Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The Phenolic Profile and Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis
2.2. Cytotoxicity and Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Extract Preparation
3.3. Quantification of Phenolic Compounds
3.4. Determination of Flavonol Contents
3.5. Quantitation of Catechins
3.6. Quantification of Tannins
3.7. Quantitation of Total Phenolic Acids
3.8. HPLC Assays of the Profile and Levels of Phenolic Compounds in the Extracts
3.9. The Cytotoxicity Assay
3.10. The Antioxidant Activity Assay Using DPPH
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019, 13, 961. [Google Scholar] [CrossRef] [PubMed]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, Y.O.A.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J. Trop. Med. 2022, 2022, 5794350. [Google Scholar] [CrossRef]
- Siddiqui, A.J.; Jahan, S.; Singh, R.; Saxena, J.; Ashraf, S.A.; Khan, A.; Choudhary, R.K.; Balakrishnan, S.; Badraoui, R.; Bardakci, F.; et al. Plants in anticancer drug discovery: From molecular mechanism to chemoprevention. BioMed Res. Int. 2022, 2022, 5425485. [Google Scholar] [CrossRef]
- Turner, N.; Bouchard, R.; Kennedy, D. Ethnobotany of the Okanagan-Colville Indians of British Columbia and Washington; British Columbia Provincial Museum, British Columbia: Victoria, BC, Canada, 1980. [Google Scholar]
- Zhang, X.S.; Wang, B.D. Chinese Medicine Dictionary; Shanghai Science and Technology Publishing House: Shanghai, China, 1986. [Google Scholar]
- Plant Resources of the USSR: Flowering Plants, Its Chemical Contents, Utilization. In Families Hydraginaceae–Haloragaceae; Nauka: Leningrad, Russia, 1987. (In Russian)
- Xie, Z.W. Quanguo Zhongcaoyao Huibian (A Collection of Chinese Herbal Drugs), 2nd ed.; People’s Hygenic Publishing House: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Kim, C.S.; Hara, T.; Datta, P.K.; Itoh, E.; Horiike, M. Insecticidal component in Thunberg spiraea, Spiraea thunbergii, against Thrips palmi. Biosci. Biotechnol. Biochem. 1998, 62, 1546–1549. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Hishida, A.; Iida, O.; Hosokawa, K.; Kawabata, J. Flavonol caffeoylglycosides as alpha-glucosidase inhibitors from Spiraea cantoniensis flower. J. Agric. Food Chem. 2008, 56, 4367–4371. [Google Scholar] [CrossRef]
- Hou, T.; Teng, Y.; Sun, Q.; Yu, Z. A new fungitoxic metabolite from Spiraea alpina. Pall. Fitoterapia 2009, 80, 237–240. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Shaldaeva, T.M. The antioxidant activity of the Russian Far East representatives of the Spiraea L. (Rosaceae Juss.). Rus. J. Bioorg. Chem. 2017, 43, 790–794. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Zarubaev, V.V.; Esaulkova, I.L.; Sinegubova, E.O.; Kadyrova, R.A.; Shaldaeva, T.M.; Veklich, T.N.; Kuznetsov, A.A. The antiviral, antiradical, and phytochemical potential of dry extracts from Spiraea hypericifolia, S. media, and S. salicifolia (Rosaceae). South Afr. J. Bot. 2022, 147, 215–222. [Google Scholar] [CrossRef]
