Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Description
2.2. Principal Components Analysis (PCA) and Correlation
2.3. Linkage Disequilibrium and Marker Trait Associations
2.4. Gene Annotation
3. Discussion
3.1. Phenotypic Variability for Grain Yield and Yield-Related Traits
3.2. Marker Trait Association
4. Materials and Methods
4.1. Plant Material and Experimental Conditions
4.2. Phenotyping and Statistical Analyses
4.3. Genotyping
4.4. Linkage Disequilibrium Analyses and Population Structure
4.5. Genome-Wide Association Mapping and Genes Annotation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tadesse, W.; Nachit, M.; Abdalla, O.; Rajaram, S. Wheat Breeding at ICARDA: Achievements and Prospects in the CWANA Region. In A History of Wheat Breeding; Bonjean, A., Angus, B., van Ginkel, M., Eds.; Technique & Doc: Paris, France, 2016; ISBN 9978-2-7430-2091-0. [Google Scholar]
- Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, S.; Cheng, M.; Jiang, H.; Zhang, X.; Peng, C.; Lu, X.; Zhang, M.; Jin, J. Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis. Int. J. Environ. Res. Public. Health 2018, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, R. Breeding for increased drought tolerance in wheat: A review. Crop Pasture Sci. 2018, 69, 223. [Google Scholar] [CrossRef]
- El Gataa, Z.; El Hanafi, S.; Basheer, F.; Kehel, Z.; Bouhouch, Y.; El Messoadi, K.; Eddakir, K.; Ladraa, N.; Samir, K.; Tadesse, W. Genome wide association study of grain yield and yield related traits in spring bread wheat (Triticum aestivum L.) under drought and heat conditions in three different locations. J. Crop Sci. Biotechnol. 2021, 24, 361–373. [Google Scholar] [CrossRef]
- Bernardo, R. Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Sci. 2008, 48, 1649–1664. [Google Scholar] [CrossRef] [Green Version]
- Risch, N.; Merikangas, K. The Future of Genetic Studies of Complex Human Diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef] [Green Version]
- Appleby, N.; Edwards, D.; Batley, J. New Technologies for Ultra-High Throughput Genotyping in Plants. In Plant Genomics; Gustafson, J.P., Langridge, P., Somers, D.J., Eds.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2009; Volume 513, pp. 19–39. ISBN 978-1-58829-997-0. [Google Scholar]
- Zhu, J.; Kaeppler, S.M.; Lynch, J.P. Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor. Appl. Genet. 2005, 111, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.M.; Winfield, M.O.; Burridge, A.J.; Downie, R.C.; Benbow, H.R.; Barker, G.L.A.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; et al. Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol. J. 2017, 15, 390–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, P.; Zheng, Q.; Luo, Q.; Teng, W.; Li, H.; Li, B.; Li, Z. Genome-wide association study of yield and related traits in common wheat under salt-stress conditions. BMC Plant Biol. 2021, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.W.; Wang, S.; He, F.; Chao, S.; Lun, Y.; Paux, E.; Sourdille, P.; Sherman, J.; Akhunova, A.; Blake, N.K.; et al. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J. 2018, 95, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Lv, G.; Dong, Z.; Wang, Y.; Geng, J.; Li, J.; Lv, X.; Sun, C.; Ren, Y.; Zhang, J.; Chen, F. Identification of Genetic Loci of Black Point in Chinese Common Wheat by Genome-Wide Association Study and Linkage Mapping. Plant Dis. 2020, 104, 2005–2013. [Google Scholar] [CrossRef]
