Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field
Abstract
:1. Introduction
2. Results
2.1. Species Composition of NTAs in Different Maize Fields
2.2. Community Parameters of NTAs in Different Maize Fields
2.3. Dynamic Comparison of Composition and Community of NTAs at Different Time
2.4. Communities Similarity
2.5. Ecosystem Functioning Composition of NTA Communities in Different Maize Fields
3. Discussion
4. Material and Methods
4.1. Field Planting and Management Methods
4.2. Sample Collection and Identification
4.3. Community Parameters and Calculation Formulas
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brookes, G.; Barfoot, P. Environmental impacts of genetically modified (GM) Crop use 1996–2016: Impacts on pesticide use and carbon emissions. GM Crops Food 2018, 9, 109–139. [Google Scholar] [CrossRef] [PubMed]
- Brookes, G.; Barfoot, P. Farm income and production impacts of using GM crop technology 1996–2016. GM Crops Food 2018, 9, 59–89. [Google Scholar] [CrossRef] [PubMed]
- ISAAA (International Service for the Acquisition of Agri-biotech Applications). Global Status of Commercialized Biotech/GM Crops in 2019: Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier; ISAAA Briefs, No. 55; ISAAA: Ithaca, NY, USA, 2019. [Google Scholar]
- Zhu, Y.; Jiang, T.; Yang, Y.Z. Research advances in arthropod community in corn fields. Plant Prot. 2017, 43, 1–5. [Google Scholar]
- Ren, Z.T.; Shen, W.J.; Liu, B.; Xue, K. Effects of transgenic maize on biodiversity of arthropod communities in the fields. Sci. Geol. Sin. 2017, 50, 2315–2325. [Google Scholar]
- Duan, J.J.; Marvier, M.; Huesing, J.; Dively, G.; Huang, Y.Z. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 2008, 3, e1415. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhang, X.J.; Chen, X.P.; Romeis, J.; Yin, X.M.; Peng, Y.F. Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). Sci. Rep. 2015, 5, 7679. [Google Scholar] [CrossRef]
- Vaufleurya, A.D.; Kramarza, P.E.; Bineta, P.; Cortet, J.; Caul, S.; Andersen, M.N.; Plumey, E.; Coeurdassier, M.; Krogh, P.H. Exposure and effects assessments of Bt maize on non-target organisms (gastropods, microarthropods, mycorrhizal fungi) in microcosms. Pedobiologia 2007, 51, 185–194. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Cao, F.Q.; Chen, X.P.; Cheng, L.S.; Romeis, J.; Li, Y.H.; Peng, Y.F. Consumption of Bt Rice Pollen Containing Cry1C or Cry2A Protein Poses a Low to Negligible Risk to the Silkworm Bombyx mori (Lepidoptera: Bombyxidae). PLoS ONE 2014, 9, e102302. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.P.; Cheng, L.S.; Cao, F.Q.; Romeis, J.; Li, Y.H.; Peng, Y.F. Toxicological and biochemical analyses demonstrate no toxic effect of Cry1C and Cry2A to Folsomia candida. Sci. Rep. 2015, 5, 15619. [Google Scholar] [CrossRef]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef]
- Hellmich, R.L.; Albajes, R.; Bergvinson, D.; Prasifka, J.R.; Wang, Z.Y.; Weiss, M.J. The present and future role of insect-resistant genetically modified maize in IPM. In Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Progress in Biological Control; Romeis, J., Shelton, A.M., Kennedy, G.G., Eds.; Springer: Dordrecht, The Netherlands; Berlin, Germany, 2008; Volume 5, pp. 119–158. [Google Scholar] [CrossRef]