- Park, J.H.; Ahn, E.K.; Ko, H.J.; Hwang, M.H.; Cho, Y.R.; Lee, D.R.; Choi, B.K.; Seo, D.W.; Oh, J.S. Spiraea prunifolia leaves extract inhibits adipogenesis and lipogenesis by promoting β-oxidation in high fat diet-induced obese mice. Biomed. Pharmacother. 2022, 149, 112889. [Google Scholar] [CrossRef] [PubMed]
- Kashchenko, N.I.; Chirikova, N.K.; Olennikov, D.N. Acylated flavonoids from Spiraea genus as inhibitors of α-amylase. Rus. J. Bioorg. Chem. 2018, 44, 876–886. [Google Scholar] [CrossRef]
- Mirovich, V.M.; Krivosheev, I.M.; Gordeeva, V.V.; Tsyrenzhapov, A.V. Method for Producing Agent Possessing Anti-Inflammatory, Diuretic and Antioxidant Activity. Russian Patent RU 2542493C1, 8 November 2013. (In Russian). [Google Scholar]
- Chumbalov, T.K.; Pashinina, L.T.; Storozhenko, N.D. Catechin 7-rhamnoside from Spiraea hypericifolia. Chem. Nat. Compd. 1976, 12, 232–233. [Google Scholar] [CrossRef]
- Storozhenko, N.D. Polyphenol Compounds of Spiraea hypericifolia L. Ph.D. Thesis, Irkutsk Institute of Organic Chemistry SB of RAS, Irkutsk, Russia, 1977. (In Russian). [Google Scholar]
- Karpova, E.A.; Imetkhenova, O.V. Phenolic compounds of representatives of sect. Glomerati of genus Spiraea L. of the flora of Siberia. Turczaninowia 2015, 18, 108–115. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Huang, L.; Liu, H.C.; Chen, D.Z.; Liu, H.Y.; Li, X.H.; Zhang, Y.; Geng, M.Y.; Chen, Q.; Hao, X.J. Spiramine derivatives induce apoptosis of Bax-/-Bax-/-cell and cancer cells. Bioorganic. Med. Chem. Lett. 2014, 24, 1884–1888. [Google Scholar] [CrossRef]
- Tang, D.H.; Ma, D.; Cheng, H.; Li, Y.L.; Xu, L. A bio-inspired synthetic route to the core ring systems of Spiraea atisine-type diterpenoid alkaloids and related diterpenes. Org. Biomol. Chem. 2016, 14, 2716–2722. [Google Scholar] [CrossRef]
- Polozhiy, A.V. Rod Spiraea L.—Tavolga. In Flora Sibiri; Nauka: Novosibirsk, Russia, 1988; Volume 8, pp. 10–20. (In Russian) [Google Scholar]
- Lu, L.T.; Crinan, A. Spiraea Linnaeus. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2003; Volume 9, pp. 47–73. [Google Scholar]
- Kostikova, V.A.; Petrova, N.V. Phytoconstituents and Bioactivity of Plants of the Genus Spiraea L. (Rosaceae): A Review. Int. J. Mol. Sci. 2021, 22, 11163. [Google Scholar] [CrossRef]
- Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019, 116, 109004. [Google Scholar] [CrossRef]
- Kong, Q. Application of Spiraea alpina Extract in Preparing Anticancer Drugs. Chinese Patent 103585310 (CN), 19 February 2014. (In Chinese). [Google Scholar]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Shui, L.; Wang, W.; Xie, M.; Ye, B.; Li, X.; Liu, Y.; Zheng, M. Isoquercitrin induces apoptosis and autophagy in hepatocellular carcinoma cells via AMPK/mTOR/p70S6K signaling pathway. Aging 2020, 12, 24318–24332. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F.; Statti, G.A.; Menichini, F. In vitro cytotoxic activity of Salsola oppositifolia Desf. (Amaranthaceae) in a panel of tumour cell lines. Z. Naturforsch. 2008, 63, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, M.; Chen, S.; Wu, Q. Avicularin inhibits cell proliferation and induces cell apoptosis in cutaneous squamous cell carcinoma. Exp. Ther. Med. 2020, 19, 1065–1071. [Google Scholar] [CrossRef] [Green Version]