- Iannucci, A.; Marone, D.; Russo, M.A.; De Vita, P.; Miullo, V.; Ferragonio, P.; Blanco, A.; Gadaleta, A.; Mastrangelo, A.M. Mapping QTL for Root and Shoot Morphological Traits in a Durum Wheat × T. dicoccum Segregating Population at Seedling Stage. Int. J. Genom. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Muqaddasi, Q.H.; Brassac, J.; Börner, A.; Pillen, K.; Röder, M.S. Genetic Architecture of Anther Extrusion in Spring and Winter Wheat. Front. Plant Sci. 2017, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaseem, M.F.; Qureshi, R.; Shaheen, H.; Shafqat, N. Genome-wide association analyses for yield and yield-related traits in bread wheat (Triticum aestivum L.) under pre-anthesis combined heat and drought stress in field conditions. PLoS ONE 2019, 14, e0213407. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.A.R.; Waheed, M.Q.; Lohwasser, U.; Shokat, S.; Alqudah, A.M.; Volkmar, C.; Börner, A. Genetic Insight Into the Insect Resistance in Bread Wheat Exploiting the Untapped Natural Diversity. Front. Genet. 2022, 13, 828905. [Google Scholar] [CrossRef] [PubMed]
- Francki, M.G.; Walker, E.; McMullan, C.J.; Morris, W.G. Evaluation of Septoria Nodorum Blotch (SNB) Resistance in Glumes of Wheat (Triticum aestivum L.) and the Genetic Relationship With Foliar Disease Response. Front. Genet. 2021, 12, 681768. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, H.; Wu, C.; Yu, H.; Li, X.; Chen, G.; Tian, J.; Deng, Z. Identification of novel genomic regions associated with nine mineral elements in Chinese winter wheat grain. BMC Plant Biol. 2021, 21, 311. [Google Scholar] [CrossRef]
- Nedelkou, I.-P.; Maurer, A.; Schubert, A.; Léon, J.; Pillen, K. Exotic QTL improve grain quality in the tri-parental wheat population SW84. PLoS ONE 2017, 12, e0179851. [Google Scholar] [CrossRef] [Green Version]
- Fowler, D.B.; N’Diaye, A.; Laudencia-Chingcuanco, D.; Pozniak, C.J. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0152185. [Google Scholar] [CrossRef]
- Thambugala, D.; Pozniak, C.J.; Kumar, S.; Burt, A.J.; Wise, I.L.; Smith, M.A.H.; Fox, S.L.; Costamagna, A.C.; McCartney, C.A. Genetic analysis of oviposition deterrence to orange wheat blossom midge in spring wheat. Theor. Appl. Genet. 2021, 134, 647–660. [Google Scholar] [CrossRef]
- Kertho, A.; Mamidi, S.; Bonman, J.M.; McClean, P.E.; Acevedo, M. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces. PLoS ONE 2015, 10, e0129580. [Google Scholar] [CrossRef] [Green Version]
- Pretini, N.; Vanzetti, L.S.; Terrile, I.I.; Donaire, G.; González, F.G. Mapping QTL for Spike Fertility Related Traits in Two Double Haploid Wheat (Triticum aestivum L.) Populations. Plant Biol. 2020, 21, 1–18. [Google Scholar]
- Assanga, S.O.; Fuentealba, M.; Zhang, G.; Tan, C.; Dhakal, S.; Rudd, J.C.; Ibrahim, A.M.H.; Xue, Q.; Haley, S.; Chen, J.; et al. Mapping of quantitative trait loci for grain yield and its components in a US popular winter wheat TAM 111 using 90K SNPs. PLoS ONE 2017, 12, e0189669. [Google Scholar] [CrossRef] [Green Version]
- Soriano, J.M.; Colasuonno, P.; Marcotuli, I.; Gadaleta, A. Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Sci. Rep. 2021, 11, 11877. [Google Scholar] [CrossRef]
- Amalova, A.; Abugalieva, S.; Babkenov, A.; Babkenova, S.; Turuspekov, Y. Genome-wide association study of yield components in spring wheat collection harvested under two water regimes in Northern Kazakhstan. PeerJ 2021, 9, e11857. [Google Scholar] [CrossRef]
- Hitz, K.; Clark, A.J.; Van Sanford, D.A. Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crops Res. 2017, 200, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Guo, Y.; Briggs, J.; Dubach, F.; Chao, S.; Zhang, W.; Rouse, M.N.; Dubcovsky, J. Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor. Appl. Genet. 2018, 131, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Bai, G.; Lin, M.; Luo, M.; Zhang, D.; Jin, F.; Tian, B.; Trick, H.N.; Yan, L. Identification of candidate chromosome region of Sbwm1 for Soil-borne wheat mosaic virus resistance in wheat. Sci. Rep. 2020, 10, 8119. [Google Scholar] [CrossRef]
