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Abstract: Plants are frequently exposed to one or more abiotic stresses, including combined salinity-
drought, which significantly lowers plant growth. Many studies have been conducted to evaluate
the responses of plants to combined salinity and drought stress. However, a meta-analysis-based
systematic review has not been conducted yet. Therefore, this study analyzed how plants respond
differently to combined salinity-drought stress compared to either stress alone. We initially retrieved
536 publications from databases and selected 30 research articles following a rigorous screening.
Data on plant growth-related, physiological, and biochemical parameters were collected from these
selected articles and analyzed. Overall, the combined salinity-drought stress has a greater negative
impact on plant growth, photosynthesis, ionic balance, and oxidative balance than either stress
alone. In some cases, salinity had a greater impact than drought stress and vice versa. Drought
stress inhibited photosynthesis more than salinity, whereas salinity caused ionic imbalance more
than drought stress. Single salinity and drought reduced shoot biomass equally, but salinity reduced
root biomass more than drought. Plants experienced more oxidative stress under combined stress
conditions because antioxidant levels did not increase in response to combined salinity-drought stress
compared to individual salinity or drought stress. This study provided a comparative understanding
of plants’ responses to individual and combined salinity and drought stress, and identified several
research gaps. More comprehensive genetic and physiological studies are needed to understand the
intricate interplay between salinity and drought in plants.

Keywords: abiotic stress; antioxidants; combined stress; ionic homeostasis; photosynthesis; plant
growth; osmotic stress; salt stress

1. Introduction

Drought and salinity are the two major abiotic stresses disrupting plant growth and
productivity [1–3]. These stresses are gradually becoming more severe in many places,
mainly in arid or semi-arid areas, due to climate change [4,5]. Arid or semi-arid land covers
nearly half of the Earth’s land surface and is productive for crop cultivation if irrigation
water is available. According to reports, salt affects 20–50% of irrigated cropland [6]. By
2050, approximately half of the world’s arable land will be salinized [7]. The majority of
these areas are arid or semi-arid with little precipitation and high evapo-transpiration [8].
Drought is frequently associated with salinity stress in coastal, arid, and semiarid regions.
When the soil water evaporates, the salts become concentrated in the soil solution, resulting
in combined drought and salinity [9]. Future research should concentrate on the combined
stresses because they are crucial for ensuring sustainable agriculture in the era of climate
change [10,11].
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Salinity causes Na+ toxicity and ionic imbalance and disrupts vital metabolic processes
in plant cells, such as protein synthesis, enzymatic reactions, and ribosome functions [12–14].
High-concentration Na+ competes with other essential nutrients such as potassium, magne-
sium, ammonium, nitrate, and phosphate [15]. However, how drought affects salinity-induced
ionic imbalance in plants is not clear. Plant physiological processes are directly or indirectly
affected by insufficient water. Photosynthesis is directly inhibited by drought stress [16,17].
Drought reduces morphological and physiological traits, photosynthesis, leaf water potential,
sap movement, and stomatal conductance [18]. Moreover, osmotic stress, caused by salinity,
impairs the photosynthesis machinery, reducing stomatal conductance, which, in turn, reduces
CO2 entry, and, ultimately, the rate of photosynthesis [19]. Furthermore, Na+ toxicity, caused
by salinity, has a detrimental effect on photosynthesis [20]. However, it is unclear which stress,
salinity or drought, has a more significant negative impact on photosynthesis. The combined
effect of salinity and drought on plant photosynthesis cannot be predicted based on plant
responses to individual stresses [21]. Furthermore, the combination of salinity and drought
shows additive adverse effect on photosynthesis [22], but the magnitude of the reduction is
unknown. In plants, reactive oxygen species (ROS) cause protein denaturation, lipid peroxi-
dation, DNA damage, carbohydrate oxidation, pigment breakdown, and enzymatic activity
impairment [23]. Drought-induced stomatal closure reduces a plant’s ability to utilize sunlight
and salinity-induced Na+ toxicity, resulting in excessive ROS formation in green tissues [12,24].
As a result, salinity and drought stress can cause ROS overproduction [25–27]. However, it is
still unclear to what extent ROS production occurs when salinity and drought are combined,
as well as how the enzymatic antioxidant system responds under combined stress compared
to individual stresses.

