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Abstract

:

Pathogenesis-related protein-1 (PR-1) plays crucial roles in regulating plant responses to biotic and abiotic stresses. This study aimed to isolate and characterize the first PR-1 (AvPR-1) gene in oat (Avena sativa L.). AvPR-1 presented conserved signal peptide motifs and core amino acid composition in the functional protein domains as the protein sequence of AvPR-1 presented 98.28%, 97.7%, and 95.4% identity with known PR1 proteins isolated from Triticum aestivum PRB1-2-like, Triticum dicoccoides PRB1-2-like, and Aegilops tauschii subsp. tauschii, respectively. Bioinformatic analysis showed that the AvPR-1 protein belongs to the CAP superfamily (PF00188). Secondary and 3D structure analyses of the AvPR-1 protein were also conducted, confirming sequence conservation of PR-1 among studied species. The AvPR-1 protein harbors a calmodulin-binding domain located in its C-terminal part as previously shown for its wheat homolog TdPR1.2. Moreover, gene expression analysis showed that AvPR-1 was induced in response to many abiotic and hormonal stresses especially in leaves after treatment for 48 h. This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat.
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1. Introduction


Plants have developed different mechanisms to protect themselves from surrounding threats. These stimuli activate an array of defense mechanisms such as synthesis of antimicrobial molecules, hypersensitive response (HR), and pathogenesis-related (PR) proteins [1]. The PR proteins are thermostable and protease-resistant components which have a relatively low molecular weight of ~5–43 kDa. Moreover, the PR genes are expressed in all plant organs. Interestingly, they constitute about 5–10% of the total proteins in leaves [2,3]. PR-1 proteins are rapidly activated upon plant exposure to different biotic and abiotic stresses and form about 2% of soluble proteins in cells after infection [4]. PR genes are implicated in plant response to pathogen attack [5], wounding, jasmonic acid, salicylic acid [6,7], and ethylene [8], suggesting that PR proteins are involved in plant adaptation to different environmental stresses. Those proteins have antiparasitic activities (fungi, bacteria, viruses, insects, and nematodes) [9,10]. PR proteins are also involved in plant maturation, flowering, and plant/seed/floral development as well as leaf senescence [11].



PR proteins have been classified into 17 different families based on their main properties [12,13]. The PR-1 protein family contains the most studied proteins, known as antimicrobial peptides (AMPs), but their mode of action is still not well understood [12]. Depending on their isoelectric point, those proteins could be defined as acidic or alkaline. PR-1 proteins are generally secreted and accumulated in the extracellular/apoplastic space due to the presence of an N-terminal secretion peptide in their sequence, but many proteins could be also found in vacuoles [9]. Several PR-1 proteins have been isolated and characterized in monocot and dicot plant species such as tobacco (Nicotiana tabacum; [14], tomato (Solanum lycopersicum; [15]), durum wheat (Triticum turgidum subsp. durum; [7]), garlic (Allium sativum L.; [4]), and banana (Musa spp.; [16]). All known PR-1 proteins have a conserved cysteine-rich secretory protein, antigen-5, and pathogenesis-related-1 (CAP) domain. This domain typically folds into four α-helices and four β-sheets stabilized by disulfide bonds. Such unique structures are indispensable for their biological roles in response to different biotic and abiotic stresses [17,18,19]. In Allium sativum L., three different PR genes (PR1, PR3, and PR5 genes) are positive marks for garlic resistance to F. oxysporum f. sp. cepae [10]. Furthermore, it has been shown that garlic infection with different pathogenic fungi of the genus Fusarium induced the expression of different pathogen-related protein genes such as AsPR1 (AsPR1c, d, g, k) and AsPR2 (AsPR2b, AsPR5a, c) in roots and AsPR4 (AsPR4a(c), b) and AsPR2c in stems and cloves of both resistant and sensitive cultivars [4]. In sugarcane (Saccharum spp. hybrids), 19 different PR-1 proteins were identified that respond to a wide range of stresses such as infection with Acidovorax avenae subsp. Avenae (Aaa), as well as other different abiotic stresses such as NaCl, PEG6000, and SA treatments [20]. In Arabidopsis, it has been shown that an ELF18-INDUCED LONG NONCODING RNA 1 (ELENA1) acts as a positive regulator of immune responsive genes during their transcription [21]. Moreover, ELENA1 is associated with mediator subunit 19a (MED19a) to enhance enrichment of the complex on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter, whereas FIBRILLARIN 2 (FIB2) is negative transcriptional regulator of many immune responsive genes, such as PR1. ELENA1 can dissociate the FIB2/MED19a complex. Thus, it releases FIB2 transcriptional regulator from the PR1 promoter and enhances PR1 expression [21]. SlPR-1, a tomato PR-1 protein, was induced after plant treatment with SA and infection with Meloidogyne incognita nematode [6]. In tomato, plant infection with Alternaria solani induced the expression of a pathogenesis-related protein-like protein gene (known as BG124298). This gene was upregulated 5.57-fold and 1.63-fold in a resistant and a susceptible genotype, respectively [22]. PR-1 genes also have crucial roles in response to abiotic stresses. In Triticum aestivum, it has been demonstrated that plant treatment with glycerol induced the expression of different genes such as pathogenesis-related (PR) genes (PR-1, PR-3, PR-10) and peroxidase [23]. In addition, TaPR-1-1 gene expression was induced by osmotic stresses, freezing, and salinity. Interestingly, overexpression of TaPR-1-1 positively regulated plant tolerance to those stresses in yeast and Arabidopsis [24]. Despite the extensive work on PR-1 proteins, little is known about their regulation. In Arabidopsis, it has been demonstrated that PR-1 promoter interacts with AtWRKY50 via its C-terminal part. AtWRKY50 is considered as the most effective WRKY activator of PR1 gene expression [25]. This interaction occurs simultaneously in presence of TGA2 or TGA5, and AtWRKY stimulates this binding [25]. The same result was also found in tobacco [26] and banana [27]. More recently, it has been demonstrated that durum wheat TdPR1.2 physically interacts in vitro with CaM/Ca2+ complex. This interaction enhances the catalytic activity of TdPR1.2, which is further enhanced in presence of Mn2+ cations [7]. Moreover, TdPR1.2 confers abiotic stress tolerance (salt, osmotic, and heavy metal stress) to E. coli [28].