- van Frank, G.; Rivière, P.; Pin, S.; Baltassat, R.; Berthellot, J.-F.; Caizergues, F.; Dalmasso, C.; Gascuel, J.-S.; Hyacinthe, A.; Mercier, F.; et al. Genetic Diversity and Stability of Performance of Wheat Population Varieties Developed by Participatory Breeding. Sustainability 2020, 12, 384. [Google Scholar] [CrossRef] [Green Version]
- Colasuonno, P.; Lozito, M.L.; Marcotuli, I.; Nigro, D.; Giancaspro, A.; Mangini, G.; De Vita, P.; Mastrangelo, A.M.; Pecchioni, N.; Houston, K.; et al. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genom. 2017, 18, 122. [Google Scholar] [CrossRef]
- Rollar, S.; Serfling, A.; Geyer, M.; Hartl, L.; Mohler, V.; Ordon, F. QTL mapping of adult plant and seedling resistance to leaf rust (Puccinia triticina Eriks.) in a multiparent advanced generation intercross (MAGIC) wheat population. Theor. Appl. Genet. 2021, 134, 37–51. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Shayanowako, A.I.T.; Laing, M.; Chaplot, V. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE 2019, 14, e0225383. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, W.; Suleiman, S.; Tahir, I.; Sanchez-Garcia, M.; Jighly, A.; Hagras, A.; Thabet, S.; Baum, M. Heat-Tolerant QTLs Associated with Grain Yield and Its Components in Spring Bread Wheat under Heat-Stressed Environments of Sudan and Egypt. Crop Sci. 2019, 59, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Mathew, I.; Shimelis, H.; Mwadzingeni, L.; Zengeni, R.; Mutema, M.; Chaplot, V. Variance components and heritability of traits related to root: Shoot biomass allocation and drought tolerance in wheat. Euphytica 2018, 214, 225. [Google Scholar] [CrossRef]
- El Gataa, Z.; El Hanafi, S.; El Messoadi, K.; Samir, K.; Kehel, Z.; Tadesse, W. Genome wide association and prediction studies of agronomic and quality traits in spring beard wheat (Triticum aestivum L.) under rain-fed environment with terminal moisture stress. J. Cereal Sci. 2021, 101, 103278. [Google Scholar] [CrossRef]
- Tadesse, W.; Ogbonnaya, F.C.; Jighly, A.; Sanchez-Garcia, M.; Sohail, Q.; Rajaram, S.; Baum, M. Genome-Wide Association Mapping of Yield and Grain Quality Traits in Winter Wheat Genotypes. PLoS ONE 2015, 10, e0141339. [Google Scholar] [CrossRef] [Green Version]
- Zanke, C.D.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; Hinze, M.; Neumann, K.; et al. Whole Genome Association Mapping of Plant Height in Winter Wheat (Triticum aestivum L.). PLoS ONE 2014, 9, e113287. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wen, W.; Liu, J.; Zhang, Y.; Cao, S.; He, Z.; Rasheed, A.; Jin, H.; Zhang, C.; Yan, J.; et al. Genetic architecture of grain yield in bread wheat based on genome-wide association studies. BMC Plant Biol. 2019, 19, 168. [Google Scholar] [CrossRef]
- Alemu, A.; Suliman, S.; Hagras, A.; Thabet, S.; Al-Abdallat, A.; Abdelmula, A.A.; Tadesse, W. Multi-model genome-wide association and genomic prediction analysis of 16 agronomic, physiological and quality related traits in ICARDA spring wheat. Euphytica 2021, 217, 205. [Google Scholar] [CrossRef]