Overall, changes in plant growth patterns occur when salinity or drought stress disrupts
various physiological mechanisms. When salts accumulate in root zones, plants experience
physiological drought [28], which affects stomatal physiology and reduces photosynthesis and
growth [29]. When soil salinity suddenly rises, leaf cells lose cell volume and turgor [30]. Leaf
appearance slows over time, and leaves become smaller [31]. Similarly, drought stress disrupts
the plant’s nutrient homeostasis and photosynthesis [32,33]. Plant cells lose turgor under
drought stress due to a lack of water, which hampers plant growth [34]. We hypothesized that
combined salinity and drought stress adversely affected plants’ physiological mechanisms
and growth patterns more prominently than individual stress. However, the quantitative
assessment of growth reduction in response to combined drought and salinity compared
to individual stress is not well-reported. In this study, we attempted to determine how
differentially combined salinity and drought stress and individual stresses affect plant growth.
The objective of this study was to investigate a plant’s response to combined drought and
salinity stress using a systematic approach. This study compiled findings from 30 different
original research publications on the effects of drought, salinity, and their combinations on
growth, photosynthesis, oxidative stress, and ionic toxicity (Supplemental file: Table S1).

2. Materials and Methods

A total of 30 original research articles were collected in December 2020 via various
keyword searches in scientific databases such as Google Scholar, Scopus, and Web of Science.
We used the keywords ‘salinity’, ‘salt’, ‘saline’, and ‘NaCl’ for finding salinity-related papers
and ‘drought’, ‘water deficit’, and ‘osmotic’ for drought-related papers. We chose research
articles with at least one keyword from both drought and salinity in the title. The research
papers that matched the selected criteria were identified, and 30 articles out of 43 met the
selection criteria. The selection criteria were: (i) the study includes control data with no
drought or salinity stresses; (ii) the study includes drought, salinity, and combined stress
treatments; (iii) at least three replications were performed; and (iv) at least one parameter
of interest was present. Experiments conducted for a short period (<7 days) under stress
conditions were omitted. The PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) reporting criteria were followed when obtaining the metadata [35,36].
The PRISMA showed the steps of the screening procedures of published articles retrieved
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from databases (Figure 1). The protocol of this systematic review was registered in the OSF
registries (https://osf.io/39s7t).
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Figure 1. The systematic literature search flow diagram following Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA). To synthesize and present findings in the current
systematic review, we adhered to the PRISMA standards [37].

During the data collection, different plant growth and physiological parameters were
considered. The concerned parameters were: plant height (PH), shoot dry weight (SDW),
root dry weight (RDW), relative growth rate (RGR), stomatal conductance (Gs), transpi-
ration (E), net CO2 assimilation (A), Na+, Cl− and K+ contents in the leaves, chlorophyll
(Chl) contents (Chl a, b, and total Chl) in leaves, superoxide dismutase (SOD), peroxidase
(POX), catalase (CAT) and ascorbate peroxidase (APX) activities, malondialdehyde (MDA),
and hydrogen peroxide (H2O2) contents in leaves.

Data for four treatments—control, drought, salinity, and combined salinity-drought—
were collected from the selected paper. Figures obtained from papers were digitized using
the WebPlotDigitizer 4.2 program (http://arohatgi.info/WebPlotDigitizer/, accessed on
13 June 2021). Some papers were published on more than one genotype; these genotypes
were treated as separate case studies.

The method recommended by Cohen et al. [38] was used to conduct the statistical
analysis, but we modified our analytical test. Since Welch’s t-test performs better when
sample size and variances are unequal, we used it instead of the Tukey test. Statistical
analyses were performed as the average of all relevant cases because species varied greatly
under different stresses (drought, salinity, and combined drought and salinity), and com-
paring parameters from various papers is not perfectly logical. The findings from every

https://osf.io/39s7t
http://arohatgi.info/WebPlotDigitizer/
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experiment were analyzed as a percentage of the control treatment for all variables. The
statistically significant differences were assessed using a two-tailed Welch’s t-test. R 4.0.1
was used for all statistical analyses and the visualization of data.