Avena sativa plants are found all over the word. Those cereals are rich in health-promoting substances and can be used as animal feed, forage, and food [29,30]. Furthermore, oat is more resistant to salty soils compared to other cereals. Avena sativa is an important crop for improving plant adaptability to salty alkali soils [31]. Many studies investigated gas exchange [32], oxidative stress [33,34], and ions [32,33,34,35,36] of oat plants subjected to salt stress. Recently, it has been shown that application of exogenous Ca2+ can alleviate salt stress applied to oat grown in salty mediums [31] by conserving the stability and functions of the plasma membrane in cells [37]. Although an important number of gene families are implicated in the resistance and defense of plants against biotic and abiotic stresses, PR-1 genes have not been revealed in oat plants, and their biological functions remain largely unknown. In the present study, we isolated and characterized a novel PR-1 gene from oat (Avena sativa) and studied its tissue expression patterns in response to different abiotic and hormonal stresses. Our results provide new insights into the function of the A. sativa PR-1 gene, which can be used in breeding programs to increase the resistance to different abiotic stresses in cultivated Avena spp.




2. Results


2.1. AvPR1 Sequence Analysis


Sequence analysis of the AvPR-1 gene (GenBank OP132412) revealed an ORF length of 525 bp. Expasy tools analysis showed that the corresponding protein presented a size of 174 amino acids with a predicted molecular weight of 18.89 kDa and an isoelectrical point (pI) of 9.19 (Table 1). The aliphatic index (AI) was 63.45. This index reflects the relative number of hydrophobic residues. Finally, the GRAVY index of AvPR-1 was negative (−0.288), which means that AvPR-1 is predicted to be a hydrophobic protein [4]. All studied PR-1 proteins have a negative GRAVY index, which means that all those proteins are hydrophobic (Table 1). As shown in Table 1, different PR1 proteins isolated so far have a similar length (161–179 aa) and a predicted Mw of 17–19 kDa. The novel PR-1 protein is a basic protein as shown for many other PR-1 proteins isolated from other different species [7,15,16].



Next, analyses of the AvPR1 amino acid sequence were performed using the NCBI server. The result showed that AvPR1 belonged to the cysteine-rich secretory proteins, antigen-5 and pathogen-related protein-1 (CAP) superfamily; Figure 1a. AvPR1 protein contains a putative conserved SCP_PR-1-like domain (cd05381) of 135 aa (from aa 29 to aa 164 (pfam00188)). AvPR-1 harbors a caveolin-binding domain (CMB; 108–113; Figure 1b). CBM represents the putative sterol-binding domain identified in pathogen-related yeast 1 (PRY1) proteins [17]. Moreover, CAP-derived peptide (CAPE) with conserved residues was identified (154–160; Figure 1b) [38]. Such domains were previously identified in many PR-1 proteins from different species such as pepper, banana, soybean, and tomato [1,15,39,40].



The Signal P-5.0 database revealed the presence of a cleavage site between positions 24 and 25. In addition, signal peptide is found in the AvPR-1 structure. This site is the 8 aa Signal Peptide found in the N-terminal part of the AvPR-1 protein (positions 1–8; Figure 1b and Figure 2). Sequence analysis of the different studied proteins shown that those signatures are conserved among PR-1 proteins (Figure 2). Using the PONDR database, analysis showed a second site in the C-terminal part of AvPR-1 (173–174; Figure 2). The C-terminal locates signal peptides of basic PR-1 proteins, controlling protein transport into vacuoles [41] and is constitutively expressed by stress signals [1]. The same results were also found in TdPR1.2 [28]. The presence of the transmembrane region in the AvPR-1 sequence was also investigated using the PDONR database (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0). The AvPR-1 sequence harbors a transmembrane region in the N-terminal part of the protein (6–24 aa, Figure 1b, Supplementary Figure S1). Overall, our results are coherent with some previously reported findings for other species [20,39,42]. A conserved calmodulin binding domain was mapped in the AvPR-1 structure using the calmodulin target database (data not shown). This domain is located at the C-terminal part of the protein. A similar domain was recently identified in the TdPR1.2 protein that can interact with calmodulins in a calcium-dependent manner [7].




2.2. Phylogenetic Analysis of AvPR-1


Different PR1 protein sequences isolated from different plant species were obtained from NCBI. Sequence analysis of those proteins using Cluster Omega revealed that those proteins are highly conserved and present an important sequence homology (Figure 2). The deduced protein sequence of AvPR1 shared a high similarity with other PR-1 proteins, ranging from 98.28% identity with bread wheat (Triticum aestivum PRB1-2-like, GenBank accession number XP_044433901.1) and durum wheat (Triticum turgidum subsp. durum TdPR1.2 (GenBank accession no. MK570869.1) PR-1 proteins to 97.7% and 95.4% identity with PR1 proteins isolated from Triticum dicoccoides PRB1-2-like and Aegilops tauschii subsp. tauschii (GenBank: XP_020170282.1), respectively.



Moreover, phylogenetic tree analysis was performed using the same database through the neighbor-joining method. This resulted in five major clusters, viz. I, II, III, IV and V. As expected, PR1 proteins isolated from dicotyledonous plants were clustered into one group (group I, Figure 3a), whereas proteins isolated from monocotyledons were clustered into four groups. The second group is formed by proteins isolated from Phoenix dactylifera and Musa acuminate. The majority of proteins were clustered into group III, whereas AvPR1 protein was clustered with barley and Aegilops taushii proteins (cluster IV), suggesting an evolutionary conservation of those species and that oat protein may share a common ancestor with those proteins and could perform the same functions. In addition, the last group was formed by proteins isolated from three wheat plants (Figure 3a).



To create LOGO motifs of the AvPR-1 protein, MEME was run on the sequence database. The LOGO representations of the protein are shown in Figure 3b. Analysis showed 10 conserved domains in PR-1 protein sequences. Those motifs are conserved among studied species (Figure 3b, Supplementary Figure S2). As shown in Supplementary Figure S2, five domains (blue, red, green, cyan, and orange) are much conserved among studied PR-1 proteins. The SGDLSG motif (yellow) is found only in PR-1 isolated from dicotyledonous plants used in this work and absent in all monocotyledonous plants. The MNFTNYSRFLIVF motif (pink) was found only in four dicotyledonous plants.