- Ahmed, H.G.M.-D.; Naeem, M.; Zeng, Y.; Rashid, M.A.R.; Ullah, A.; Saeed, A.; Qadeer, A. Genome-wide association mapping for high temperature tolerance in wheat through 90k SNP array using physiological and yield traits. PLoS ONE 2022, 17, e0262569. [Google Scholar] [CrossRef]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015, 128, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Michaletti, A.; Naghavi, M.R.; Toorchi, M.; Zolla, L.; Rinalducci, S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep. 2018, 8, 5710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, M.A.S.; Saleem, M.F.; Shah, G.M.; Khan, I.H.; Raza, A. Exogenous application of glycinebetaine and potassium for improving water relations and grain yield of wheat under drought. J. Soil Sci. Plant Nutr. 2014, 14, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Skalak, J.; Nicolas, K.L.; Vankova, R.; Hejatko, J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. Front. Plant Sci. 2021, 12, 644823. [Google Scholar] [CrossRef] [PubMed]
- Ogbonnaya, F.C.; Seah, S.; Delibes, A.; Jahier, J.; López-Braña, I.; Eastwood, R.F.; Lagudah, E.S. Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor. Appl. Genet. 2001, 102, 623–629. [Google Scholar] [CrossRef]
- Remington, D.L.; Thornsberry, J.M.; Matsuoka, Y.; Wilson, L.M.; Whitt, S.R.; Doebley, J.; Kresovich, S.; Goodman, M.M.; Buckler, E.S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 2001, 98, 11479–11484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Li, L.-Y. CMplot: Circle Manhattan Plot; CRAN: Vienna, Austria, 2018. [Google Scholar]
Location | Condition | Trait | Mean | MIN | MAX | SD | CV | H2 | <0.001 |
---|---|---|---|---|---|---|---|---|---|
Sidi Al-Aidi | Irrigated | DHE | 69.79 | 62 | 89 | 3.07 | 4.41 | 0.72 | *** |
DMA | 114.55 | 108 | 136 | 2.76 | 2.41 | 0.65 | *** | ||
PLH (cm) | 79.44 | 67.5 | 103.5 | 1.39 | 6.94 | 0.70 | *** | ||
C.T (°C) | 23 | 21.3 | 26.4 | 0.72 | 3.13 | 0.52 | *** | ||
C.C (SPAD) | 11.5 | 10.65 | 13.2 | 0.36 | 3.13 | 0.57 | *** | ||
NP/m2 | 32.62 | 20 | 60 | 8.46 | 2.59 | 0.53 | *** | ||
NTP | 5.39 | 3 | 9 | 1.25 | 23.28 | 0.67 | *** | ||
NSS | 59.21 | 31 | 97 | 12.19 | 20.59 | 0.8 | *** | ||
Biomass (kg) | 2.97 | 1.38 | 5.4 | 0.85 | 22.68 | 0.77 | *** | ||
GY (t/h) | 5.93 | 3.31 | 9.38 | 0.95 | 0.16 | 0.45 | *** | ||
TKW (g) | 38.62 | 33 | 45.8 | 0.16 | 5.95 | 0.54 | *** | ||
Sidi Al-Aidi | Rainfed | DHE | 66.47 | 54 | 86 | 4.22 | 6.36 | 0.62 | *** |
DMA | 108.65 | 106 | 123 | 4.08 | 3.76 | 0.52 | *** | ||
PLH (cm) | 70.53 | 23 | 85.5 | 6.96 | 9.86 | 0.65 | *** | ||
C.T (°C) | 23.96 | 22.27 | 32.67 | 0.85 | 3.57 | 0.42 | *** | ||
C.C (SPAD) | 47.86 | 40.82 | 53.05 | 2.19 | 4.58 | 0.51 | *** | ||
NP/m2 | 38.86 | 30 | 50 | 4.3 | 11.08 | 0.49 | *** | ||
NTP | 3.62 | 3 | 5 | 0.46 | 12.73 | 0.46 | *** | ||
NSS | 43.85 | 22 | 76 | 10.02 | 22.85 | 0.63 | *** | ||
Biomass (kg) | 1.1 | 0.61 | 1.88 | 0.22 | 20.39 | 0.61 | *** | ||
GY (t/h) | 4.19 | 0.97 | 6.16 | 0.63 | 15.04 | 0.32 | *** | ||
TKW (g) | 19.70 | 14.4 | 24.6 | 1.64 | 8.33 | 0.48 | *** | ||
Merchouch | Rainfed | DHE | 59.90 | 53 | 89 | 3.82 | 6.38 | 0.64 | *** |
DMA | 119.38 | 111 | 126 | 3.54 | 2.97 | 0.53 | *** | ||
PLH (cm) | 62.97 | 42 | 81 | 7.16 | 11.37 | 0.67 | *** | ||
C.T (°C) | 25.67 | 23.1 | 29.7 | 0.94 | 3.69 | 0.45 | *** | ||
C.C (SPAD) | 49.89 | 41.9 | 60 | 3.43 | 6.88 | 0.55 | *** | ||
NP/m2 | 42.27 | 24 | 54 | 6.08 | 14.39 | 0.53 | *** | ||
NTP | 5.63 | 4 | 8 | 0.84 | 15 | 0.48 | *** | ||
Biomass (kg) | 3.51 | 1.65 | 5.37 | 0.59 | 16.85 | 0.70 | *** | ||
GY (t/h) | 4.09 | 2.32 | 6.85 | 0.74 | 18.29 | 0.42 | *** | ||
TKW (g) | 34.31 | 27 | 43 | 2.95 | 8.59 | 0.51 | *** |
Trait | SNP Marker | Chromosome | Position (bp) | MAF | Marker Effect | R2 | −Log10(p) | Reference |
---|---|---|---|---|---|---|---|---|
Biomass | Ex_c14755_1362 | 2D | 20,769,480 | 0.37 | 0.07 | 0.1 | 4.17 | [10] |
Biomass | BobWhite_c2988_493 | 2B | 33,839,742 | 0.37 | −0.07 | 0.1 | 4.17 | |