- Li, Y.H.; Romeis, J.; Wu, K.M.; Peng, Y.F. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods. Insect Sci. 2014, 21, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.H.; Hallerman, M.E.; Wu, K.M.; Peng, Y.F. Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annu. Rev. Entomol. 2020, 65, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.B.; Dang, C.; Wang, F.; Liu, Z.C.; Chen, J.; Wang, Y.; Yao, H.W.; Fang, Q.; Peng, Y.F.; Gatehouse, A.M.R.; et al. Does long-term Bt rice planting pose risks to spider communities and their capacity to control planthoppers? Plant Biotechnol. J. 2020, 18, 1851–1853. [Google Scholar] [CrossRef] [PubMed]
- Freier, B.; Schorling, M.; Traugott, M.; Juen, A.; Volkmar, C. Results of a 4-year plant survey and pitfall trapping in Bt maize and conventional maize fields regarding the occurrence of selected arthropod taxa. IOBC/WPRS Bull. 2014, 27, 79–84. [Google Scholar]
- Jensen, P.D.; Dively, G.P.; Swan, C.M.; Lamp, W.O. Exposure and nontarget effects of transgenic Bt corn debris in streams. Environ. Entomol. 2010, 39, 707–714. [Google Scholar] [CrossRef]
- Alcantara, E.P. Postcommercialization monitoring of the long-term impact of Bt corn on non-target arthropod communities in commercial farms and adjacent riparian areas in the Philippines. Environ. Entomol. 2012, 41, 1268–1276. [Google Scholar] [CrossRef]
- Lumbierres, B.; Albajes, R.; Pons, X. Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance. Ecol. Entomol. 2004, 29, 309–317. [Google Scholar] [CrossRef]
- Lumbierres, B.; Stary, P.; Pons, X. Effect of Bt maize on the plant-aphid-parasitoid tritrophic relationships. Bio. Control 2011, 56, 133–143. [Google Scholar] [CrossRef]
- Pons, X.; Lumbierres, B.; Lopez, C.; Albajes, R. Abundance of non-target pests in transgenic Bt-maize: A farm scale study. Eur. J. Entomol. 2005, 102, 73–79. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Xia, B.; Li, P.; Feng, H.; Guo, Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 2010, 328, 1151–1154. [Google Scholar] [CrossRef]
- Romeis, J.; Meissle, M.; Alvarez-Alfageme, F.; Bigler, F.; Bohan, D.A.; Devos, Y.; Malone, L.A.; Pons, X.; Rauschen, S. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res. 2014, 23, 995–1013. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Chen, M. GMO biosafety management, suggestions and biotech public acceptance in China. Plant Physiol. J. 2013, 49, 637–644. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Gu, W.N.; Cai, T.S.; Tagliani, L.; Hondred, D.; Bond, D.; Schroeder, S.; Rudert, M.; Pierce, D. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breed. 2002, 8, 323–333. [Google Scholar] [CrossRef]
- Sun, H.W.; Xu, X.H.; Li, F.; Gao, R.; Yang, S.K.; Lu, X.B. Resistances of transgenic maize hybrid “Ruifeng 1-double resistance 12-5” with insect and herbicide resistance against three major lepidopteran pests. Shandong Agric. Sci. 2018, 50, 109–114. [Google Scholar]