Protein phosphorylation is an important post-translational modification (PTM) controlling crucial cellular processes, such as signaling, transport, and nutrient uptake [43]. Thus, the number of putative phosphorylated sites was also investigated using the Notphos 3.1 server. AvPR-1 presented 12 putative phosphorylated residues (S3, S4, S7, S24, T28, T49, Y61, S86, S89, S98, S130, and T131, Supplementary Figure S3). Such a result may prove that AvPR-1 is phosphorylated in cells in response to different stress conditions. Finally, the GPS-SNO predictor was also used to predict the putative nitrosylation residues in the PR-1 structure. Analysis shows that the AvPR-1 sequence harbors six different nitrosylation sites (C69, C113, C119, C135, C140, C150). Those residues are crucial for protein post-translational modifications [44].




2.3. Gene Ontology and KEGG Annotation


Gene ontology (GO) was carried out based on biological process, molecular function, and cellular component terms for the AvPR-1 protein using the PANNZER2 online server (Supplementary Figure S4). The AvPR-1 protein regulates two biological processes (GO:0006952 defense response and GO:0009607 response to biotic stimulus) and two cellular components (GO:0005576: Extracellular region and GO:0016021: Integral component of membrane). A KEGG orthology analysis of AvPR-1 revealed that oat PR-1 gene was mapped to the MAPK signaling pathway (04016), plant hormone signal transduction (04075), and to the plant–pathogen interaction (04626). Such findings were also cited for other PR-1 proteins such as P. nigrum [1]. Based on the gene ontology enrichment data, the oat PR-1 protein function suggests that the PR-1 gene has an important role in plant defense against different abiotic stress treatments.




2.4. Interaction Network of AvPR-1 Protein


The interaction network of the AvPR-1 protein from oat was constructed based on the interaction relationship of the homologous PR-1 proteins from Triticum aestivum (Figure 4). The interaction network analysis showed that the AvPR-1 protein interacted with the Glyco_18 domain-containing protein, which belongs to the glycosyl hydrolase 18 family, a Bet_v_1 domain-containing protein (uncharacterized protein) and a Pex2_Pex12 domain-containing protein (uncharacterized protein). Glycoside hydrolase family 18 (GH18) belongs to the chitinase subfamily. It catalyzes the degradation of β-1,4 glycosidic bonds in amino polysaccharides and possesses different functions. GH18 chitinases are implicated in many physiological processes, such as nutrition uptake and regulation of the immune response [45].




2.5. Predicted Secondary and 3D Structures of the AvPR-1 Protein


The secondary structure analyses of AvPR-1 were performed using the SOPMA online server (Figure 5a, Table 2). AvPR-1 has 55 α-helices, 8 β-turns, 81 random coils, and 30 extended strands (Table 2).



The same result was observed in TdPR1.2 and TaPR-1 proteins (Table 2, Supplementary Figure S4). The predicted 3D structures of AvPR1 protein and other studied proteins were generated online using the Phyre2 server (Figure 5b). The 3D structure of the AvPR-1 protein is conserved, especially regarding the α–β–α sandwich structure that is characteristic of PR-1 proteins (Figure 5b) [42].




2.6. Differential Expression of AvPR-1 Gene under Various Stress Conditions


To investigate the possible biological functions of the AvPR-1 gene, we assessed the expression patterns of AvPR-1 genes in oat under various abiotic stress conditions using qRT-PCR (Figure 6 and Figure 7).



In response to salt stress (150 mM NaCl), AvPR-1 was significantly upregulated (Figure 6a). The same result was observed when plants were subjected to mannitol and PEG stresses (Figure 6b,c). When heat stress was applied to oat plants (42 °C for 30 min), there was a significant increase in AvPR-1 expression level in roots and shoots, suggesting that this protein could have a putative protective role in controlling oat heat tolerance (Figure 6d).



The hormonal response of the AvPR-1 gene was investigated by treating plants with salycilic acid (SA), indole acetic acid (IAA), jasmonic acid (JA), and abscisic acid (ABA). As shown in Figure 7, AvPR-1 was upregulated in response to all hormones used in this work. Overall, those results demonstrate that AvPR-1 is implicated in plant response to many abiotic and hormonal stresses.





3. Discussion


Cereals have a key role in fulfilling the world’s food demand [24]. They are exposed to variable stresses during their life cycle [24], and this is especially the case for the common oat Avena sativa. Thus, a crucial role of PR-1 genes is necessary for the pathogenesis-related metabolic pathways. PR-1 genes have various intricate growth/developmental mechanisms. They also help plants to cope with an important number of environmental stresses. PR-1 genes are among the proteins that show a high level of transcription in response to biotic and abiotic stress applications. These proteins have a crucial role in plant defense against biotic stresses as they thicken the cell wall to block the apoplastic spread of pathogens [46]. Furthermore, PR proteins are crucial components in cells that enhance plant response to an important number of abiotic stresses such as light, salt, low temperature, and drought [9,42,47]. Thus, those genes are used to generate transgenic plants that have an enhanced tolerant to different pathogens such as oomycetes [48], bacteria [49], and fungi [50], as well as abiotic stresses.



The PR-1 gene family has been identified and characterized in many plant species. The number of PR-1 family members differs depending on the species. For example, 13 genes were identified in tomato [15], 19 in Saccharum spontaneum [20], and 23 genes in wheat and rice [51,52]. Despite their importance in plants, little is known about the PR-1 genes in monocotyledons, especially in oat. In the current study, the first PR-1 gene was identified in oat. AvPR-1 presents a negative GRAVY score, which is common for hydrophilic proteins. The AvPR-1 protein possess the CAP signature, the CBM domain is involved in sterol binding [17], and the CAPE is involved in plant immune signaling [38]. In general, the ability of the PR-1 proteins to bind sterols is correlated with their antimicrobial activity against the sterol auxotroph, a major plant pathogen known as the Phytophthora species [53]. CAPE-1 is well conserved among the monocots and dicotyledonous plants. The consensus motif PxGNxxxxxPY is found in AvPR-1. Sequence analysis of AvPR-1 structure revealed the presence of a calmodulin-binding domain in the C-terminal part of the protein. Such a domain was also identified in durum wheat TdPR1.2 [7]. Calmodulins (CaMs) are ubiquitous Ca2+ bonding proteins highly conserved in eukaryotes that decode the Ca2+ signaling pathways in plants. After plant exposure to stress, the intracellular Ca2+ concentration increases. This variation in Ca2+ level is perceived by CaMs (and other calcium sensors) leading to the formation of active Ca2+/CaM complexes able to interact with a variety of target proteins (phosphatases, kinases, catalases, PR-1s) [7,54,55,56].