Biomass | AX-94513795 | 3A | 568,142,443 | 0.03 | −0.20 | 0.08 | 3.39 | [11] |
Biomass | AX-94866541 | 3A | 568,383,306 | 0.03 | −0.20 | 0.08 | 3.39 | |
Biomass | Kukri_rep_c104865_57 | 5D | 562,121,917 | 0.03 | −0.23 | 0.08 | 3.38 | [10] |
Biomass | wsnp_Ra_c19083_28215239 | 2B | 33,939,928 | 0.32 | −0.07 | 0.08 | 3.32 | [10] |
Biomass | AX-95171082 | 2D | 28,417,610 | 0.02 | −0.26 | 0.08 | 3.19 | [12] |
Biomass | RAC875_c41613_124 | 6D | 163,836,060 | 0.02 | −0.26 | 0.08 | 3.19 | [13] |
Biomass | Tdurum_contig51605_194 | 3B | 822,682,075 | 0.04 | −0.16 | 0.08 | 3.02 | [14] |
Biomass | BS00071948_51 | 3A | 523,554,827 | 0.04 | −0.16 | 0.08 | 3.02 | [10] |
Biomass | IACX6092 | 3A | 519,207,590 | 0.04 | −0.16 | 0.08 | 3.02 | [10] |
CC | IAAV108 | 5A | 601,615,667 | 0.4 | 0.59 | 0.08 | 3.92 | |
CC | wsnp_Ku_c8400_14280021 | 3A | 659,159,810 | 0.47 | 0.53 | 0.08 | 3.62 | [15] |
CC | Kukri_c51474_334 | 1B | 457,378,726 | 0.24 | −0.60 | 0.08 | 3.58 | [16] |
CT | AX-94463982 | 7A | 53,911,180 | 0.04 | −0.95 | 0.08 | 7.03 | |
CT | Tdurum_contig49841_618 | 5B | 38,166,746 | 0.04 | −0.82 | 0.08 | 5.97 | [17] |
CT | RAC875_c43581_280 | 6B | 199,014,751 | 0.03 | 0.88 | 0.08 | 5.55 | [13] |
CT | Tdurum_contig30403_411 | 6D | 256,247,450 | 0.03 | 0.88 | 0.08 | 5.55 | |
CT | AX-94741870 | 6B | 146,646,555 | 0.04 | 0.81 | 0.08 | 5.5 | |
CT | Tdurum_contig9584_463 | 7A | 53,916,532 | 0.05 | −0.72 | 0.08 | 5.5 | |
CT | GENE-4021_496 | 6A | 610,349,884 | 0.05 | 0.60 | 0.08 | 4.36 | [14] |
CT | Tdurum_contig29607_294 | 6A | 609,379,892 | 0.05 | 0.58 | 0.08 | 4.12 | [18] |
CT | AX-94613704 | 1B | 579,797,780 | 0.05 | −0.60 | 0.08 | 3.77 | |
CT | BS00064077_51 | 3D | 15,029,534 | 0.07 | −0.43 | 0.08 | 3.33 | [13] |
CT | BS00074911_51 | 1B | 626,226,213 | 0.08 | −0.44 | 0.08 | 3.29 | [10] |
CT | BobWhite_rep_c64068_241 | 2B | 775,336,369 | 0.33 | −0.22 | 0.08 | 3.09 | |
DHE | BS00065105_51 | 2B | 69,648,943 | 0.11 | −1.57 | 0.08 | 3.78 | [19] |
DHE | RAC875_c8271_1352 | 1B | 56,312,090 | 0.44 | −1.23 | 0.08 | 3.68 | [20] |
DMA | AX-95103761 | 5B | 544,374,823 | 0.05 | 2.50 | 0.08 | 3.99 | |
DMA | AX-94382081 | 7D | 553,220,240 | 0.02 | −4.26 | 0.08 | 3.95 | |
GY | BobWhite_c2988_493 | 2B | 33,839,742 | 0.37 | −0.16 | 0.08 | 3.81 | [10] |
GY | Ex_c14755_1362 | 2D | 20,769,480 | 0.37 | 0.16 | 0.08 | 3.76 | |
GY | RAC875_c17918_321 | 4A | 610,640,806 | 0.25 | 0.16 | 0.08 | 3.92 | [10] |
NPM | Ra_c29200_300 | 1A | 546,044,432 | 0.27 | 1.37 | 0.08 | 3.63 | |
NPM | AX-94711993 | 4A | 624,925,453 | 0.35 | −1.21 | 0.08 | 3.28 | [11] |
NPM | AX-94690045 | 1D | 464,930,094 | 0.27 | −1.26 | 0.08 | 3.26 | [11] |
NPM | AX-94822081 | 3A | 48,648,359 | 0.27 | −1.26 | 0.08 | 3.26 | [11] |
NPM | Ra_c5683_1762 | 1A | 551,461,645 | 0.27 | −1.26 | 0.08 | 3.26 | [10] |
NPM | Tdurum_contig18174_283 | 1A | 566,484,682 | 0.27 | −1.26 | 0.08 | 3.26 | [21] |
NPM | Tdurum_contig56662_54 | 1A | 557,932,838 | 0.27 | −1.26 | 0.08 | 3.26 | [22] |
NPM | wsnp_Ex_c23598_32826926 | 1A | 567,979,210 | 0.27 | −1.26 | 0.08 | 3.26 | [21] |
NPM | wsnp_Ku_rep_c109724_94227136 | 1A | 564,302,427 | 0.32 | 1.20 | 0.08 | 3.11 | [10] |
NPM | AX-95077803 | 1A | 569,947,743 | 0.28 | 1.23 | 0.08 | 3.09 | |
NPM | Excalibur_c66_147 | 1A | 572,350,787 | 0.26 | −1.26 | 0.08 | 3.08 | [10] |
NPM | wsnp_CAP11_c146_160903 | 1A | 572,350,833 | 0.26 | −1.26 | 0.08 | 3.08 | [23] |
NPM | Tdurum_contig81011_244 | 1A | 572,350,882 | 0.26 | 1.26 | 0.08 | 3.08 | [22] |
NPM | wsnp_Ra_c5433_9630495 | 3D | 603,264,029 | 0.04 | −2.85 | 0.08 | 3.04 | [24] |
NPM | AX-95162673 | 1A | 545,528,557 | 0.28 | 1.20 | 0.08 | 3.04 | |