3. Results
3.1. Effects of Combined Drought and Salinity Stress on Plant Growth

SDW, RDW, PH, and RGR were used to assess the effects of salinity-drought stress
on plant growth-related parameters. Salinity-drought stress had a negative impact on
all of these parameters. SDW decreased by 14% and 16% in S+D—stressed plants com-
pared to only salinity- and drought-stressed plants, respectively, which were statistically
significant (p = 0.003 and p = 0.021, respectively) (Figure 2A). Similarly, RDW decreased
by 39% in combined-stressed plants compared to drought-stressed plants, which was a
significant (p = 0.016) difference (Figure 2B). The effects of salinity and S+D on RDW were
statistically comparable (p = 0.167) (Figure 2B). PH was reduced by 22% in salinity-drought-
treated plants compared to salinity-treated plants, which was highly significant (p < 0.001)
(Figure 2C). The reduction in PH caused by individual salinity and drought treatments
was statistically comparable (p = 0.233), as well as of individual drought and S+D treat-
ments (p = 0.077) (Figure 2C). RGR was significantly reduced under salinity-drought stress
conditions compared to salinity stress conditions (p = 0.046) (Figure 2D). The effect of
individual salinity and drought treatments was statistically comparable (p = 0.638), as well
as of individual drought and S+D treatments (p = 0.074) (Figure 2D).
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Figure 2. Effects of salinity (S), drought (D), and combined salinity and drought (S+D) stress on
growth parameters. (A) Shoot dry weight (SDW), (B) root dry weight (RDW), (C) plant height (PH),
and (D) relative growth rate (RGR). The % of control treatment is presented in the figures. The
statistical differences were assessed using Welch’s t-test where the p-value indicates the level of
statistical difference, and a p value less than 0.05 was considered statistically significant. n indicates
the number of studies.
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3.2. Effects of Combined Salinity and Drought on Photosynthetic Efficiency

Chl a content decreased by 25% in salinity-drought-stressed plants compared to
drought-stressed plants, a significant (p = 0.031) difference (Figure 3A). The reduction in-
duced by individual salinity and drought treatments was statistically comparable (p = 0.408),
as well as of salinity and S+D treatments (p = 0.067) (Figure 3A). The decreases in Chl b and
Chl a+b contents in response to salinity, drought, and salinity-drought stress conditions
were statistically non-significant (Figure 3B,C).
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Figure 3. Effects of drought (D), salinity (S), and their combined (S+D) stress on plants’ photosynthetic
efficiency. (A) Chlorophyll (Chl) a content, (B) Chl b content, (C) Chl a+b content, (D) net CO2

assimilation rate (A), (E) transpiration rate (E), and (F) stomatal conductance (Gs). The % of control
treatment is presented in the figures. The statistical differences were assessed using Welch’s t-test
where the p value indicates the level of statistical difference, and a p value less than 0.05 was
considered statistically significant. n indicates the number of studies.

A significant (p < 0.001) reduction in CO2 assimilation rate was observed in S+D-
stressed plants compared to only salinity-stressed plants (Figure 3D). S+D and drought had
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statistically non-significant effects on the CO2 assimilation rate (p = 0.541) (Figure 3D).
Drought-stressed plants had 30% lower A than salinity-stressed plants, a significant
(p < 0.001) difference (Figure 3D). In response to individual or combined salinity and
drought stresses, transpiration rate and stomatal conductance (Gs) exhibited the same
pattern as the CO2 assimilation rate (Figure 3E,F). Drought-stressed plants showed a 27%
lower transpiration rate than salinity-stressed plants, a statistically significant (p < 0.001)
variation (Figure 3E). The S+D-stressed plants had a significant (p = 0.008) drop in tran-
spiration rate when compared to solely salinity-stressed plants (Figure 3E). The effect of
S+D and drought on transpiration rate was statistically insignificant (p = 0.576) (Figure 3E).
Gs decreased by 25% in the S+D treatment compared to the salinity treatment, which was
statistically significant (p < 0.001) (Figure 3F). The effects of drought and S+D treatments
on Gs were statistically comparable (p = 0.238) (Figure 3F). Individual drought treatments
showed 17% lower Gs than salinity treatments, a significant (p = 0.027) change (Figure 3F).

3.3. Effects of Combined Salinity and Drought on Ionic Homeostasis

Na+ and Cl− contents decreased by 347% and 115% in the S+D treatment compared to
the drought treatment, with a significant (p < 0.001) difference (Figure 4A,C). Furthermore,
the Na+ and Cl− contents decreased significantly (p < 0.001 and p = 0.028, respectively) in
the drought treatment compared to the salinity treatment (Figure 4A,C). For Na+ content
(p = 0.801) and Cl− content (p = 0.082), there were no significant difference between salinity
and S+D treatment (Figure 4A,C). The findings revealed no significant changes in K+

content under salinity, drought, or S+D conditions (Figure 4B).
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Figure 4. Effects of salinity (S), drought (D), and combined salinity and drought (S+D) stress on
ionic homeostasis. (A) Na+ content, (B) K+ content, and (C) Cl− content. The % of control treatment
is presented in the figures. The statistical differences were assessed using Welch’s t-test where
the p value indicates the level of statistical difference, and a p value less than 0.05 was considered
statistically significant. n indicates the number of studies.
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3.4. Impact of Salinity-Drought on Antioxidant and Oxidative-Related Parameters