- Chang, X.; Lu, Z.B.; Shen, Z.C.; Peng, Y.F.; Ye, G.Y. Bitrophic and tritrophic effects of transgenic cry1Ab/cry2Aj maize on the beneficial, nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Environ. Entomol. 2017, 46, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, X.Y.; Peng, C.; Xu, J.F.; Shen, H.; Li, Y.Y.; Wang, X.F. Establishment of a field visual detection method for genetically modified maize “Shuangkang” 12-5 by fluorescence RPA. Hereditas 2021, 43, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Q.; Xiao, F.; Yang, L.; Miao, Q.M.; Zhang, X.D.; Zhang, X.J. Analysis of verification results by PCR methods for genetically modified double-resistant 12-5 event-specific maize. Biotechnol. Bull. 2020, 36, 48–55. [Google Scholar]
- Sun, H.W.; Xu, X.H.; Li, F.; Yang, S.K.; Lu, X.B. Insect resistance and tolerance to the target herbicide of the transgenic maize cultivar Shuangkang 12-5-21. J. Biosaf. 2021, 30, 43–49. [Google Scholar]
- Jiang, Y.Y.; Ji, Y.; Lai, Y.M.; Zhu, X.; Chen, X.Y.; Xu, J.F.; Ma, L.J.; Xu, X.L. Potential effect of genetically modified maize DR12-5 on honey bee (Apis mellifera). Acta Agric. Zhejiangensis 2019, 31, 1834–1840. [Google Scholar]
- Zhu, X.; Jiang, Y.Y.; Lai, Y.M.; Chen, X.Y.; Wang, X.F.; Xu, X.L.; Xu, J.F. Effects of transgenic maize (Zea mays) event DR 12-5 with Cry1Ab/cry2Aj and g10evo-epsps genes on silkworm (Bombyx mori). J. Agric. Biotechnol. 2020, 28, 1269–1276. [Google Scholar]
- Liu, Y.M.; Li, Y.H.; Chen, X.P.; Song, X.Y.; Shen, P.; Peng, Y.F. No detrimental effect of Bt maize pollen containing Cry1Ab/2Aj or Cry1Ac on adult green lacewings Chrysoperla sinica Tjeder. J. Integr. Agric. 2019, 18, 893–899. [Google Scholar] [CrossRef]
- Sun, H.W.; Zhang, Y.X.; Xu, X.H.; Gao, D.; Li, F.; Yang, S.K.; Lu, X.B. Effects of transgenic maize variety (double resistance 12-5) on enzyme activity and microbial diversity in rhizosphere soil. Soils 2019, 51, 61–67. [Google Scholar]
- Naranjo, S.E. Impacts of Bt crops on non-target organisms and insecticide use patterns. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 11. [Google Scholar]
- Sanvido, O.; Romeis, J.; Bigler, F. An approach for post-market monitoring of potential environmental effects of Bt-maize expressing cry1ab on natural enemies. J. Appl. Entomol. 2010, 133, 236–248. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Yafuso, C.; Schmidt, C.; Huang, C.Y.; Rahman, M.; Olson, C.; Ellers-Krik, C.; Orr, B.J.; Marsh, S.E.; Antilla, L. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc. Natl. Acad. Sci. USA 2006, 103, 7571–7576. [Google Scholar] [CrossRef]
- Candolfi, M.P.; Brown, K.; Grimm, C.; Reber, B.; Schmidli, H. A faunistic approach to assess potential side-effects of genetically modified Bt-corn on non-target arthropods under field conditions. Biocontrol. Sci. Technol. 2004, 14, 129–170. [Google Scholar] [CrossRef]
- Zwahlen, C.; Hilbeck, A.; Nentwig, W. Field decomposition of transgenic Bt maize residue and the impact on non-target soil invertebrates. Plant Soil 2007, 300, 245–257. [Google Scholar] [CrossRef]