NSS | Excalibur_c5329_1335 | 5B | 580,686,253 | 0.22 | 4.24 | 0.08 | 4.85 | [25] |
NSS | BS00099719_51 | 5B | 580,103,265 | 0.22 | 4.24 | 0.08 | 4.8 | [26] |
NSS | wsnp_Ra_c39562_47242455 | 5B | 580,103,342 | 0.22 | 4.12 | 0.08 | 4.67 | [27] |
NSS | Excalibur_c9391_1016 | 5B | 580,085,161 | 0.21 | −4.18 | 0.08 | 4.56 | [28] |
NSS | wsnp_Ex_c3834_6971712 | 5B | 536,516,286 | 0.16 | −4.28 | 0.08 | 3.76 | |
NSS | CAP11_c991_160 | 6B | 577,184,321 | 0.05 | 7.41 | 0.08 | 3.72 | [10] |
NSS | AX-94814963 | 7D | 171,001,100 | 0.12 | −4.49 | 0.08 | 3.6 | |
NSS | TA001769-0538 | 1D | 461,140,579 | 0.09 | 4.69 | 0.08 | 3.3 | [29] |
NSS | BS00066944_51 | 1B | 587,048,099 | 0.36 | 2.75 | 0.08 | 3.08 | |
NSS | TA005251-0278 | 1A | 532,251,634 | 0.37 | 2.71 | 0.08 | 3.05 | |
NSS | AX-95257656 | 1B | 586,552,915 | 0.37 | −2.71 | 0.08 | 3.05 | |
NTP | AX-95169625 | 3B | 54,757,975 | 0.2 | −0.14 | 0.08 | 3.06 | |
PLH | BS00037225_51 | 3B | 590,294,618 | 0.02 | 13.79 | 0.08 | 7.1 | |
PLH | AX-94552125 | 1B | 11,692,172 | 0.01 | 9.70 | 0.08 | 6.03 | |
PLH | BS00072156_51 | 5A | 540,611,537 | 0.05 | −4.58 | 0.08 | 3.92 | |
PLH | BS00089597_51 | 5D | 552,040,060 | 0.06 | 3.80 | 0.08 | 3.18 | |
PLH | AX-94532002 | 5B | 704,500,660 | 0.21 | −2.36 | 0.08 | 3.1 | |
PLH | Ra_c22675_581 | 4A | 611,201,088 | 0.21 | −2.36 | 0.08 | 3.1 | |
PLH | wsnp_Ku_c9763_16287132 | 6A | 581,748,362 | 0.15 | −2.97 | 0.08 | 3.05 | |
TKW | AX-94864643 | 4D | 504,562,200 | 0.02 | −2.73 | 0.08 | 3.5 | [11] |
TKW | AX-94512414 | 4A | 738,514,655 | 0.03 | 2.03 | 0.08 | 3.28 | [11] |
TKW | BS00044443_51 | 7B | 498,149,722 | 0.02 | −2.23 | 0.08 | 3.21 | [10] |
TKW | Excalibur_rep_c102136_270 | 7B | 498,519,645 | 0.02 | 2.23 | 0.08 | 3.21 | [10] |
TKW | AX-94389822 | 2A | 188,904,785 | 0.02 | 2.62 | 0.07 | 3.08 | |
TKW | Kukri_rep_c69627_954 | 6A | 584,678,686 | 0.04 | −1.66 | 0.07 | 3.05 | [10] |
TKW | AX-94826800 | 5B | 35,976,675 | 0.02 | 2.14 | 0.07 | 3.01 |
Trait | SNP Marker | Chromosome | Position (bp) | MAF | Marker Effect | R2 | −Log10(p) | Reference |
---|---|---|---|---|---|---|---|---|
Biomass | BS00022169_51 | 7A | 691,259,651 | 0.02 | −0.93 | 0.08 | 4.14 | [30] |
Biomass | wsnp_Ku_c4035_7363089 | 7A | 688,686,324 | 0.02 | −0.93 | 0.08 | 4.14 | |
Biomass | wsnp_Ra_c19741_28965647 | 7A | 688,688,826 | 0.02 | −0.93 | 0.08 | 4.14 | |
Biomass | AX-94870094 | 5B | 208,440,868 | 0.03 | −0.67 | 0.06 | 3.18 | [11] |
Biomass | wsnp_Ex_c6748_11659366 | 5B | 484,735,572 | 0.03 | −0.62 | 0.06 | 3.08 | |
CC | IAAV5819 | 3B | 72,716,470 | 0.03 | 0.33 | 0.09 | 3.95 | [10] |
CC | AX-94826800 | 5B | 35,976,675 | 0.02 | −0.33 | 0.07 | 3.26 | [11] |
CC | BobWhite_c15352_394 | 7A | 667,214,250 | 0.03 | −0.31 | 0.07 | 3.25 | |
CC | RAC875_c41731_321 | 2A | 470,238,226 | 0.39 | −0.09 | 0.07 | 3.05 | |
CC | BS00003816_51 | 1D | 435,801,502 | 0.18 | 0.11 | 0.07 | 3.05 | [13] |
CC | BS00040568_51 | 1D | 435,928,205 | 0.18 | −0.11 | 0.07 | 3.05 | [13] |
CC | Kukri_c35426_507 | 3A | 639,086,463 | 0.31 | −0.09 | 0.07 | 3.01 | |
CT | IAAV5819 | 3B | 72,716,470 | 0.03 | 0.67 | 0.09 | 3.95 | [10] |
CT | AX-94826800 | 5B | 35,976,675 | 0.02 | −0.66 | 0.07 | 3.26 | |
CT | BobWhite_c15352_394 | 7A | 667,214,250 | 0.03 | −0.63 | 0.07 | 3.25 | |
CT | RAC875_c41731_321 | 2A | 470,238,226 | 0.39 | −0.19 | 0.07 | 3.05 | |
CT | BS00003816_51 | 1D | 435,801,502 | 0.18 | 0.22 | 0.07 | 3.05 | [13] |
CT | BS00040568_51 | 1D | 435,928,205 | 0.18 | −0.22 | 0.07 | 3.05 | [13] |
CT | Kukri_c35426_507 | 3A | 639,086,463 | 0.31 | −0.19 | 0.07 | 3.01 | [10] |
DHE | Kukri_rep_c106285_295 | 1D | 4,235,838 | 0.05 | −2.06 | 0.09 | 3.81 | [10] |