- D’Amelia, V.; Aversano, R.; Chiaiese, P.; Carputo, D. The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochem. Rev. 2018, 17, 611–625. [Google Scholar] [CrossRef]
- Choi, E.Y.; Heo, S.I.; Kwon, Y.S.; Kim, M.J. Anti-oxidant activity and anti-inflammatory effects of Spiraea fritschiana Schneid. extract. Korean J. Med. Crop Sci. 2016, 24, 31–37. (In Korean) [Google Scholar] [CrossRef]
- Sim, M.O.; Lee, H.J.; Jang, J.H.; Lee, H.E.; Jung, H.K.; Kim, T.M.; No, J.H.; Jung, J.; Jung, D.E.; Cho, H.W. Anti-inflammatory and antioxidant effects of Spiraea prunifolia Sieb. et Zucc. var. simpliciflora Nakai in RAW 264.7 cells. Korean J. Plant Resour. 2017, 30, 335–342. (In Korean) [Google Scholar]
- Lee, B.W.; Ha, J.H.; Shin, H.G.; Jeong, S.H.; Jeon, D.B.; Kim, J.H.; Park, J.Y.; Kwon, H.J.; Jung, K.; Lee, W.S.; et al. Spiraea prunifolia var. simpliciflora attenuates oxidative stress and inflammatory responses in a murine model of lipopolysaccharide-induced acute lung injury and TNF-α-stimulated NCI-H292 cells. Antioxidants 2020, 9, 198. [Google Scholar]
- Kaushik, S.; Shyam, H.; Agarwal, S.; Sharma, R.; Nag, T.C.; Dwivedi, A.K.; Balapure, A.K. Genistein potentiates centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci. 2019, 239, 117073. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol. 2010, 21, 263–268. [Google Scholar] [CrossRef]
- Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci. 2018, 208, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Andreyeva, V.Y.; Sheykin, V.V.; Kalinkina, G.I.; Razina, T.G.; Zuyeva, Y.P.; Rybalkina, O.Y.; Ul’rikh, A.V. Development of a drug based on the fruits of chokeberry (Arónia Melanocárpa (Michx.) Elliot) improving the efficiency of cancer chemotherapy. Khimiya Rastit. Syr’ya 2020, 4, 219–226. (In Russian) [Google Scholar]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
- Brighente, I.M.C.; Dias, M.; Verdi, L.G.; Pizzolatti, M.G. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007, 45, 156–161. [Google Scholar] [CrossRef]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Kukushkina, T.A.; Zykov, A.A.; Obukhova, L.A. Common cuff (Alchemia vulgaris L.) as a source of drugs of natural origin. In Proceedings of the Actual Problems of Creating New Drugs of Natural origin: Materials of the VII International Congress, St. Petersburg, Russia, 3–5 July 2003; pp. 64–69. (In Russian). [Google Scholar]
- Fedoseeva, L.M. The study of tannins of underground and aboveground vegetative organs of the Bergenia Crassifolia (L.) Fitsch., growing in Altai. Khimiya Rastit. Syr’ya 2005, 2, 45–50. (In Russian) [Google Scholar]
- Polish Pharmacopeia VI; Polskie Towarzystwo Farmaceutyczne: Warszawa, Poland, 2002.