- Habuštová, O.; Doležal, P.; Spitzer, L.; Svobodová, Z.; Hussein, H.; Sehnal, F. Impact of Cry1 A b toxin expression on the non-target insects dwelling on maize plants. J. Appl. Entomol. 2014, 138, 164–172. [Google Scholar] [CrossRef]
- Truter, J.; Van, H.H.; Van, D.B.J. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa. Environ. Entomol. 2014, 43, 197–208. [Google Scholar] [CrossRef]
- Čerevková, A.; Cagáň, L. Effect of transgenic insect-resistant maize to the community structure of soil nematodes in two field trails. Helminthologia 2015, 52, 41–49. [Google Scholar] [CrossRef]
- Skoková Habuštová, O.; Svobodová, Z.; Spitzer, L.; Doležal, P.; Hussein, H.M.; Sehnal, F. Communities of ground-dwelling arthropods in conventional and transgenic maize: Background data for the post-market environmental monitoring. J. Appl. Entomol. 2015, 139, 31–45. [Google Scholar] [CrossRef]
- Ma, Y.J.; He, H.P.; Shen, W.J.; Liu, B.; Xue, K. Effects of transgenic maize on arthropod diversity. Biodivers. Sci. 2019, 27, 419. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, Y.; Cao, K.; Qin, Z.; Zhao, X.; Dong, X.; Shi, W. Impact assessment of Bt maize expressing the Cry1Ab and Cry2Ab protein simultaneously on non-target arthropods. Environ. Sci. Pollut. Res. 2020, 27, 21552–21559. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Chang, L.; Wu, D.; Song, X. Effect of Transgenic Corn Cultivation and Sampling Location on Feeding Habits of Collembola. J. Agric. Sci. Technol. A 2014, 4, 235–242. [Google Scholar]
- Corrales Madrid, J.L.; Martínez Carrillo, J.L.; Osuna Martínez, M.B.; Durán Pompa, H.A.; Alonso Escobedo, J.; Javier Quiñones, F.; Garzón Tiznado, J.A.; Castro Espinoza, L.; Zavala García, F.; Espinoza Banda, A.; et al. Transportability of non-target arthropod field data for the use in environmental risk assessment of genetically modified maize in Northern Mexico. J. Appl. Entomol. 2018, 142, 525–538. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, Y.; Ge, Y.; Tetreau, G.; Chen, X.; Dong, X.; Shi, W. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. PLoS ONE 2014, 9, e114228. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, B.F.; Wang, J.; Feng, S.D.; Song, X.Y. Effects of leaf residue decomposition of cry1Ac-transgenic insect-resistant maize on community structure of soil animals. J. Plant Prot. 2016, 43, 384–390. [Google Scholar] [CrossRef]
- Xing, Y.; Qin, Z.; Feng, M.; Li, A.; Zhang, L.; Wang, Y.; Dong, X.; Zhang, Y.; Tan, S.; Shi, W. The impact of Bt maize expressing the Cry1Ac protein on non-target arthropods. Environ. Sci. Pollut. Res. 2019, 26, 5814–5819. [Google Scholar] [CrossRef]
- Schultheis, E. Faunistic Approach for an Environmental Risk Assessment of a Bt-Maize with Multiple Resistance Genes and Evaluation of Trigonotylus caelestialium (KIRKALDY) and Lumbricus terrestris LINNAEUS as Model Organisms. Master’s Thesis, RWTH Aachen University, Aachen, Germany, 2011. [Google Scholar]
- Al-Deeb, M.A.; Wilde, G.E.; Higgins, R.A. No effect of Bacillus thuringiensis corn and Bacillus thuringiensis on the predator Orius insidiosus (Hemiptera: Anthocoridae). Environ. Entomol. 2001, 30, 625–629. [Google Scholar] [CrossRef]