Both H2O2 and MDA levels increased in response to salinity, drought, and S+D
stress treatments compared to controls (Figure 5A,B). H2O2 content increased by 52%
in combined S+D-treated plants compared to only drought-treated plants, which was
statistically significant (p = 0.022). (Figure 5A). On H2O2 content, the effects of salinity and
S+D treatments and salinity and drought treatments were statistically comparable (p = 0.152
and p = 0.420, respectively) (Figure 5A). MDA content was significantly higher in S+D
treatments when compared to salinity (p = 0.031) and drought (p = 0.006) stress treatments
(Figure 5B). The effects of salinity and drought on MDA were statistically comparable
(p = 0.645) (Figure 5B).
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Figure 5. Effects of salinity (S), drought (D), and combined salinity and drought (S+D) stress on
antioxidant enzymes and oxidative stress-related parameters. (A) H2O2 content, (B) malondialdehyde
(MDA) content, (C) superoxide dismutase (SOD) activity, (D) catalase (CAT) activity, (E) ascorbate
peroxidase (APX) activity, (F) peroxidase (POX) activity. The % of control treatment is presented in
the figures. The statistical differences were assessed using Welch’s t-test where the p value indicates
the level of statistical difference, and a p value less than 0.05 was considered statistically significant. n
indicates the number of studies.
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All antioxidant enzymes, including SOD, CAT, APX, and POX, increased in salinity,
drought, and S+D stress treatments compared to control (Figure 5C–F). Individual salinity,
drought, and S+D stress treatments had no significant effect on SOD, CAT, APX, or POX
activity (Figure 5C–F).

4. Discussion

Drought and salinity stress reduce crop yield significantly by decreasing plants’ physi-
ological and morphological processes [39,40]. These stresses cause nutritional and ionic
imbalances, which have negative impacts on a variety of physiological and biochemical
pathways involved in plant growth and development [41]. Researchers are carrying out
many studies to investigate the effects of individual salinity and drought, or combined
salinity and drought, stress on plants [42–44]. The effects of combined salinity and drought
stress on several crops, including barley [45], cotton [46], wheat [47], sunflower [21], and
maize, have been studied [48]. Overall, these studies have shown that the combined ef-
fects of salinity and drought stress have a more significant negative impact on vegetative
parameters than their individual effects [49–51]. However, no meta-analysis has been
performed to determine how much the combination of salinity and drought affects plant
growth and physiological and biochemical aspects more than individual stresses. This
meta-analysis of 30 papers revealed some new insights into how salinity, drought, and
combined salinity-drought stress affect plant stress tolerance in different ways.

Plants generally decline in biomass production when stressed by drought or salin-
ity [52,53]. Multiple research studies found that salinity and drought stress had an additive
effect on dry-matter accumulation; thus, the two stresses coupled had a more considerable
negative impact [54–56]. According to certain studies, salinity causes an increase in the
concentration of NaCl, which results in a decrease in shoot length [57–59]. However, differ-
ing levels of water stress did not significantly impact shoot length, SDW, and RDW [42].
Simultaneous drought and salinity dramatically lowered SDW when compared to salinity
or drought alone (Figure 2A). Due to the detrimental effects of drought on both photosyn-
thetic rate and biomass accumulation over the growth period, both the total biomass of
plants and the quantity of assimilates declined [38]. Furthermore, the analysis revealed that
salinity had a more significant impact on RDW reduction than drought (Figure 2B). When
plants are subjected to drought stress, their root length increases mainly as a result of the
natural uptake of water and nutrients from deep soil [60]. Since RDW is directly related to
root length, drought stress had less effect on RDW reduction than combined stress. When
plants are subjected to environmental stresses, they dedicate more biomass production to
their roots and enlarge their root system [61]. Combined stress reduced plant height and
RGR more than individual drought or salt stress (Figure 2C,D). This could be attributed to
a lack of photosynthesis [62,63], as the plant did not acquire enough available water from
the soil in the combined stress condition, as the presence of salts under drought conditions
enhanced osmotic pressure and also induced ionic toxicity. Such imbalances deleteriously
impact various physiological and biochemical pathways involved in plant growth and de-
velopment [46]. Other proposed explanations for the growth slowdown include reduction
in carbon gains and a shift in energy from growth to salt-stress management [64,65].