DMA | BS00063748_51 | 2A | 76,344,906 | 0.23 | −0.83 | 0.07 | 3.57 | [13] |
DMA | BS00076261_51 | 2D | 76,580,003 | 0.23 | −0.83 | 0.07 | 3.77 | [13] |
DMA | wsnp_BE488779D_Ta_1_2 | 2D | 76,639,717 | 0.23 | −0.83 | 0.07 | 3.24 | |
GY | AX-94653560 | 2D | 552,989,487 | 0.27 | 0.72 | 0.07 | 3.44 | [11] |
GY | wsnp_Ex_c6748_11659366 | 5B | 484,735,572 | 0.03 | −1.22 | 0.06 | 3.15 | |
GY | AX-94430599 | 2D | 601,601,896 | 0.47 | −0.42 | 0.06 | 3.10 | [11] |
NPM | Excalibur_rep_c69730_391 | 5B | 566,504,645 | 0.11 | 4.76 | 0.12 | 4.87 | |
NPM | Kukri_c65380_490 | 2D | 605,370,885 | 0.06 | 5.40 | 0.1 | 4.12 | |
NPM | Excalibur_c23239_783 | 2A | 735,005,978 | 0.02 | 6.90 | 0.08 | 3.35 | |
NPM | Excalibur_c23239_961 | 2D | 602,513,120 | 0.02 | 6.90 | 0.08 | 3.35 | |
NPM | Excalibur_c5442_1691 | 6A | 16,571,210 | 0.09 | −4.05 | 0.08 | 3.33 | |
NPM | AX-94637605 | 5A | 502,799,409 | 0.08 | −4.20 | 0.08 | 3.25 | [11] |
NSS | Kukri_c7786_81 | 5D | 546,689,186 | 0.22 | 4.05 | 0.07 | 3.51 | [31] |
NSS | Kukri_c19883_629 | 4A | 732,519,006 | 0.04 | 8.37 | 0.07 | 3.19 | |
NSS | BS00022036_51 | 5D | 547,273,760 | 0.23 | −3.71 | 0.07 | 3.18 | [13] |
NSS | Excalibur_c64287_145 | 4A | 622,200,799 | 0.23 | −3.71 | 0.07 | 3.18 | |
NSS | CAP12_c5949_104 | 5D | 546,650,824 | 0.23 | 3.68 | 0.06 | 3.05 | [31] |
NTP | IAAV5776 | 1B | 675,560,923 | 0.11 | 0.45 | 0.06 | 3.26 | [10] |
NTP | BS00063512_51 | 1B | 676,192,103 | 0.09 | −0.48 | 0.06 | 3.69 | [13] |
PLH | JD_c1314_1184 | 7A | 706,832,129 | 0.08 | −2.37 | 0.08 | 3.07 | |
TKW | BS00064829_51 | 1B | 12,813,223 | 0.17 | 0.67 | 0.07 | 4.17 | [13] |
TKW | Kukri_c2446_683 | 1D | 7,353,184 | 0.10 | −0.76 | 0.07 | 3.82 | |
TKW | Kukri_rep_c69910_1153 | 1A | 11,937,614 | 0.17 | 0.61 | 0.07 | 3.75 | |
TKW | BS00069300_51 | 1A | 12,006,112 | 0.18 | 0.61 | 0.07 | 3.73 | [13] |
TKW | Excalibur_c44883_244 | 1A | 11,940,136 | 0.17 | 0.58 | 0.07 | 3.41 | |
TKW | BS00003761_51 | 1A | 16,390,705 | 0.17 | 0.57 | 0.07 | 3.30 | [13] |
TKW | AX-94742021 | 1A | 14,361,026 | 0.17 | 0.57 | 0.07 | 3.11 | [11] |
TKW | Excalibur_c25891_1402 | 3B | 554,033,860 | 0.21 | 0.54 | 0.07 | 3.09 |
Trait | SNP Marker | Chromosome | Position (bp) | MAF | Marker Effect | R2 | −Log10(p) | Reference |
---|---|---|---|---|---|---|---|---|
Biomass | BS00099879_51 | 6A | 608,074,450 | 0.09 | −0.34 | 0.01 | 4.10 | [13] |
Biomass | AX-95226309 | 6D | 460,572,468 | 0.09 | −0.30 | 0.01 | 3.88 | [11] |
Biomass | Kukri_c42895_593 | 6B | 65,732,454 | 0.36 | 0.17 | 0.01 | 3.31 | |
CC | AX-95126745 | 4A | 5,464,991 | 0.49 | −1.08 | 0.07 | 4.48 | [11] |
CC | BobWhite_rep_c64913_315 | 5A | 413,418,596 | 0.38 | 1.05 | 0.07 | 3.38 | |
CC | Excalibur_rep_c108030_260 | 4D | 108,902,883 | 0.41 | −0.94 | 0.07 | 3.30 | [13] |
CC | Excalibur_c2171_2728 | 5A | 708,441,404 | 0.27 | −1.15 | 0.07 | 3.24 | |
CC | AX-94974108 | 5A | 708,309,244 | 0.26 | 1.15 | 0.07 | 3.23 | [11] |
CC | wsnp_Ex_c2171_4074003 | 5A | 708,442,382 | 0.26 | −1.15 | 0.07 | 3.23 | |
CC | Excalibur_rep_c106790_155 | 4D | 113,155,346 | 0.4 | −0.93 | 0.07 | 3.18 | [13] |
CC | AX-94483885 | 4D | 98,582,176 | 0.39 | −0.92 | 0.07 | 3.16 | [11] |
CC | AX-95231592 | 5A | 708,165,083 | 0.25 | 1.13 | 0.07 | 3.12 | [11] |
CC | Excalibur_c42255_425 | 5A | 702,166,657 | 0.31 | 1.04 | 0.07 | 3.09 | [13] |
CC | Kukri_c16087_281 | 5A | 702,166,100 | 0.31 | 1.04 | 0.07 | 3.09 | |
CC | wsnp_Ex_c3764_6853627 | 2B | 185,761,088 | 0.49 | 0.95 | 0.07 | 3.00 | |
CT | AX-94419426 | 1B | 677,254,971 | 0.01 | −1.40 | 0.003 | 4.34 | [11] |
CT | AX-94796020 | 1A | 491,135,196 | 0.01 | −1.40 | 0.003 | 4.34 | [11] |
CT | AX-94975215 | 3D | 613,735,962 | 0.01 | −1.40 | 0.003 | 4.34 | [11] |