The presence of these motifs strongly suggests that AvPR-1 responds to different biotic stresses [38,40,42,57]. In this study, AvPR1 was upregulated in leaf and root tissues of a Saudi oat cultivar subjected to NaCl (150 mM) and PEG (10% PEG 6000) treatments as previously shown in other studies such as in Zea mays (ZmPR-1; [55,58]), banana [16], tomato (13 SlPR-1 genes; [15]), Vitis vinifera (VvPR-1; [59]), and rice (OsPR1a; [19]). Moreover, ScPR-1 was upregulated in leaf tissues of Saccharum spontaneum after salt and PEG stresses but downregulated in stem (MT11–610 cultivar) after PEG treatment and root tissues (ROC22 and MT11–610 cultivars) after NaCl treatment [20], suggesting that this gene could have a dual role depending on the tissue expression in the plant. Many studies have described the effect of heat stress on plant [60,61].



It was described in the literature that the SA and JA signaling pathways are stimulated after biotrophic/hemibiotrophic (under the control of SA) and necrotrophic (under the control of JA) pathogen infection [9]. Thus, we investigated the effect of SA and JA application on AvPR-1 gene expression in oat. Our results showed that AvPR-1 was upregulated after application of those phytohormones in roots and shoots of oat.



Other different PR-1 proteins were reported to be upregulated after plant treatment with SA and JA [15,24]. In banana, MaPR1-1 was upregulated after plant treatment with SA and JA stresses due to the presence of cis-elements and binding sites for transcription factors [27]. Thus, identification of stress-responsive elements involved in up/downregulation of PR-1 will help in understanding plants’ resistance mechanisms toward various stresses. These findings strongly suggest that the AvPR-1 gene plays a crucial role in plant defense against environmental stresses. It has been suggested that PR-1 genes can serve as molecular markers associated with resistance to different biotic and abiotic stresses [1,4,9]. Thus, our findings could be useful for breeding programs aimed at increasing the resistance of oat crops to salt, drought, and hormonal stresses as well as plant infection with pathogens. This could be achieved by, for example, generating an oat crop that overexpress the AvPR-1 gene, which may protect against surrounding environmental threats. In addition, besides PR-1 genes, plant defense against environmental stresses is associated with some other PR genes from other families such as chitinases and endo-1,3-_-glucanases, TLPs, and PR-10.




4. Materials and Methods


4.1. Plant Material and Stress Treatments


In this work, seeds of Saudi oat (Avena sativa L.) were kindly given from a private field in Ha’il, Saudi Arabia. Before incubation, around 45 seeds were sterilized in each box containing 30 mlof 0.6% NaClO solution for 15 min, then washed five times with 50 mL sterile water. For each treatment, 45 seeds were placed in each Petri dish (11 cm long, 2.5 cm high and 11 cm wide) in the presence of a sponge and filter paper placed below to maintain moisture at 25 ± 2 °C. Seeds were then transferred to a greenhouse at 24 ± 2 °C, with photosynthetically active radiation of 280 μmol m−2 s−1, a 16 h photoperiod, and 60 ± 10% relative humidity. After 10 days, seeds were subjected to stresses. In this study, nine treatments were used including the control (distilled water), 150 mM NaCl, 10% PEG, 200 mM mannitol, 5 mM of each phytohormone (SA, JA, IAA and ABA), and heat (42 °C). Each treatment was replicated three times. Finally, shoots were harvested and immediately frozen in liquid nitrogen and stored at −80 °C.




4.2. Isolation of the cDNA AvPR1.2


Total RNA was isolated from Avena sativa plants subjected to 5 mM SA for 24 hours using the Trizol reagent (Invitrogen) according to the manufacturer’s protocol. Next, the remaining genomic DNA was removed using RNase-free DNase. First-strand cDNA was synthesized from 2 μg of total RNA using M-MLV reverse transcriptase (Invitrogen), according to the manufacturer’s protocol.



Sequence alignment of different full sequences of PR1 genes was performed. Primers corresponding to 5′ and 3′ UTR regions were designed and used to amplify AvPR1. After cloning and sequencing of the fragment, the AvPR1 full-length cDNA was amplified using two specific primers AvPR1_Fr (5′-ATGGCA TCT TCC AAG AGC AG -3′) and AvPR1_Rv (5′-TCA AGGGTG AGG ACG CGA A-3′), designed based on Triticum turgidum subsp. durum; TdPR1.2 sequence (MK570869.1). PCR products were purified from agarose gel, cloned into pGEM-T Easy vector, sequenced using an ABI PRISM automated sequencer, and then published (GenBank OP132412).




4.3. Sequence Analysis of AvPR1


The predicted protein was characterized using the ProtParam server (http://web.expasy.org/protparam; accessed on 1 May 2022) [62] to investigate MW, pI, AI, and GRAVY. The conserved domains, sites, and motifs were analyzed using NCBI-CDD (https://www.ncbi.nlm.nih.gov/cdd; accessed on 1 May 2022). Multiple sequence alignment and phylogenetic tree analysis were conducted with Cluster Omega (https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalo-I20220527-204434-0929-25108385-p2m&analysis=phylotree). The signal peptide cleavage sites (SignalP 5.0; http://www.cbs.dtu.dk/services/SignalP/; accessed on 27 May 2022) were also used to detect the presence of putative signal peptides in the AvPR-1 protein [63].



The AvPR1 sequence-predicted phosphorylation sites of the AvPR-1 protein were identified using the NetPhos 3.1 server (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1) [64]. The conserved motifs of the AvPR-1 protein were identified using the Multiple Em for Motif Elicitation (MEME) server v5.1.1 (http://meme-suite.org/tools/meme) [64]. For MEME searches, the “any number of repeats” mode was used, with a search limit of 10 motifs. All other parameters were left at their default values.



