLase. The recombinant ALLase from Salmonella enterica
serovar Typhimurium LT2 was hetero-overexpressed in Escherichia coli, purified by Ni2+-
affinity chromatography, and used for this investigation. By using the standard assay, the
inhibitory effect of different extracts from N. miranda on ALLase was found to be in the order:
N. miranda-stem-acetone > N. miranda-stem-methanol > N. miranda-stem-ethanol = N. mi-
randa-leaf-acetone > N. miranda-leaf-methanol > N. miranda-leaf-ethanol (Figure 7). Other
N. miranda extracts exhibited slight or negligible inhibition effects. N. miranda-stem-acetone
and N. miranda-leaf-acetone showed ALLase inhibition at the rate of 60% and 48% at a
30 µg/mL concentration, respectively. These results indicated that one or more compounds
in the stem and leaf of N. miranda could be potential inhibitors of ALLase.
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2.9. Molecular Docking

The current work identified that some N. miranda extracts possess anti-ALLase activity
(Figure 7). It was tentatively proposed that certain compound in N. miranda is responsible
for inhibiting the activity of ALLase and, therefore, their binding modes should be eluci-
dated (Figure 8A). Based on our GC–MS results for N. miranda-leaf-acetone, their binding
capacities were analyzed via the MOE (molecular operating environment)-Dock tool [63].
Through MOE-Dock, receptor–ligand binding affinities with all possible binding geometries
could be predicted on the basis of the docking score (the S score). The top six compounds
in N. miranda-leaf-acetone (Table 3), plumbagin (Figure 8B), lupenone (Figure 8C), palmitic
acid (Figure 8D), stigmast-5-en-3-ol (Figure 8E), neophytadiene (Figure 8F), and citraconic
anhydride (Figure 8G) were docked to ALLase (PDB ID 3E74), and their S scores were
compared (Table 4). Based on the S scores, the binding capacity of these compounds was in
the order: stigmast-5-en-3-ol > palmitic acid > lupenone > plumbagin > neophytadiene >
citraconic anhydride. Accordingly, stigmast-5-en-3-ol, possessing the highest S score, might
exhibit the greatest binding affinity to ALLase among these selected compounds.
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Figure 8. Molecular docking. (A) Docking results. Through MOE-Dock, ALLase–ligand binding
affinities with all possible binding geometries could be predicted on the basis of the S score. The PDB
ID of the used structure of ALLase (green) is 3E74. This enzyme contains a binuclear metal center.
Two Fe ions in the active site are presented as black spheres. The top 6 compounds in N. miranda-
leaf-acetone, namely plumbagin (orange), lupenone (cyan), palmitic acid (slate), stigmast-5-en-3-ol
(lightpink), neophytadiene (sand), and citraconic anhydride (gray), were docked to ALLase. Only
plumbagin could be docked into the active site of ALLase. (B) The binding mode of plumbagin
to ALLase. (C) The binding mode of lupenone to ALLase. (D) The binding mode of palmitic
acid to ALLase. (E) The binding mode of stigmast-5-en-3-ol to ALLase. (F) The binding mode of
neophytadiene to ALLase. (G) The binding mode of citraconic anhydride to ALLase.
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Table 4. Results of the docking studies against ALLase.

Compound S Score Residue Interaction Distance (Å) E (kcal/mol)

Plumbagin −5.097 Fe-α Metal 2.20 −2.2
Lupenone −5.365 No important residue

Palmitic acid −5.443 No important residue
Stigmast-5-en-3-ol −5.689 Asp163 H-donor 2.74 −2.9

His69 H-pi 3.78 −0.6
Neophytadiene −5.006 No important residue

Citraconic anhydride −3.659 Arg237 H-acceptor 3.15 −1.0

3. Discussion

Cancer is one of the leading causes of human mortality [64,65]. However, cancer
cells can hijack and remodel existing metabolic pathways for their survival and prolifera-
tion [66,67], making them hard to treat. Conventional cancer treatments commonly involve
radiotherapy and chemotherapy but with several adverse effects, and they commonly lead
to other critical disorders. Therefore, natural compounds as potential anticancer agents are
also used and studied in many cancer models, both in vitro and in vivo [5,54,68]. Currently,
promising plant-based anticancer medicines such as vincristine, vinblastine, and paclitaxel
have been developed and used in clinical applications [3,4]. More plant-based anticancer
compounds should be identified as therapeutics for pharmaceutical applications.