- Dively, G.P. Impact of transgenic VIP3A× Cry1Ab lepidopteran-resistant field corn on the nontarget arthropod community. Environ. Entomol. 2005, 34, 1267–1291. [Google Scholar] [CrossRef]
- Higgins, L.S.; Babcock, J.; Neese, P.; Layton, R.J.; Moellenbeck, D.J.; Storer, N. Three-year field monitoring of Cry1F, event DAS-Ø15Ø7-1, maize hybrids for nontarget arthropod effects. Environ. Entomol. 2009, 38, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Szénási, A.; Pálinkás, Z.; Zalai, M.; Schmitz, O.J.; Balog, A. Short-term effects of different genetically modified maize varieties on arthropod food web properties: An experimental field assessment. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Resende, D.C.; Mendes, S.M.; Marucci, R.C.; Silva, A.D.C.; Campanha, M.M.; Waquil, J.M. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Rev. Bras. Entomol. 2016, 60, 82–93. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, M.; Pan, L.; Liu, B.; Guan, X.; Tao, J. Impact of transgenic insect-resistant maize HGK60 with Cry1Ah gene on community components and biodiversity of arthropods in the fields. PLoS ONE 2022, 17, e0269459. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; He, K.; Hellmich, R.L.; Bai, S.; Zhang, T.; Liu, Y.; Ahmed, T.; Wang, Z. Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Guo, J.F.; He, K.L.; Bai, S.X.; Zhang, T.T.; Liu, Y.J.; Wang, F.X.; Wang, Z.Y. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition. Transgenic Res. 2016, 25, 761–772. [Google Scholar] [CrossRef]
- Fan, C.; Wu, F.; Dong, J.; Wang, B.; Yin, J.; Song, X. No impact of transgenic cry1Ie maize on the diversity, abundance and composition of soil fauna in a 2-year field trial. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Balog, A.; Szenasi, A.; Szekeres, D.; Palinkas, Z. Analysis of soil dwelling rove beetles (Coleoptera: Staphylinidae) in cultivated maize fields containing the Bt toxins, Cry34/35Ab1 and Cry1F×Cry34/35Ab1. Biocontrol Sci. Technol. 2011, 21, 293–297. [Google Scholar] [CrossRef]
- Al-Deeb, M.A.; Wilde, G.E. Effect of Bt corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. Environ. Entomol. 2003, 32, 1164–1170. [Google Scholar] [CrossRef]
- Al-Deeb, M.A.; Wilde, G.E.; Blair, J.M.; Todd, T.C. Effect of Bt corn for corn rootworm control on nontarget soil microarthropods and nematodes. Environ. Entomol. 2003, 32, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, R.J.; Rice, M.E.; Pilcher, C.D.; Pilcher, C.L.; Lam, W.K.F. Biodiversity and community structure of epedaphic and euedaphic springtails (Collembola) in transgenic rootworm Bt corn. Environ. Entomol. 2005, 34, 1346–1376. [Google Scholar] [CrossRef]
- Ahmad, A.; Negri, I.; Oliveira, W.; Brown, C.; Asiimwe, P.; Sammons, B.; Horak, M.; Jiang, C.; Carson, D. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Res. 2016, 25, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, O.A.; Faria, M.; Martinelli, S.; Schmidt, F.; Carvalho, V.F.; Moro, G. Short-term assessment of Bt maize on non-target arthropods in Brazil. Sci. Agric. 2007, 64, 249–255. [Google Scholar] [CrossRef]