The trans-membrane helix was identified using the TMHMM database (https://services.healthtech.dtu.dk/service.php?TMHMM-2.0). Predicted disordered regions (DRs) were identified using the Predictor of Natural Disordered Regions (PONDR) server (http://www.pondr.com/). The physiological role of AvPR-1 was revealed by Pannzer2 (http://ekhidna2.biocenter.helsinki.fi/sanspanz/). The subcellular localization of the AvPR-1 protein was predicted by the WoLF PSORT II online software (https://www.genscript. com/wolf-psort.html?src=leftbar). The presence of a putative calmodulin-binding domain was revealed by the calmodulin target database (http://calcium.uhnres.utoronto.ca/ctdb/no_flash.htm).




4.4. Secondary and Tertiary Structure Analyses


Secondary structure analyses were performed using the SOPMA server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) [65]. Predicted 3D structure analyses were generated using the Protein Homology/analogY Recognition Engine v2 (Phyre2) server (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) [66].




4.5. Gene Ontology (GO) Analysis


Gene ontology (GO) was used to obtain information about the AvPR-1 gene involvement, including biological processes, cellular components, and molecular function using the PANNZER2 web server (http://ekhidna2.biocenter.helsinki.fi/sanspanz/).




4.6. Interaction Network of AvPR-1 Proteins


Protein–protein interaction (PPI) was studied using STRING v11.0 for PR-1 using Triticum aestivum as reference [67]. The minimum required interaction score parameters were set at the medium confidence level.




4.7. RNA Extraction and Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)


Total RNA was extracted from individual roots and leaves (0.5 g of each tissue) using the RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Extracted RNA was then purified from genomic DNA (RNase free DNase set; QIAGEN), qualified by gel electrophoresis, and used for first-strand cDNA synthesis (GoScript Reverse Transcription System; Promega, Madison, USA) with an oligo-dT primer. PCR reactions were achieved in a 10 μL final volume tube in the presence of 3 μL cDNA (obtained from 40 ng of DNase-treated RNA), 0.5 μL of each primer of the AvPR-1 gene (AvPR_Fw and AvPR_Rv at 10 μM), 5 μL 2 × SYBR Green I master mix and 1 μL of RNase-free water (Sigma). The reaction consisted of an initial denaturation at 95 °C for 5 min followed by 40 cycles composed of 10 s at 95 °C, 20 s at 60 °C, and 30 s at 72 °C, then a melting curve (5 s at 95 °C, 1 min at 65 °C, and 5 min with the temperature increasing from 65 to 97 °C). Three biological repetitions were performed for each experimental condition, with three technical repetitions for each sample. Melting curve analysis at the end of cycling was used to verify whether there was single amplification. At the end of the reaction, the threshold cycle (CT) values of the triplicate PCRs were averaged and used for transcript quantification. The relative expression ratio of the TdPR1.2 gene was calculated by using the comparative CT method with the actin gene designed from the T. aestivum genome (actin Av_Fw: 5′-TCC CTC AGC ACA TTC CAG CAGAT-3 and actin Av_Rv: 5′-AAC GAT TCC TGG ACC TGC CTC ATC-3′) as an internal expression standard [68]. The relative expression level was calculated from triplicate measurements based on the 2-DDCT, where DDCT = (CT, target gene−CT, actin) stressed—(CT, target gene−CT, actin) control. Relative expression ratios from three independent experiments (three biological repetitions) are reported.




4.8. Statistical Analysis


Data are reported as mean ± S.E. The results were compared statistically by using Student’s t test, and differences were considered significant at p < 0.01.