Nepenthes exhibit several ethnobotanical uses, such as curing stomachache and fever,
and have fewer side effects in human use [7]. In this study, N. miranda-leaf-acetone was
found to possess cytotoxic activities against pulmonary adenocarcinoma (PC-9 cells), skin
melanoma (B16F10 cells), and mammary carcinoma (4T1 cells). The cytotoxic effect of
N. miranda-leaf-acetone was in the order: B16F10 > 4T1 > PC-9 cells (Figure 4). In addition,
the use of N. miranda-leaf-acetone could be combined with the clinical anticancer drug 5-FU
for the synergistic cytotoxic effect, in the order: B16F10 > 4T1 > PC-9 cells. These collective
data suggested that N. miranda-leaf-acetone could be a potential natural alternative or
complementary therapy for these cancers, especially melanoma and mammary carcinoma.
The active ingredients in N. miranda-leaf-acetone (Table 3) should be isolated and identified
for further pharmacological applications.

The leaf extract of N. miranda may be a better alternative medicine than the stem
extract, as the leaves of N. miranda are available in higher quantities than the stems. In
addition, removing the stem for extractions kills the whole N. miranda plant, whereas only
taking some leaves from N. miranda allows it to survive. Thus, N. miranda-leaf-acetone was
suggested for further pharmaceutical use.

Multidrug-resistant pathogenic bacteria are spreading rapidly worldwide and can be-
come untreatable [42]. K. pneumonia are a concerning ESKAPE organism [42–44]. Antibiotic-
resistant K. pneumoniae can cause sepsis, liver abscesses, and pneumonia and are responsible
for many life-threatening hospital infections [45–47]. The utilization of allantoin as a ni-
trogen source is recognized as very important to the virulence of K. pneumoniae [48], and,
therefore, ALLase might be a promising target. We found that extracts of N. miranda ex-
hibit anti-K. pneumoniae (Table 2) and anti-ALLase activities (Figure 7). Whether some
plant-derived products from the stem and/or leaf extract of N. miranda may act as active
antibacterial agents for human health care is worth further determining.

Many phenolic compounds occurring naturally in plants can be effective for humans
in treating various disorders due to their antioxidant, anti-inflammatory, antibacterial,
and anticancer activities. We found the cytotoxicity of N. miranda-leaf-acetone against
PC-9, B16F10, and 4T1 cancer cells. Through GC–MS, the contents abundant in N. miranda-
leaf-acetone were detected and identified (Table 3). We found that the top four contents,
plumbagin (28.52%) [57–60], lupenone (11.45%) [69–71], palmitic acid (5.49%) [72–74],
and stigmast-5-en-3-ol (5.06%) [75], especially plumbagin and lupenone, are anticancer
compounds. This might be why N. miranda-leaf-acetone possesses strong cytotoxic activities.
Whether these different active ingredients in N. miranda-leaf-acetone can provide significant
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polypharmacological and synergistic effects and in what ratio for cancer therapies should
be elucidated.

ALLase [14,16,18,76], DHOase [21–27], and DHPase [28–35] are members of the cyclic
amidohydrolase family [16]. Although these cyclic amidohydrolases use a similar active
site and mechanism for catalysis, no substrate overlapping was observed among them [18].
However, DHOase [8] and DHPase [9] can have a common inhibitor, namely plumbagin.
Recently, we solved the complex crystal structure of DHOase with plumbagin (PDB ID
7CA1) [8], and the structure revealed that plumbagin occupies the active site and prevents
the substrate from entering. Plumbagin was the most abundant substance in N. miranda-
leaf-acetone (Table 3), and a docking study indicated plumbagin capable of occupying the
active site of ALLase (Figure 8 and Table 4). Accordingly, we speculated that the inhibition
of ALLase by N. miranda-leaf-acetone mainly comes from plumbagin. We will further
analyze whether plumbagin could be an inhibitor and the inhibition mode against ALLase
in future research.

We also found that the stem and leaf extracts of N. miranda can strongly inhibit the
DNA-binding activity of single-stranded DNA-binding proteins (SSB) (unpublished results).
Like ALLase, SSB is also an attractive target for potential antipathogen chemotherapy
because it is absolutely required for DNA replication and cell survival [77–81]. Recently,
we have identified that the natural products myricetin [77,81] and taxifolin [78] can inhibit
the activity of SSB. It is worth demonstrating which active component(s) in N. miranda-leaf-
acetone and N. miranda-stem-acetone can inhibit SSB for further antibiotic developments
and applications.