- Gawron-Gzella, A.; Dudek-Makuch, M.; Matlawska, I. DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biol. Crac. Ser. Bot. 2012, 54, 32–38. [Google Scholar] [CrossRef]
- van Beek, T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A 2002, 967, 21–55. [Google Scholar] [CrossRef]
- Kostikova, V.A.; Kuznetsov, A.A. Changes in the sets and levels of flavonoids and Phenolcarboxylic Acids in the Leaves of Spiraea betulifolia subsp. aemiliana (Rosaceae) during Introduction into Novosibirsk Conditions. Chem. Sustain. Dev. 2021, 29, 40–50. [Google Scholar]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef]
- Gawron-Gzella, A.; Witkowska-Banaszczak, E.; Bylka, W.; Dudek-Makuch, M.; Odwrot, A.; Skrodzka, N. Chemical composition, antioxidant and antimicrobial activities of Sanguisorba officinalis L. extracts. Pharm. Chem. J. 2016, 50, 244–249. [Google Scholar] [CrossRef] [PubMed]
Species | Catechins | Phenolcarboxylic Acids | Flavonoids | Tannins | Phenolic Compounds |
---|---|---|---|---|---|
S. hypericifolia | 6.12 ± 0.53 * | 66.22 ± 2.04 * | 69.74 ± 2.32 * | 303.11 ± 27.28 * | 105.51 ± 9.50 * |
S. crenata | 2.4 ± 0.22 | 37.30 ± 3.36 | 78.31 ± 1.61 | 220.23 ± 19.82 | 68.59 ± 6.17 |
Peak Number | Compound (Spectral Characteristics, λmax, nm) | Retention Time, min | Content mg/g of Dry Extract | |
---|---|---|---|---|
S. hypericifolia | S. crenata | |||
Extracts | ||||
1 | Chlorogenic acid (244, 330) | 3.2 | 0.30 ± 0.01 * | 0.53 ± 0.01 |
2 | Gentisic acid (235, 330) | 4.7 | 0.39 ± 0.01 * | 0.14 ± 0.01 |
3 | p-Coumaric acid (226, 310) | 7.9 | 0.27 ± 0.01 | – |
4 | Hyperoside (255, 355) | 18.0 | 1.77 ± 0.02 * | 0.57 ± 0.01 |
5 | Isoquercitrin (259, 358) | 19.3 | 0.65 ± 0.01 * | 2.48 ± 0.03 |
6 | Avicularin (260, 360) | 28.4 | – | 0.43 ± 0.01 |
7 | Astragalin (265, 350) | 32.5 | – | 0.37 ± 0.01 |
8 | Nicotiflorin (260, 350) | 33.1 | 0.73 ± 0.01 * | 0.41 ± 0.01 |
9 | Cinnamic acid (216, 275) | 35.0 | 0.67 ± 0.01 * | 0.63 ± 0.01 |
10 | Isorhamnetin-3-rutinoside (250, 350) | 35.8 | – | 1.24 ± 0.01 |
11 | Quercetin (255, 372) | 40.6 | 6.62 ± 0.07 * | 2.40 ± 0.03 |
12 | Luteolin (255, 355) | 44.0 | 1.09 ± 0.01 | – |
13 | Kaempferol (260, 370) | 47.5 | 1.09 ± 0.01 * | 1.45 ± 0.02 |
14 | Apigenin (270, 340) | 49.6 | 1.52 ± 0.02 * | 1.42 ± 0.02 |
IC50 toward Cell Lines, µg/mL of Dry Extract | |||
---|---|---|---|
3T3-L1 | HepG2 | MDA-MB-231 | |
S. hypericifolia | 886 ± 63 | >1000 | 746 ± 23 |
S. crenata | 291 ± 56 | 266 ± 13 | 124 ± 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaidash, O.A.; Kostikova, V.A.; Udut, E.V.; Shaykin, V.V.; Kashapov, D.R. Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The Phenolic Profile and Biological Activities. Plants 2022, 11, 2728. https://doi.org/10.3390/plants11202728
Kaidash OA, Kostikova VA, Udut EV, Shaykin VV, Kashapov DR. Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The Phenolic Profile and Biological Activities. Plants. 2022; 11(20):2728. https://doi.org/10.3390/plants11202728
Chicago/Turabian StyleKaidash, Olga A., Vera A. Kostikova, Elena V. Udut, Vladimir V. Shaykin, and Denis R. Kashapov. 2022. "Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The Phenolic Profile and Biological Activities" Plants 11, no. 20: 2728. https://doi.org/10.3390/plants11202728
APA StyleKaidash, O. A., Kostikova, V. A., Udut, E. V., Shaykin, V. V., & Kashapov, D. R. (2022). Extracts of Spiraea hypericifolia L. and Spiraea crenata L.: The Phenolic Profile and Biological Activities. Plants, 11(20), 2728. https://doi.org/10.3390/plants11202728