- Li, W.D.; Wu, K.M.; Wang, X.Q.; Guo, Y.Y. Evaluation of impact of pollen grains of Cry1Ac and Cry1A+CpTI transgenic cotton on the growth and development of Chinese tussah silkworm (Antheraea pernyi). J. Agric. Biotechnol. 2003, 11, 488–493. [Google Scholar] [CrossRef]
- Li, F.F.; Ye, G.Y.; Wu, Q.; Peng, Y.F.; Chen, X.X. Arthropod abundance and diversity in Bt and non-Bt rice fields. Environ. Entomol. 2007, 36, 646–654. [Google Scholar] [CrossRef]
- Liu, Z.C.; Ye, G.Y.; Hu, C.; Datta, S.K. Impact of transgenic indica rice with a fused gene of cry1Ab/cry1Ac on the rice paddy arthropod community. Acta Entomol. Sin. 2003, 46, 454–465. [Google Scholar] [CrossRef]
- Jiang, W.H.; Zhang, D.J.; Liu, J.X.; Li, C.L.; Lu, Z.Y.; Yang, M.S. Comparative Analysis of Arthropod Communities in Transgenic Bt and Non-Transgenic Poplar-Cotton Composite Systems. Sci. Geol. Sin. 2018, 54, 73–79. [Google Scholar] [CrossRef]
- Catarino, R.; Ceddia, G.; Areal, F.J.; Park, J. The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Plant Biotech. J. 2015, 13, 601–612. [Google Scholar] [CrossRef]
- Carpenter, J.E. Impact of GM crops on biodiversity. GM Crops 2011, 2, 7–23. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Duan, J.; Head, G.P.; Jiang, C.J.; McKee, M.J.; Nickson, T.E.; Pilcher, C.L.; Pilcher, C.D. Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)–protected Bt corn on foliage-dwelling arthropods. Environ. Entomol. 2005, 34, 1336–1345. [Google Scholar] [CrossRef] [Green Version]
- Pervez, A.; Omkar. Ecology and biological control application of multicoloured Asian ladybird, Harmonia axyridis: A review. Biocontrol Sci. Technol. 2006, 16, 111–128. [Google Scholar] [CrossRef]
- Connell, J.H.; Orias, E. The ecological regulation of species diversity. Am. Nat. 1964, 98, 399–414. [Google Scholar] [CrossRef]
- Liu, Y.F.; Gu, D.X.; Zhang, G.R. The community dynamics of predatory arthropods in both weed habitat and paddy field from a double cropping paddy in Guangdong. Acta Entomol. Sin. 2003, 46, 591–597. [Google Scholar] [CrossRef]
- Yin, J.Q.; Wang, D.M.; Liang, J.G.; Song, X.Y. Negligible Impact of Drought-Resistant Genetically Modified Maize on Arthropod Community Structure Observed in a 2-Year Field Investigation. Plants 2022, 11, 1092. [Google Scholar] [CrossRef]
- Yang, Y. Establishment and Trial Application of a Database of Arthropods in Chinese Main Crops Fields. Doctoral Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. [Google Scholar]
- Zhang, L. Study on Environmental Persistence of Exogenous protein of Transgenic cry1Ab/c Rice and Its Effects on the Hydrobiont. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2013. [Google Scholar]
- Ter Braak, C.J.F. Ordination. In Data Analysis Community and Landscape Ecology; Jongman, R.H.G., ter Braak, C.J.F., Van Tongeren, O.F.R., Eds.; Cambridge University Press: London, UK, 1995; pp. 91–173. [Google Scholar] [CrossRef]
Order | Family | Species | Investigation Date | |||||
---|---|---|---|---|---|---|---|---|
BF 1 | DF 2 | AF 3 | ||||||
Non-Bt a | Btb | Non-Bt a | Btb | Non-Bt a | Btb | |||