Previously, we solved crystal structures of DHPase [28,30], SSB [80], and DHOase [24]
in a complex with 5-FU. Therefore, 5-FU may be involved in the activity regulation of
these proteins. In this study, we further found that the cytotoxic effects of N. miranda-leaf-
acetone can be enhanced synergistically when it is co-used with 5-FU (Figure 6). On the
other hand, co-cytotoxic effects of N. miranda-leaf-acetone and epothilone B (Figure 5), a
stabilizing tubulin antagonist with broad anti-tumor activity used in ovarian cancer, lung
cancer, brain cancer, breast cancer, and gastric cancer, were not significant. Moreover, 5-FU
is an FDA-approved anticancer drug that is widely used in clinical applications [82–85].
As a potent antimetabolite, 5-FU can cause RNA miscoding [86], inhibit DNA synthe-
sis [86], and increase the intracellular reactive oxygen species (ROS)-related radical anion
O2 level [84,87]. ROS can induce apoptotic cell death via a p53-dependent pathway [88–90].
Similarly, plumbagin can also exert anticancer activity by generating intracellular ROS
and inducing apoptosis [10,60]. Thus, plumbagin, the most abundant substance in N. mi-
randa-leaf-acetone, may strongly enhance the chemosensitivity of 5-FU by promoting ROS
production for anticancer activity. Furthermore, 5-FU and plumbagin may also co-act to
enhance cytotoxicity against cancer cells by targeting DHPase [9,28,30] and DHOase [8,24]
to suppress DNA metabolism. How N. miranda-leaf-acetone can co-act with 5-FU and how
the chemosensitivity level can be enhanced should be further elucidated.

In conclusion, we evaluated the antioxidant, anti-K. pneumoniae, and anti-ALLase
activities of different parts (stem, leaf, and pitcher) of N. miranda extracts that were obtained
by using methanol, ethanol, acetone, and distilled water. The cytotoxic effects of N. miranda-
leaf-acetone on the survival, apoptosis, and migration of PC-9, 4T1, and B16F10 cancer cells
were examined. The ingredients abundant in N. miranda-leaf-acetone were determined
by GC–MS for further polypharmacological and synergistic applications. These collective
results might indicate the pharmacological potentials of N. miranda for further clinical
anticancer chemotherapies.

4. Materials and Methods
4.1. Chemicals, Cell Lines, and Bacterial Strains

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were of
analytical grade. The E. coli strain BL21(DE3) pLysS (Novagen, UK) was used for protein ex-
pression and purification. K. pneumoniae MGH 78578 [91–94] was used for the antibacterial
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assay. The cell lines PC-9 pulmonary adenocarcinoma, 4T1 carcinoma, and B16F10 murine
melanoma were obtained from the Food Industry Research and Development Institute,
Hsinchu, Taiwan [95].

4.2. Plant Materials and Extract Preparations

Leaves, stems, and pitchers of N. miranda were collected, dried, cut into small pieces,
and pulverized into powder. Extractions were carried out by placing 1 g of plant powder
into a 250 mL conical flask. The flask was added with 100 mL of solvents (methanol,
ethanol, acetone, or distilled water) and shaken on an orbital shaker for 5 h. The resultant
extract was filtered using a 0.45-µm filter and stored at −80 ◦C until use.

4.3. Determination of Antioxidant Activity by DPPH Radical Scavenging Assay

The antioxidant potential of the plant extracts was determined using a DPPH assay [96].
DPPH free radical scavenging activity was determined using the formula: %Radical scav-
enging activity = (Control OD − Sample OD)/Control OD × 100. The absorbance was
measured at 517 nm.

4.4. GC-MS Analysis

Phytochemical components of N. miranda-leaf-acetone were determined by GC-MS [95].
The filtered sample was analyzed using Thermo Scientific TRACE 1300 Gas Chromatograph
with a Thermo Scientific ISQ Single Quadrupole Mass Spectrometer system. The column
used was Rxi-5ms (30 m × 0.25 mm i.d. × 0.25 µm film). The compounds discharged from
the column were detected by a quadrupole mass detector. The ions were generated by
the electron ionization method. The relative mass fraction of each chemical component
was determined by the peak area normalization method. Compounds were identified by
matching generated spectra with NIST 2011 and Wiley 10th edition mass spectral libraries.

4.5. Cell Culture

B16F10 and 4T1 cells were maintained as a monolayer culture in Dulbecco’s modified
Eagle medium supplemented with 10% fetal bovine serum (FBS) and 4 mM L-glutamine.
PC-9 cells were maintained in RPMI 1640 with 10% FBS and 2 mM L-glutamine. Cells were
incubated at 37 ◦C in a 95% air and 5% CO2 incubator.