CT | AX-95152594 | 3B | 18,518,629 | 0.03 | −0.78 | 0.003 | 3.45 | [11] |
CT | wsnp_JD_c20555_18262260 | 7A | 674,276,748 | 0.07 | −0.49 | 0.003 | 3.41 | [32] |
CT | RAC875_c8565_926 | 7A | 725,929,902 | 0.04 | 0.65 | 0.003 | 3.4 | |
CT | AX-94513795 | 3A | 568,142,443 | 0.02 | 0.87 | 0.003 | 3.4 | [11] |
CT | AX-94866541 | 3A | 568,383,306 | 0.02 | 0.87 | 0.003 | 3.4 | [11] |
CT | AX-94630410 | 6D | 249,961,124 | 0.02 | −0.97 | 0.003 | 3.2 | [11] |
CT | AX-95023231 | 2D | 640,215,412 | 0.02 | −0.82 | 0.003 | 3.07 | [11] |
CT | BS00043716_51 | 6A | 230,706,086 | 0.02 | −0.81 | 0.003 | 3.04 | |
DHE | IAAV2346 | 5B | 17,968,969 | 0.04 | −2.89 | 0.04 | 3.63 | [10] |
DHE | AX-95168017 | 3B | 648,927,053 | 0.03 | 3.53 | 0.04 | 3.49 | [11] |
DHE | BS00068817_51 | 3B | 607,812,618 | 0.03 | −3.53 | 0.04 | 3.49 | [13] |
DHE | BS00068816_51 | 3B | 607,812,579 | 0.02 | 3.42 | 0.04 | 3.43 | [13] |
DHE | Excalibur_c48047_90 | 3B | 617,682,876 | 0.02 | −3.42 | 0.04 | 3.43 | |
DHE | BS00067651_51 | 5D | 521,522,831 | 0.05 | 2.51 | 0.04 | 3.35 | [13] |
DHE | Kukri_rep_c108378_52 | 5B | 583,178,232 | 0.06 | −2.29 | 0.04 | 3.32 | |
DHE | AX-94792657 | 5A | 596,013,518 | 0.06 | 2.29 | 0.04 | 3.32 | |
DHE | Excalibur_rep_c113405_180 | 3B | 618,151,165 | 0.03 | 2.80 | 0.04 | 3.32 | |
DHE | GENE-3207_610 | 5B | 17,545,461 | 0.04 | −2.46 | 0.04 | 3.11 | [33] |
DHE | BS00065543_51 | 5B | 17,575,009 | 0.04 | 2.33 | 0.04 | 3.07 | |
DHE | Excalibur_c11605_156 | 5B | 17,945,028 | 0.04 | 2.33 | 0.04 | 3.07 | [13] |
DHE | GENE-3207_134 | 5B | 17,545,728 | 0.04 | −2.33 | 0.04 | 3.07 | [33] |
DHE | BS00039935_51 | 4B | 5,468,520 | 0.03 | −2.89 | 0.04 | 3.01 | |
DMA | Kukri_c8594_203 | 4B | 17,255,199 | 0.09 | −1.65 | 0.06 | 3.64 | |
DMA | tplb0035d20_506 | 4D | 9,249,227 | 0.09 | −1.65 | 0.06 | 3.64 | |
DMA | Excalibur_c45297_316 | 5A | 571,784,879 | 0.24 | 1.19 | 0.06 | 3.45 | [13] |
DMA | wsnp_Ex_rep_c69647_68598463 | 5A | 571,786,104 | 0.24 | −1.19 | 0.06 | 3.45 | |
DMA | AX-94820753 | 5B | 689,950,369 | 0.06 | −1.78 | 0.06 | 3.08 | [11] |
DMA | wsnp_RFL_Contig2914_2757372 | 2B | 740,805,174 | 0.38 | 1.04 | 0.06 | 3.01 | |
GY | Kukri_c264_438 | 6A | 29,558,020 | 0.03 | 0.57 | 0.01 | 3.06 | |
NPM | IACX11794 | 7D | 12,470,234 | 0.16 | 2.54 | 0.03 | 4.04 | [34] |
NPM | Excalibur_c7255_697 | 7D | 13,602,327 | 0.11 | −2.79 | 0.03 | 3.61 | [13] |
NPM | D_GB5Y7FA02IDDA9_183 | 7D | 13,487,464 | 0.11 | −2.73 | 0.03 | 3.55 | [20] |
NPM | BS00022449_51 | UN | 89,193,164 | 0.16 | −2.35 | 0.03 | 3.53 | [13] |
NPM | Excalibur_c833_1405 | 3D | 585,088,528 | 0.11 | 2.65 | 0.03 | 3.4 | |
NPM | RAC875_rep_c74271_414 | 5B | 696,492,752 | 0.28 | −1.88 | 0.03 | 3.04 | |
TKW | AX-94712739 | 2B | 766,563,614 | 0.01 | −3.37 | 0.005 | 3.94 | [11] |
TKW | BobWhite_c14486_122 | 5A | 615,864,204 | 0.01 | −3.37 | 0.005 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Gataa, Z.; Samir, K.; Tadesse, W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. Plants 2022, 11, 2705. https://doi.org/10.3390/plants11202705
El Gataa Z, Samir K, Tadesse W. Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. Plants. 2022; 11(20):2705. https://doi.org/10.3390/plants11202705
Chicago/Turabian StyleEl Gataa, Zakaria, Karima Samir, and Wuletaw Tadesse. 2022. "Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco" Plants 11, no. 20: 2705. https://doi.org/10.3390/plants11202705
APA StyleEl Gataa, Z., Samir, K., & Tadesse, W. (2022). Genetic Dissection of Drought Tolerance of Elite Bread Wheat (Triticum aestivum L.) Genotypes Using Genome Wide Association Study in Morocco. Plants, 11(20), 2705. https://doi.org/10.3390/plants11202705