Araneae | Agelenidae | Spider | ++ | ++ | ++ | ++ | ++ | ++ |
Araneida | ||||||||
Clubionidae | ||||||||
Hahniidae | ||||||||
Linyphiidae | ||||||||
Lycosidae | ||||||||
Pisauridae | ||||||||
Salticidae | ||||||||
Theridiidae | ||||||||
Thomisidae | ||||||||
Coleoptera | Carabidae | / | ++ | ++ | + | + | + | ++ |
Chrysomelidae | / | + | ++ | ++ | + | + | + | |
Aulacophora femoralis (Motschulsky, 1857) | + | + | + | |||||
Monolepta typographica (Weise, 1915) | ++ | ++ | ++ | ++ | + | + | ||
Pachnephorus lewisii (Baly, 1878) | + | + | ||||||
Coccinellidae | / | + | + | |||||
Harmonia axyridis (Pallas, 1773) | ++ | ++ | ++ | ++ | +++ | +++ | ||
Propylaea japonica (Thunberg, 1781) | ++ | ++ | ++ | ++ | + | + | ||
Rodolia rufopilosa (Mulsant, 1850) | + | |||||||
Scymnus hoffmanni (Weise, 1879) | + | + | ||||||
Curculionidae | / | + | + | |||||
Elateridae | / | + | ||||||
Aeoloderma agnata (Candeze, 1873) | + | |||||||
Melanotus caudex (Lewis, 1879) | + | |||||||
Melolonthidae | Holotrichia oblita (Faldermann, 1835) | + | + | + | ||||
Platypodidae | / | + | ||||||
Rutelidae | Popillia quadriguttata (Fabricius, 1787) | + | ||||||
Staphylinidae | Paederus fuscipes (Curtis, 1826) | + | + | + | ++ | + | ||
Tenebrionidae | Opatrum subaratum (Faldermann, 1835) | + | + | + | + | |||
Tribolium castaneum (Herbst, 1797) | + | + | + | + | + | + | ||
Dermaptera | Labiduridae | Labidura sp. | ++ | ++ | ++ | ++ | + | + |
Diptera | Asilidae | / | + | |||||
Cecidomyiidae | Aphidoletes aphidimyza (Rondani, 1846) | + | ||||||
Chironomidae | / | + | ||||||
Culicidae | / | ++ | ++ | + | + | ++ | ++ | |
Dolichopodidae | / | + | ||||||
Drosophilidae | Drosophila macquarti (Wheeler, 1981) | + | + | + | ++ | ++ | ||
Empododae | / | + | ||||||
Muscidae | / | ++ | ++ | ++ | ++ | ++ | ++ | |
Musca domestica (Linnaeus, 1758) | + | + | + | + | ++ | + | ||
Sarcophagidae | Sarcophaga melanura (Meigen, 1826) | + | + | + | + | |||
Stratiomyidae | Hermetia illucens (Linnaeus, 1758) | + | ||||||
Syrphidae | Episyrphus balteatus (De Geer, 1776) | + | + | ++ | ++ | |||
Eupeodes corollae (Fabricius, 1794) | + | |||||||
Melanostoma scalare (Fabricius, 1794) | + | |||||||
Pipizella varipes (Meigen, 1822) | + | + | ||||||
Sphaerophoria menthastri (Linnaeus, 1758) | + | |||||||
Tabanidae | / | + | + | ++ | ||||
Tabanus amaenus (Walker, 1848) | + | |||||||
Tabanus signatipennis (Portschinsky, 1887) | + | |||||||
Tabanus sp. | + | + | ||||||
Tephritidae | / | ++ | ++ | + | + | + | + | |
Entomobryomorpha | Isotomidae | Isotomidae sp. | ++ | ++ | ++ | ++ | ++ | ++ |
Ephemeroptera | Baetidae | / | + | + | + | + | ||
Hemiptera | Anthocoridae | Orius strigicollis (Poppius, 1915) | ++ | ++ | + | ++ | + | + |
Aphididae | / | ++ | ++ | ++ | ||||
Rhopalosiphum maidis (Fitch, 1856) | +++ | +++ | +++ | +++ | +++ | ++ | ||
Rhopalosiphum padi (Linnaeus, 1758) | +++ | +++ | +++ | +++ | ++ | ++ | ||
Cicadellidae | Cicadella viridis (Linnaeus, 1758) | + | + | |||||
Macropsis notata (Prohaska, 1923) | + | |||||||
Psammotettix striatus (Linnaeus, 1758) | + | + | ||||||
Cydnidae | Adrisa magna (Uhler, 1861) | + | + | |||||
