Agave americana: Characteristics and Potential Breeding Priorities
Abstract
:1. Introduction
2. Characteristics of Agave americana and Distinction from Other Species
3. Geographical Distribution
4. Potential for Scaling Production
5. Traditional Uses and Cultivation
6. Considerations for Breeding
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, S.; LeBauer, D.; Long, S. Light to liquid fuel: Theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. J. Exp. Bot. 2014, 65, 3471–3478. [Google Scholar] [CrossRef] [PubMed]
- Nobel, P. Achievable productivities of certain CAM plants: Basis or high values compare with C3 and C4. New Phytol. 1991, 119, 183–205. [Google Scholar] [CrossRef]
- Osmond, C. Crassulacean acid metabolism: A curiosity in context. Annu. Rev. Plant Physiol. 1978, 29, 379–414. [Google Scholar] [CrossRef]
- Winter, K.; Smith, J.A.C. Crassulacean Acid Metabolism: Current Status and Perspectives. In Crassulacean Acid Metabolism; Winter, K., Smith, J.A.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 389–426. [Google Scholar]
- Borland, A.M.; Griffiths, H.; Hartwell, J.; Smith, J.A.C. Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J. Exp. Bot. 2009, 60, 2879–2896. [Google Scholar] [PubMed]
- Gentry, H.S. Agaves of Continental North America; University of Arizona Press: Tucson, AZ, USA, 1982. [Google Scholar]
- Purseglove, J. Tropical Crops: Monocotyledons; Longman: London, UK, 1972. [Google Scholar]
- Szarek, S. Occurence of Crassulacean acid metabolism—A supplementary list during 1976–1979. Photosynthetica 1979, 13, 467–473. [Google Scholar]
- Szarek, S.; Ting, I. Occurence of Crassulacean acid metabolism among plants. Photosynthetica 1977, 11, 330–342. [Google Scholar]
- Ehler, W. Transpiration ratios of Agave americana L. and Zea mays L. as affected by soil water potential. J. Arid. Environ. 1983, 6, 107–113. [Google Scholar] [CrossRef]
- Neales, T. The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L. Aust. J. Biol. Sci. 1973, 26, 705–714. [Google Scholar] [CrossRef]
- Nobel, P.; Smith, S. HIgh and low temperature tolerances and their relationships to distribution of agaves. Plant Cell Environ. 1983, 6, 711–719. [Google Scholar]
- Davis, S.; Kuzmick, E.R.; Niechayev, N.; Hunsaker, D.J. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands. GCB Bioenergy 2017, 9, 314–325. [Google Scholar] [CrossRef]
- Davis, S.; Abatzaglou, J.; LeBauer, D. Expanded potential growing region and yield increase for Agave americana with future climate. Agronomy 2021, 11, 2109. [Google Scholar] [CrossRef]
- Niechayev, N.; Jones, A.M.; Rosenthal, D.M.; Davis, S.C. A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions. J. Exp. Bot. 2019, 70, 6549–6559. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; in press. [Google Scholar]
- Nobel, P. Environmental influences of CO2 uptake by agaves, CAM plants with high productivities. Econ. Bot. 1990, 44, 488–502. [Google Scholar] [CrossRef]
- Irish, M.; Irish, G. Agaves, Yuccas, and Related Plants; Timber Press: Portland, OR, USA, 2000. [Google Scholar]
- McDaniel, R.G. Field Evaluations of Agave in Arizona. Desert Plants; University of Arizona: Tucson, AZ, USA, 1985; Available online: http://hdl.handle.net/10150/554208 (accessed on 20 September 2018).
- Nobel, P.S. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: Implications of global climate change for extending cultivation. J. Arid. Environ. 1996, 34, 187–196. [Google Scholar] [CrossRef]
- Nobel, P.S. Temperature influences on leaf CO2 exchange, cell viability and cultivation range for Agave tequilana. J. Arid. Environ. 1998, 39, 1–9. [Google Scholar] [CrossRef]
- Nobel, P.S.; McDaniel, R.G. Low temperature tolerances, nocturnal acid accumulation, and biomass increases for seven species of agave. J. Arid. Environ. 1988, 15, 147–155. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium, Centre for Agriculture and Bioscience International. 2022. Available online: https://www.cabi.org/ (accessed on 16 May 2022).
- USDA. United States Department of Agriculture PLANTS Database. 2022. Available online: https://plants.usda.gov (accessed on 27 May 2022).
- Davis, S.; Dohleman, F.; Long, S. The global potential for Agave as a biofuel feedstock. GCB Bioenergy 2011, 3, 68–78. [Google Scholar] [CrossRef]
- Davis, S.; Simpson, J.; Gil-Vega, K.D.C.; Niechayev, N.A.; Van Tongerlo, E.; Castano, N.H.; Dever, L.V.; Búrquez, A. Undervalued potential of crassulacean acid metabolism for current and future agricultural production. J. Exp. Bot. 2019, 70, 9521–9537. [Google Scholar] [CrossRef]
- Mellado-Mojica, E.; López-Medina, T.L.; López, M. Developmental Variation in Agave Tequilana Weber var. azul stem Carbohydrates. Dynaic Biochem. Process Biotechnol. Mol. Biol. 2009, 3, 34–39. [Google Scholar]
- Monja-Mio, K.; Herrera-Alamillo, M.A.; Sánchez-Teyer, L.F.; Robert, M.L. Breeding strategies to improve production of Agave (Agave spp.). In Advances in Plant Breeding Strategies: Industrial Food Crops; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 319–362. [Google Scholar]
- Nobel, P.S. PAR, water, and temperature limitations on the productivity of cultivated Agave fourcroydes (henequen). J. Appl. Ecol. 1985, 22, 157–173. [Google Scholar] [CrossRef]
- Nobel, P.S. High Productivity of Certain Agronomic CAM Species. In Crassulacean Acid Metabolism; Winter, K., Smith, J.A.C., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 255–265. [Google Scholar]
- FAO. FAOSTAT. License: CC BY-NC-SA 3.0 IGO. Available online: https://www.fao.org/faostat/ (accessed on 20 June 2022).