Research has shown that salt stress significantly reduces chlorophyll concentration [66–68].
On the other hand, regular irrigation is connected with the highest chlorophyll content [69].
In general, physiological performance, in particular photosynthetic rate (Pn) and stomatal
conductance, increased due to an increase in chlorophyll content because those substances
aid in better light absorption. Additionally, a higher amount of light due to chlorophyll
increases the probability of Pn because light energy can be converted into chemical en-
ergy [70]. Typically, drought stress causes the plant’s chlorophyll content to decrease.
Drought stress reduces the chlorophyll content in leaves at various stages of develop-
ment [71]. Our current study found that combined salinity and drought stress considerably
reduced chlorophyll a and chlorophyll a+b content, while chlorophyll b content reduction
among treatments was statistically comparable (Figure 3A–C). Furthermore, the fall in
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chlorophyll content in response to salinity stress was more pronounced than that in drought
stress but statistically insignificant (Figure 3A–C). Our results demonstrated that salinity
had a substantially more prominent influence on chlorophyll decrease in the presence of
drought. This decrease could be attributed to chlorophyll photo-oxidation, their reaction
with singlet oxygen, the breakdown of the chloroplast structure, the inhibition of chloro-
phyll biosynthesis, the destruction of chlorophyll synthesis precursors, the inhibition of
new chlorophyll biosynthesis, and the activation of chlorophyll-degrading enzymes such
as chlorophyllase [18,68]. The overaccumulation of Na+ and Cl− ions caused by salinity
has a deleterious influence on chlorophyll concentrations [68].

Stomatal conductance, transpiration, and CO2 assimilation rate are all closely re-
lated [72,73]. Many researchers have found that salinity [41,74] or drought [75] treatments
significantly reduced stomatal conductance and transpiration rate. The accumulation of
ions in soil solution increases osmotic pressure, preventing water from being absorbed
and transported [76,77], and drought consequently triggers decreased water acquisition
in plants [78]. This inhibition causes a cascade of hormone-induced interactions, limiting
the rate of photosynthetic activity, CO2 assimilation, and stomatal opening [79–81]. How-
ever, the current study found that combined salinity and drought treatments significantly
reduced stomatal conductance, transpiration, and CO2 absorption more than the salinity
treatment (Figure 3D–F). Single drought stress inhibited photosynthesis more than single
salinity [82]. Overall, the results showed that drought stress negatively influences plant
photosynthetic properties, which could be related to a lack of water in plants, causing
hormonal imbalance. These findings support previous results that net CO2 assimilation
has little effect under salt stress [83], but combined stress, particularly drought stress, has a
significant influence [84].

Na+ and Cl− contents were much higher in salinity and combined salinity-drought stress
than in individual drought stress (Figure 4A,C), indicating that water constraint in saline
soils does not increase Na+ and Cl− accumulation in plants. Salinity stress has primarily
increased the concentration of Na+ while decreasing the concentration of K+ [85–87], causing
the Na+/K+ ratio in plant cells to fall out of balance [88,89]. Under sustained combined
stress, plants encounter ionic toxicity [90,91]. Due to the high concentration of Na+, the
photosynthetic rate is reduced by stomatal and non-stomatal constraints, notably in the
leaf [10]. As a result of the salt stress, leaf and shoot dry weight decreased [92]. Numerous
studies have shown that when plants are cultivated in salty soils with or without drought,
they accumulate a high concentration of Cl− in their shoot tissues [93–95], which concurs
with our findings (Figure 4C). Plant growth is inhibited by high concentrations of both Na+

and Cl− [96,97], but plants are more sensitive to Cl− than Na+ [98]. High Cl− concentrations
reduce photosynthetic capacity and quantum yield due to chlorophyll degradation. It could
be due to the high Cl− concentration on PSII [98].