5. Conclusions


Pathogenesis-related protein-1 (PR-1) is the most produced protein during plant response toward many environmental stresses. Moreover, PR-1 genes play a crucial role in plant growth and maturation. However, the PR-1 gene family in oat has not been previously studied. This study provides a comprehensive understanding of the first isolated PR-1 gene from oat (Avena sativa), including gene structure, phylogenetic relationship, motifs, and gene expression profiles against different stresses. The structural analysis of AvPR-1 revealed similar binding pockets in the predicted 3D structures of other different PR-1 proteins. Expression analysis of AvPR-1 showed a positive correlation, and the identified candidate PR-1 gene must be further functionally validated for its biological significance and molecular mechanisms. It could be also a hopeful candidate for selecting multiple stress tolerant oat varieties.
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Figure 1. Bioinformatic analysis of AvPR-1 structure. (a) Analysis of AvPR-1 proteins using the NCBI server showed that AvPR-1 belongs to the CAP superfamily. (b) Conserved domains of the AvPR-1 protein. The predicted AvPR-1 protein contained a conserved motif at residues 29–164 aa that belonged to the CAP-superfamily. Two peptide signals were also identified in the N-(1–25) and C-(164–174) terminal parts with the presence of a transmembrane domain. AvPR-1 also contains a cleavage site at position 25. 
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Figure 2. Sequence alignment of different PR-1 proteins identified in oat (GenBank OP132412), Triticum turgidum subsp. durum (MK570869.1), Triticum aestivum (XP_044433901.1), Aegilop stauschii subsp. tauschii (XP_020170282.1), Triticum urartu (EMS45472.1), Phoenix dactylifera (XP_008796972.2), Hordeum vulgare subsp. vulgare (BAK01044.1), Triticum dicoccoides (XP_037463373.1), Panicum hallii (XP_025795067.1), Oryza brachyantha (XP_006661674.1), Zea mays (XP_008657154.1), Eutrema japonicum (BAF03626.1), Camelina sativa (XP_010467245.1), Arabidopsis thaliana (NP_179068.1), Eutrema salsugineum (XP_006409652.1), Capsella rubella (XP_006299028.1), Brassica napus (XP_013733404.1), Sorghum bicolor (XP_002465112.1), Setaria italica (XP_004983398.1), Musa acuminata (ABK41053.2), and Oryza sativa Japonica Group (XP_015613013.1). The blue rectangle indicates the signal peptide, the PF00188 domain structure is highlighted with a red line, caveolin-binding motif (CBM) is highlighted in orange, and the CAP-derived peptide (CAPE) with conserved residues is highlighted in green. 
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Figure 3. (a) Phylogenetic analysis of 21 different pathogen-related proteins oat (GenBank OP132412), Triticum turgidum subsp. durum (MK570869.1), Triticum aestivum (XP_044433901.1), Aegilops tauschii subsp. tauschii (XP_020170282.1), Triticum urartu (EMS45472.1), Phoenix dactylifera (XP_008796972.2), Hordeum vulgare subsp. vulgare (BAK01044.1), Triticum dicoccoides (XP_037463373.1), Panicum hallii (XP_025795067.1), Oryza brachyantha (XP_006661674.1), Zea mays (XP_008657154.1), Eutrema japonicum (BAF03626.1), Camelina sativa (XP_010467245.1), Arabidopsis thaliana (NP_179068.1), Eutrema salsugineum (XP_006409652.1), Capsella rubella (XP_006299028.1), Brassica napus (XP_013733404.1), Sorghum bicolor (XP_002465112.1), Setaria italica (XP_004983398.1), Musa acuminata (ABK41053.2), Oryza sativa Japonica Group (XP_015613013.1) using the neighbor-joining (NJ) tree for the PR1 query, generated using the Cluster Omega program. (b) LOGO presentation of conserved segments in PR-1 proteins in plants. Amino acids are grouped by color according to their physiochemical properties. The height of the amino acids corresponds to their conservation at that position. 
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Figure 4. Protein–protein interaction network of AvPR-1 protein. 
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Figure 5. (a) 2D structure presentation of AvPR-1 as revealed by the SOPMA server. The alpha helixes are presented in blue, the extended strands are presented in red, the beta turns are presented in green, and the random coils are presented in yellow. (b) 3D structure of different PR-1 proteins used in this work as revealed by the PHYRE2 database (1.1 AvPR-1; 1.2 HvPR-1; 1.3 TdPR1.2; 1.4 TaPR1; TcPR1.2; AetPR1; PhPR1-like, TuPR1; EjPR-1; ObPRB1-2-like; SbPR1; SbPR1; ZmPRB1-2; SiPR1; MaPR1; EsPR1; CsPR1; AtPR1; OsPR1; PdPR1). 
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Figure 6. qRT-PCR expression analysis of AvPR-1 gene under different abiotic stresses (a) salt, (b) mannitol, (c) PEG 10%, and (d) heat. The red bars represent the expression level of the AvPR-1 gene under standard conditions, and the blue bars represent the expression level of the AvPR-1 gene under stressed conditions. (***) indicates value significantly different from the control. Statistical significance was assessed by applying the student t-test at p < 0.01. 
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Figure 7. qRT-PCR expression analysis of AvPR-1 gene under different hormonal stresses (a) Salycilic acid (SA) (b) Jasmonic acid (JA) (c) abscisic acid (ABA), and (d) IAA. The red bars represent the expression level of the AvPR-1 gene under standard conditions, and the blue bars represent the expression level of the AvPR-1 gene under stressed conditions. (***) indicates value significantly different from the control. Statistical significance was assessed by applying the student t-test at p < 0.01. 
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Table 1. Comparison between different isolated PR-1 from plants using ProtParam tool (http://web.expasy.org/protparam/; accessed on 1 May 2022).
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	Protein
	MW
	Number of aa
	Number of

Negatively Charged Residues
	Number of

Positively Charged Residues
	Grand Average of Hydropathicity (GRAVY)
	Aliphatic

Index
	PI





	AvPR1
	18.89
	174
	12
	18
	−0.288
	63.45
	9.19



	TdPR1
	18,836.12
	174
	12
	17
	−0.238
	65.11
	9.02



	TcPR1.2
	18,850.15
	174
	12
	17
	−0.237
	65.11
	9.02



	AetPR1
	18,658.97
	172
	12
	18
	−0.273
	66.40
	9.17



	HvPR1
	18,969.98
	172
	12
	19
	−0.333
	63.02
	9.32



	PhPR1-like
	18,898.31
	174
	15
	20
	−0.190
	70.80
	9.00



	TuPR1
	18,330.67
	167
	10
	21
	−0.362
	67.19
	9.86



	EjPR-1
	17,668.02
	161
	10
	16
	−0.268
	81.74
	9.1



	ObPRB1-2-like
	18,458.88
	172
	11
	20
	−0.182
	65.99
	9.51



	SbPR1
	19,094.56
	179
	14
	20
	−0.152
	66.15
	9.10



	BnPR-1
	17,771.98
	162
	10
	16
	−0.315
	78.27
	9.02



	ZmPRB1-2
	19,156.67
	179
	13
	21
	−0.189
	68.38
	9.50



	SiPR1
	19,045.54
	176
	12
	21
	−0.164
	71.14
	9.0



	MaPR1
	17,308.30
	162
	8
	11
	−0.204
	66.36
	8.49



	EsPR1
	17,706.92
	161
	15
	16
	−0.322
	81.74
	7.58



	PdPR1
	17,470.43
	162
	11
	11
	−0.182
	66.36
	6.93



	CsPR1
	17,697.91
	161
	8
	14
	−0.268
	73.85
	9.08



	AtPR1
	17,676.94
	161
	10
	16
	−0.288
	73.85
	9.08



	OsPR1
	18,743.06
	176
	12
	18
	−0.227
	66.65
	9.10
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Table 2. Secondary structure analysis of AvPR-1 and other plant PR-1 using SOPMA program.
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	Protein
	α-Helices
	Extended Strands
	Random Coils
	β-Turns





	AvPR-1
	55
	8
	81
	30



	TdPR1.2
	55
	8
	81
	30



	HvPR1
	68
	8
	70
	26



	PhPR1
	66
	8
	69
	31



	ObPR1
	64
	7
	75
	26



	SbPR1
	64
	7
	81
	27



	DoPR1
	47
	8
	72
	31



	PvPR1
	66
	10
	72
	28



	ZmPR1
	68
	10
	71
	31



	SiPR1
	66
	8
	71
	31



	MaPR1
	55
	7
	70
	30



	AsPR1
	61
	8
	71
	26



	PdPR1
	57
	9
	69
	27



	CsPR1
	55
	9
	68
	31



	TaPR1
	55
	8
	81
	30



	AtsPR1
	68
	8
	71
	25



	OsPR1
	60
	8
	82
	26



	ClPR1
	58
	6
	72
	28
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
.I
]

llllllllll L

||||| 10n0) uojssaidxa anneio

:
§
i





media/file4.png
BrnFR1

EsFR1

EjPRL

CsPRL

ATPRL

CrPRL

PodfFR-1

MaFRl
ObPREL-Z2-1ike
osPRL

SbFRL
PRFREL-2-1ike
ZmPFREL-2
SiFRl

TuFRL

HwFRL
AetPREBL-2-1ike
AvPR-1
TaFRL .2
TaFRL-18
TeFRL-2Z

R1
CbPFRBL-Z2-1ike
COsPR1
SbPFR1
PhFRBL-Z-1ike
ZmFRBL-2
SiFR1
TuPRL
HwFR1
AstPRBL-2-11ke
AnFPR -1
TAdFRL .2
TaFR1-18
TcPR1=-2