- Kamau-Devers, K.; Miller, S. The environmental attributes of wood fiber composites with bio-based or petroleum-based plastics. Int. J. Life Cycle Assess. 2020, 25, 1145–1159. [Google Scholar] [CrossRef]
- Nobel, P.S.; Valenzuela, A.G. Environmental responses and productivity of the CAM plant, Agave tequilana. Agric. For. Meteorol. 1987, 39, 319–334. [Google Scholar] [CrossRef]
- Davis, S.; Long, S. Agave/Sisal, in Industrial Crops: Breeding for Bioenergy & Bioproducts; Cruz, M., Dierig, D., Eds.; Springer: New York, NY, USA, 2014; pp. 335–349. [Google Scholar]
- Nuñez, H.M.; Rodríguez, L.F.; Khanna, M. Agave for tequila and biofuels: An economic assessment and potential opportunities. GCB Bioenergy 2011, 3, 43–57. [Google Scholar] [CrossRef]
- Colunga-GarciaMarin, P.; May-Pat, F. Agave studies in Yucatan, Mexico. I. Past and present germplasm diversity and uses. Econ. Bot. 1993, 47, 312–327. [Google Scholar] [CrossRef]
- Garcia-Morales, S.; Corzo-Jiménez, I.J.; Silva-Córdova, N.F.; Soto-Cordero, A.M.; Rodríguez-Mejía, D.I.; Pardo-Núñez, J.; León-Morales, J.M. Comparative study of steroidal sapogenins content in leaves of five Agave species. J. Sci. Food Agric. 2022. Available online: wileyonlinelibrary.com (accessed on 24 June 2022). [CrossRef]
- Hackman, D.; Giese, N.; Markowitz, J.S.; McLean, A.; Ottariano, S.G.; Tonelli, C.; Weissner, W.; Welch, S.; Ulbricht, S. Agave (Agave americana): An evidence-based systematic review by the natural standard research collaboration. J. Herb. Pharmacother. 2006, 6, 101–122. [Google Scholar] [CrossRef]
- Jin, J.-M.; Zhang, Y.-J.; Yang, C.-R. Four new steroid constituents from the waste residue of fibre separation from Agave americana leaves. Chem. Pharm. Bull. 2004, 52, 654–658. [Google Scholar] [CrossRef]
- Yokosuka, A.; Mimaki, Y.; Kuroda, M.; Sashida, Y. A new steroidal saponin from the leaves of Agave americana. Planta Med. 2000, 66, 393–396. [Google Scholar] [CrossRef]
- Jones, A.; Zhou, Y.; Held, M.A.; Davis, S.C. Tissue composition of Agave americana L. yields greater carbohydrates from enzymatic hydrolysis than advanced bioenergy crops. Front. Plant Sci. 2020, 11, 654. [Google Scholar] [CrossRef]
- Simpson, J.; Hernández, A.M.; Juárez, M.J.A.; Sandoval, S.D.; Villarreal, A.S.; Romero, C.C. Genomic resources and transcriptome mining in Agave tequilana. GCB Bioenergy 2011, 3, 25–36. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Hu, F.; Yang, H.; Yue, L.; Trigiano, R.N.; Cheng, Z.M.M. Micropagation of Agave americana. HortScience 2014, 49, 320–327. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, M.; Xi, J.; He, C.; Zheng, J.; Chen, H.; Gao, J.; Zhang, S.; Wu, W.; Liang, Y.; et al. De novo transcriptome assembly of Agave H11648 by illumina sequencing and identification of cellulose synthase genes in Agave species. Genes 2019, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cushman, J.C.; Borland, A.M.; Edwards, E.J.; Wullschleger, S.D.; Tuskan, G.A.; Owen, N.A.; Griffiths, H.; Smith, J.A.C.; De Paoli, H.C.; et al. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world. New Phytol. 2015, 207, 491–504. [Google Scholar] [CrossRef] [PubMed]
Species | Minimum Temperature Tolerance (°C) | Cold Acclimation |
---|---|---|
Agave americana L. | −10 | yes |
Agave fourcroydes Lem. | −2 | no |
Agave salmiana Otto ex Salm-Dyck | −6 | yes |
Agave sisalona Perrine | −7 | no |
Agave tequilana Weber var. azul | −4 | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, S.C. Agave americana: Characteristics and Potential Breeding Priorities. Plants 2022, 11, 2305. https://doi.org/10.3390/plants11172305
Davis SC. Agave americana: Characteristics and Potential Breeding Priorities. Plants. 2022; 11(17):2305. https://doi.org/10.3390/plants11172305
Chicago/Turabian StyleDavis, Sarah C. 2022. "Agave americana: Characteristics and Potential Breeding Priorities" Plants 11, no. 17: 2305. https://doi.org/10.3390/plants11172305
APA StyleDavis, S. C. (2022). Agave americana: Characteristics and Potential Breeding Priorities. Plants, 11(17), 2305. https://doi.org/10.3390/plants11172305