Our findings revealed that when plants were subjected to individual salinity or
drought stress, as well as combined stress, their H2O2 and MDA contents increased com-
pared to control conditions (Figure 5A,B). However, MDA and H2O2 contents increased
significantly more under combined stress conditions than under individual stress con-
ditions (Figure 5A,B), indicating that plants experienced an excessive level of oxidative
stress under combined salinity-drought stress conditions. Under environmental stress such
as drought and salinity, the plant produces excessive ROS; it also produces antioxidants,
flavonoids, and secondary metabolites for detoxifying ROS and ensuring protein and
amino-acid stabilization under stress conditions [99,100]. Oxidative stress causes oxidative
damage by lowering photosynthetic pigments and gas exchange parameters, producing
and accumulating ROS [42,101]. Plants contain antioxidant enzymes that protect them from
the harmful effects of oxidative stress caused by abiotic and biotic stresses [42,102,103].
Higher antioxidant enzyme activity provides salt and drought resistance by scavenging
ROS, and tolerant plants have higher enzyme activities [104–107]. Under stress conditions,
the activities of antioxidant enzymes such as SOD, CAT, APX, and POX were higher than
control (Figure 5C–F). Surprisingly, in this study, we discovered that SOD, CAT, APX, and
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POX activities remained constant in salinity, drought, and their combined stress treatments
(Figure 5C–F). This suggests that under severe stress conditions such as combined salinity-
drought, the antioxidant enzyme system reaches a steady-state point or becomes exhausted,
which is consistent with previous findings [108]. Under severe combined salinity and
drought stress, several enzymes (CAT, POX, SOD, glutathione reductase) showed reduced
activity [109–111]. Concurrently, oxidative damage to the plant is caused by an increase
in MDA and H2O2 [108,111,112]. Many plants showed a greater decline in SOD with an
increase in combined stress [102]. Similarly, combining drought and salinity on halophytes
(Halogeton glomeratus) resulted in significant oxidative damage [108]. Overall, this analysis
shows that under combined stress conditions, the exhaustive or steady-state antioxidant
system is unable to detoxify the additional amounts of H2O2, resulting in oxidative damage
and eventually reduced growth under combined salinity and drought stress conditions.

During the data collection and from the analyzed results, we pointed out several
research gaps. To fill in these gaps and promote future research, we provided several
recommendations. The research gaps and recommendations are mentioned below:

• Researchers must conduct more comprehensive genetic and physiological studies to
better understand the complex interactions of salinity and drought on plants, including
the effects on photosynthesis, plant development, ion concentration, and antioxidant
and oxidative-related variables.

• Non-enzymatic antioxidants, including glutathione, ascorbic acid, tocopherols, carot-
enoids, and others, as well as enzymatic antioxidants, play essential roles in protecting
plants from oxidative damage under stress conditions. However, just a few enzymatic
antioxidants and nearly no non-enzymatic antioxidants were assessed under combined
salinity-drought stress conditions in the selected 30 research articles. As a result, more
research is needed to uncover the contribution of non-enzymatic and enzymatic
antioxidants in plants’ combined salinity and drought stress tolerance.

• In the present analysis, we found no significant change in K+ accumulation and Chl b
content in leaves between individual and combined stress conditions. More research
should be performed to justify these findings and to reveal the putative mechanisms
behind that response.

• Sub-group analysis of a dataset could reveal many new insights. For example, how
the plant clades, life forms, duration of the life cycle, C3 or C4, tolerant or susceptible,
levels of salinity or drought, plant growth conditions, etc., affect plant responses to
salinity and drought stress could be addressed using sub-group analysis. Thus, to
address these issues, more studies need to be performed.

• Osmolytes play a crucial role in cellular and plant osmoregulation under individual
salinity and drought stress conditions. However, their roles under combined salinity
and drought stress have not been reported. Thus, we were unable to include these in
this meta-analysis.

• Changes in secondary metabolites in response to combined salinity and drought stress
have not been extensively studied.

• Transcriptomics and proteomics analyses should be performed in crop plants grown
under individual and combined stress conditions to reveal further insights into com-
bined salinity and drought stress tolerance mechanisms.

5. Conclusions

Overall, our findings indicated that combined salinity-drought stress has a greater
negative impact on plant growth, photosynthesis, ionic balance, and oxidative balance
than the individual stresses. In some cases, salinity had a greater impact than drought
stress, and vice versa. Single drought stress inhibited photosynthesis more than single
salinity, while single salinity inhibited ionic imbalance more than individual salinity or
drought stress. Salinity and drought resulted in an equivalent decrease in shoot biomass,
but salinity resulted in a greater decrease in root biomass. The levels of antioxidant systems
did not increase in response to combined salinity-drought stress compared to individual
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salinity or drought stress. Thus, plants experienced more oxidative stress under combined
stress conditions. A thorough understanding of plants’ comparative responses to combined
salinity and drought stress can help breeders, and plant scientists, develop genetically
improved combined stress-tolerant crops. However, the findings of this study could be
useful in this regard because it showed how differentially plants respond to combined
salinity and drought stress than to the individual stresses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11212884/s1, Table S1: List of papers that were included in
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