BnPR1

EsPR1

EjPR1

CsPR1

ALTPRL

CrPR1

PdPFR-1

MaPR1
ObPREL-2-1like
OsPR1

SbeR1
PhPRB1-2-1ike
IZmPRB1-2
SiPR1

TuPR1

HWPR1
AstPRBL-Z2-11ike
AvPFR=-1
TAPR1.2
TaPR1-18
TcFRL=Z

BRPR1
EsPR1

EjPR1

C=PR1

StPR1

CrPR1L

PaPR=-1

MaPR1
CbPRB1-2-1like
O=PR1

ShbPR1
PHPRB1-2-1ike
ZmPRE1- 2

siPR1

TuFRL

HYPRL
AetPRE1-2-1ike
AvPR-1

MEVIYCSRLLLIL----~ Al LYWEALVHPSRA R IDGT
-MELILYFRFLILL----~ Al LYEALYVLPSK FHNEARALNG LGP IDER
-MEVISYSALLLIL-~---~- Ay LVOAT WL PSS AP ﬂ-"l"L'.‘.‘: AP0 = i 1 IDDR
-MNFISYSRFLIVF----- Wi LWGAL VL PT R AQD RPODY L BV i IDET
~MNFTGYSRFLIVF - - - - - WaLVGaLVL DR POy L R 1 IDER
-MSFTNYSRFLIVF----- WA LWGTLYL P T AQDRPODY L BV HRMOMW 28585 IDET
-MKFSMNLT - - LaLAaCAV - - - -FLAMGH-TT LA Four S Hb s 2 St B
~-MRSSNSA - - LAMLSAV - - - -ALAMACTGILA 1P 2 it SRIDNT

L
L Ll e
F

- - - TSCIALA-ITFAVAT S - M - - - ASATSA

- - - PEEVELAAVLAVAL S - LAMASATTT T SA08]

L ®
MaAF P HSSSLAA-AF FAVEMATAAT TTTALACNYF
P

-MEFSKSL - -VaAFA- - - VWEMALAT AT TASACH] 10 FVRL HM AR ALDRVGPY TRDAR
-MAFPEPTSHE LAALAALAAAMASANPALT ASS FWRL HM AR A o i
-MAFPRHSL - LAaAF - —MUH-HU#I.M‘I‘T#.“ 0 FODF VL AN RARALDGWVGPY TRDAR
-MASSHES5 - - LAL -FALAS - - -MAMANWYANS 4 WL HM A S A IR
~MASSRSS5 - - LAM - FALA - - - TWMAWWAGH L FRL HRN A R ALDGWVGPY TRDNS
~MASSHSS - - LaM-F ALy - - - IYMAWVVaGYS F L HMN S A R ASDGVGPY THDNS
~MASSKSES5 - - LAM-FALA - - - [WMAWYAGRS FmiL W TRIDNS
~MASSHKSS - - LaM-FALA - - - TWMANVARGW SAC YT FL HMN A S ALDGWGPY TRDNS
~MASSHKSES - - LaM-FALA - - - TWMAN FRiL HRM
~MASEETS - - LAM-FALA - - - IWMAW RGN SA0M FPL HMN A R ALDGWVGFY TRIDNS

LaAF A0SYADRL RGDCRLVHSGEPYGE NLAWSSA - - DF SOWSAWVHLIWVHE AN YT
hEAFhQS?ﬂDHMDCHL“ﬂm! MIL& S50 - - BLSEIH.AWLLN"D!I.‘.AS"!’D

WiaAF ARS HSGGPYGENLAWGSS YT

unnvans?nLQLnaucnLunznupvn-u.--a--__n.--=u~ e
VAAVARSYARQL RGNC AL THSGGP YGENLAWGSS - - DLSGVEAVN-IN

UM‘!’MH\"AHQLM!H:H m:nm--ms&mmm
" L]l VG E ML F eGS0 - ADF TAADEW S DE

P 3 Tu!ntvuusn ROVTA A

- A iﬁ.l-m
UMFAQ!‘EMKMDC“LW!H G5 G e S ¥
RGO

WASFAQSYALL m.q-smm:mm FEAADANAS
WK Y A RD

FOEMNLF 3 =
E e e F - [ e

Ty

L e
Ty
o

o

G HLMFM!NI'MM RS DHE KR MY H

| ] i 4

unxracchAEnnAncHEUHSGﬁtFG:H+:u::: QRMT,

WaAKF DY ANERAADE R L QHMSGEPFGENIFIAGSGE - H!'l-HT"

- = = - - - - - L]

LGCAKVRCHN

MG - W OGHY TOWVVHRNS WRLGCGKARCDMN -GETI I SCMNYY
S GHCGHY TWVIHADS THIGCA RVHCMNS - GALF L TONYTS
PRIOVCGHY TOWWIHRSSTATGOGRYWRCHMS - GALF I IONYH
HE GG T WISV R T REWF L TOMNYT
daatlatialcly T AV SANM ARG F L TOMNYT
dailatial ity AL RO FWCS YT
GO TOWWHRES TRIGCA RV AANRAGWE LICS YT
AIGCAMMNWCADNRGYF IVCS Y]
PGV OGHY TOWWIHR RS TRIGCA RVWCAAMNAGYF IVCS YT
TGV CEHY TOWVHARSTRIGCARVICDRNRGYF I ICS YT

RGWF

A GO GHNY TG MHTHEMHWF I T'f:l'ﬁ"l PP GRE

- LR N B - - = R -

*ﬂﬂﬂﬂﬂnﬂﬂﬂﬁﬂﬂnﬂﬂﬁn””ﬁﬁl

RFFAFLTLDAE

RPFFAFLTLDAE

RPFAFLTLDAE

RFFAFLTLDAE
-

-
o
l1|

16s
151
161
161
151
161
162
1652
172
176
179
1758
159
176
167
172
17
172
172
172
i





nav.xhtml


  plants-11-02284


  
    		
      plants-11-02284
    


  