Delphacidae | / | + | ||||||
Laodelphax striatellus (Fallén, 1826) | + | + | + | + | + | + | ||
Sogatella furcifera (Horváth, 1899) | + | + | + | + | + | + | ||
Trigonotylus ruficornis (Geoffroy in Fourcroy, 1785) | + | ++ | + | ++ | + | + | ||
Miridae | Adelphocoris sp. | + | + | |||||
Apolygus lucorum (Meyer-Dur, 1843) | + | |||||||
Cyrtorhinus lividipennis (Reuter, 1885) | + | + | + | |||||
Lygus pratensis (Linnaeus, 1758) | + | |||||||
Nabidae | Nabis stenoferus (Hsiao, 1964) | + | + | |||||
Hymenoptera | Formicidae | Lasius fuliginosus (Latreille, 1798) | ++ | +++ | ++ | ++ | ||
Apidae | Apis cerana (Fabricius, 1793) | + | + | + | + | |||
Eumenidae | / | ++ | ++ | |||||
Megachilidae | / | + | + | ++ | ||||
Vespidae | / | + | + | |||||
Aphelinidae | Parasitic Wasp | ++ | ++ | ++ | ++ | + | + | |
Braconidae | ||||||||
Eulophidae | ||||||||
Ichneumonidae | ||||||||
Pteromalidae | ||||||||
Scelionidae | ||||||||
Trichogrammatidae | ||||||||
Neuroptera | Chrysopidae | Chrysopa pallens (Rambur, 1838) | + | |||||
Chrysoperla nipponensis (Okamoto, 1914) | + | + | ++ | ++ | ++ | ++ | ||
Hemerobiidae | / | + | + | + | ||||
Micromus timidus (Hagen, 1853) | + | + | + | |||||
Orthoptera | Acrididae | / | + | + | ||||
Coenagrionidae | Ischnura asiatica (Brauer, 1865) | + | ||||||
Gryllidae | Gryllidae sp. | + | ||||||
Thysanoptera | Aeolothripidae | Aeolothrips fasciatus (Linnaeus, 1758) | + | + | + | |||
Phlaeothripidae | Gynaikothrips uzeli (Zimmermann, 1900) | + | ||||||
Haplothrips aculeatus (Fabricius, 1803) | + | |||||||
Thripidae | Anaphothrips obscurus (Müller, 1776) | + | + | + |
Parameter of Community | BF 1 | DF 2 | AF 3 | |||
---|---|---|---|---|---|---|
Non-Bt a | Btb | Non-Bt a | Btb | Non-Bt a | Btb | |
Species richness (S) | 8.43 ± 3.14 | 11.71 ± 2.63 | 10.71 ± 3.60 | 11.00 ± 2.72 | 8.00 ± 1.41 | 10.86 ± 1.90 |
Shannon-Wiener diversity index (H′) | 1.10 ± 0.24 | 1.50 ± 0.35 | 1.23 ± 0.26 | 1.53 ± 0.21 | 1.15 ± 0.18 | 1.38 ± 0.17 |
Evenness index (J) | 0.63 ± 0.068 | 0.63 ± 0.096 | 0.60 ± 0.11 | 0.70 ± 0.082 | 0.58 ± 0.060 | 0.60 ± 0.050 |
Simpson’s dominant concentration (C) | 0.47 ± 0.062 | 0.45 ± 0.15* | 0.45 ± 0.11 | 0.31 ± 0.064 | 0.48 ± 0.071 | 0.41 ± 0.057 |
Czekanowski Community Similarity Coefficient (CS) | 0.73 | 0.67 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, Y.; Xue, J.; Wang, Y.; Song, X.; Li, Y. Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field. Plants 2022, 11, 2520. https://doi.org/10.3390/plants11192520
Yang Y, Chen Y, Xue J, Wang Y, Song X, Li Y. Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field. Plants. 2022; 11(19):2520. https://doi.org/10.3390/plants11192520
Chicago/Turabian StyleYang, Yan, Yi Chen, Jiabao Xue, Yuanyuan Wang, Xinyuan Song, and Yunhe Li. 2022. "Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field" Plants 11, no. 19: 2520. https://doi.org/10.3390/plants11192520
APA StyleYang, Y., Chen, Y., Xue, J., Wang, Y., Song, X., & Li, Y. (2022). Impact of Transgenic Cry1Ab/2Aj Maize on Abundance of Non-Target Arthropods in the Field. Plants, 11(19), 2520. https://doi.org/10.3390/plants11192520