4.6. Trypan Blue Cytotoxicity Assay

The trypan blue cytotoxicity assay was performed to assess cell death [97]. The cancer
cells (1 × 104) were incubated with different extracts in a 100 µL volume. After 24 h, the
cytotoxic potentiality exhibited by the extract was estimated by performing a trypan blue
cytotoxicity assay. A non-cancerous HEK293 cell line was used as control cells in this
cytotoxicity experiment. Incubation with N. miranda-leaf-acetone of 80 µg/mL caused the
deaths of 4T1 and B16F10 cells at the rates of 60 and 71%, while only 3% of HEK293 cells
were affected.

4.7. Chromatin Condensation Assay

The apoptosis in cancer cells was assayed with Hoechst 33342 staining [98]. The cells
were seeded in 96-well plates at a density of 5 × 103 cells per well in a volume of 200 µL of
culture medium. Cells were allowed to adhere for 16 h. After different treatments, cells were
incubated for an additional 24 h, washed with PBS, and stained with Hoechst dye (1 µg/mL)
in the dark at RT for 10 min. Cells were imaged using the ImageXpress Pico (Molecular
Devices, CA, USA). Image acquisition was performed on each well using a 20× magnification,
a 6 × 6 square image scan, on the DAPI filter cubes. Image analyses were performed on the
images obtained from the ImageXpress Pico instrument (Molecular Devices, CA, USA) using
the CellReporterXpress Version 2 software. The apoptotic index was calculated as follows:
apoptotic index = apoptotic cell number/(apoptotic cell number + nonapoptotic cell number).
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4.8. Wound-Healing Assay

An in vitro migration (wound healing) assay was performed as described previ-
ously [99]. Briefly, the cancer cells were seeded in 24-well plates, incubated in serum-
reduced medium for 6 h, wounded in a line across the well with a 200 µL pipette tip,
and washed twice with the serum-reduced medium. After different treatments, cells were
incubated for 24 h to allow migration.

4.9. Antibacterial Activities

The agar well diffusion assay was performed as described previously [100]. Colonies
of K. pneumoniae were diluted to prepare a 0.1 McFarland standard suspension. Then, the
bacteria were inoculated into sterile Petri dishes of 60 mL of Muller–Hinton agar plates.
The plates were shaken gently to allow even mixing of bacterial cells and agar. All samples
were dissolved in 30% DMSO to furnish 22 mg/mL. Exactly 90 µL of each extracted sample
(6.0 mm diameter disc) was transferred onto the plate and incubated at 37 ◦C for 12 h. The
diameters of the inhibition zones were calculated. Clear inhibition zones formed around
the discs indicating the presence of antibacterial activity.

4.10. Protein Purification

The recombinant ALLase from S. enterica was purified as described previously [14].
Briefly, E. coli BL21(DE3) cells were transformed with the expression vector, and the over-
expression of the expression plasmid was induced by incubating with 1 mM isopropyl
thiogalactopyranoside. The protein was purified from the soluble supernatant by using
Ni2+-affinity chromatography (HiTrap HP; GE Healthcare Bio-Sciences), eluted with buffer
A (20 mM Tris–HCl, 250 mM imidazole, and 0.5 M NaCl, pH 7.9), and dialyzed against a
dialysis buffer (20 mM Tris–HCl and 0.1 M NaCl, pH 7.9). The protein purity remained at
>97%, as determined using SDS–PAGE (Mini-PROTEAN Tetra System; Bio-Rad, CA, USA).

4.11. Enzyme Assay

A rapid spectrophotometric assay was used to determine the enzymatic activity of
ALLase [18]. Hydrolysis of the substrate allantoin was measured at 25 ◦C as the decrease
in absorbance at 258 nm [76]. To start the reaction, the purified ALLase was preincubated
with 1 mM MnCl2 for 4 min, and the protein solution was then added to a 2-mL solution
containing 10 mM allantoin and 100 mM Tris–HCl at pH 8.0. Allantoin absorbs at 258 nm with
an extinction coefficient of 0.0261 mM−1 cm−1. The hydrolysis of the substrate was monitored
with a UV/vis spectrophotometer (Hitachi U 3300; Hitachi High-Technologies, Tokyo, Japan).

4.12. Molecular Docking

Through MOE-Dock [63], plumbagin, lupenone, palmitic acid, stig-mast-5-en-3-ol,
neophytadiene, and citraconic anhydride were docked to ALLase (PDB ID 3E74) for their
binding capacity. Their S scores and binding modes were compared. Top-ranked confirma-
tions were analyzed.
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