  





media/file2.png
1
¢ 2 108 113 124 145 154 160 17117‘

[1 B B

o —— ——

1 n “ “ » " e " " "
I . ‘. C ' ' ’ ' ! ' . ' '
WGSKSSLFRLATVIV o ONT PODF YN HNEYEN (OGS v THONS WEF 40 [ iee

' ' . ' N ' ' ' 0 | . ' . ' i ' D ' . 1 . ' ' ' ' 0 . 1
PR AROCRL DHSGAPT CEN T PGSO TAsy TuVOE KRN TNTCDA GVOCH YTOVVWRS S TR GOV AGNRGYF I TONYANPRONF NGERST AFLTLDAE

[

st bie . e — Signal peptide SCP-Bke Domain (29- 164) S o
Superfanilies | CAP superfamily {1-8) { )

e = R LT al %IV e e s T ’
List of domain hits
t Accession Description E-val
|4 CAP_PR-1 ¢0 1 CAP (cystene-nch secretory protens, anboen 5, an¢ pathogenesis-related 1 protens) coman 25144 11

¢ Chvage site 25-26 aa
D Caveolin-Binding domain {CMB) 108-113

- Calmodulin Binding domain CaMBD (124-145)
- CAP-derived peptide {CAPE) - 154-160

(a) (b)





media/file5.jpg
a EnPR1 017185
sl
b
CsPR1 006012 il
gemaenn
e
e,
|

0BPRE1 2k 004222
= owrioomn

‘SoPR1 010328
ZnPR812005421

SPR1 005040 Cluster i
PRORBI.2 ke 00515

TWPRT0 14565

PRI 002476
AdPRS.2:k0 001
AuPR-10 016554 | Clustor
ToR1 20 v
1 s
L T oo | Cusery
sl
o
HiNn R





media/file3.jpg





media/file1.jpg





media/file7.jpg
Traes_50S_6F312089513

Traes_38_AGEBAAADS 1

Traes_1BL_ATBBIASBD.1

Traes_1AL_150780AA2 1
Traes_4AS_184387EFB.1





media/file10.png
I

o

28 48 68

o ]

188 128 148

e ]]

28 48 68 g8 188 128 148






media/file12.png
—
O

—
©

*kk

Mannitol

25 -

0
5
0
5
0

[9A3] uoissaldxa aAlje|ay

*kk

NaCl

f
o
™

1 | 1 |
L o 0 o 0
N N ol ol

0 -

[9A3] uoissaldxa aAlje|oy

Shoots

Roots

Shoots

Roots

d)

—
o

Heat

*kk
*kk I

30 -
25 -
20 -
15 -
10 -
5 -
0 -

[9A3] uoissaldxa aAlje|ay

*

*

N

o

-

O

L

o
*
*

I | | 1 1 | 1
o Te) o n o n o
™ N N - -

[9A3] uoissaldxa aAlje|oy

Shoots

Roots

Shoots

Roots





media/file9.jpg
a






media/file0.png





media/file14.png
Roots

Shoots

1 I I 1

I
© 00 O < N O
-~

1 I I
g o g) o e o o <«
- -

1
N
N N - - -
|9A9] uoissaidxa aAle|9y |9A9] uoissaidxa aAlje|ay
— —
o) ©

*k%

Shoots

Roots

m © © T NS |[oA9] uoissaidxa aAne|oy
ssaidxa aAne|ay )

Shoots

Roots

Shoots

Roots





media/file8.png
Traes_2AL_04400CB98 2

Traes_4AS_1D40BASD2.1

Traes_4AS_1843B1EFB.1

Traes_5DL_BC355967A.1

Traes_50S_8F312CB951.3

Traes_1BL_A7B8B3A6BD.1

Traes_1AL_15078DAA3 1





media/file11.jpg





media/file6.png
(11T HW 111 IJW

0.20

b)

-

jveex;woﬁgvg rA9g ! AusRasnlRLy S607CENLEN:

"""""""""""""""""""""""""""""""""""""""""

N
LA—A—k—A-
< >
<D
—
—a
.o
—
<
) S—
Ay
IR
<>
<—
-
h
1 «p
L -
i =
20
P
o<
< >
ra -
w2
W=
)OZJ
~0D
—
-1
Py —

33333333333333333333333333

W

LA—A—LA.
<>
w20
-
o
n
—
<
rr'
U ——
on

—_—
—<
l"<
"4
-
p—
—

< >

333333333333333333333

‘ j¥§é¥¥f?;%69,=PQD§Y§%~N§ABGAQG
= 0N 2Neas
° jLXLEAﬁAK

'''''''''

N
ety s
—
i =
N
N
§ ——

7

———————

[#a)
Ln—a—k—a.

b
=
—'1
o
i
— -
wn
-
e o |
'_
-r<
—'1

'''''''''''''''

°
L
00
nr
“th—f
=

WWWWWWW

1

=
?—A—A—LA.
m

1710
c
—
« LD
L e p

'''''''

BnPR1 0.11115

EsPR1 0.12795

EjPR1 0.06904

CsPR1 0.06012

CrPR1 0.07032

AtPR1 0.05107

PdPR-1 0.12364
MaPR1 0.09996
ObPRB1-2-like 0.04222
OsPR1 0.06243

SbPR1 0.10328
ZmPRB1-2 0.05421
SiPR1 0.05943
PhPRB1-2-like 0.0815
TuPR1 0.14565

HVPR1 0.02476
AetPRB1-2-like 0.01054
AVPR-1 0 01685 <G
TdPR1.20

TaPR1-18 0 I
TcPR1-2 0.0056

Cluster |

Cluster I

Cluster I

Cluster
IV

Cluster V

CGHYTQVVWRKSTRIGCARVVCANNRGVFI

ADAVNSWVDEKRNYHYNTNTC

VMAVVAGVSAQNTPQDFVNLHNRARAADG

CNYBPPGNFNGERPF

LTLDAAAK

MASSKS

MNFTNYSRFLIVF

GRAWTA

SGDLSG

VGPVTWDNSVARFAQDYANKRAGDCRLVHSGGPYGENIFWG





