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Abstract: Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most
economically important crops globally; however, their production is affected by several diseases.
To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences
of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study,
using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs
(RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases
(RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed
in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of
62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This
study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may
lay the foundation for rapid identification of functional genes and genomics-assisted breeding to
develop improved disease-resistant Brassicaceae crop cultivars.

Keywords: Brassicaceae cultivated and weedy species; resistance gene analogs and homologs

1. Introduction

The Brassicaceae family, also known as Cruciferae due to its cross-shape four-petal
flower [1], is one of the most diverse and agronomically important plant families, consist-
ing of 44 tribes, 372 genera and 4060 species [2,3]. The Brassica species (B. rapa, B. nigra,
B. oleracea, B. juncea, B. napus and B. carinata), Camelina sativa, Raphanus sativus and Sinapis
alba are crop members, which are produced for vegetables, edible oil, herbs, spices, condi-
ments and fodder. The Brassicaceae also contains many model species that are used in
various areas of research, including Arabidopsis thaliana for genetic studies [4], Arabidopsis
halleri for heavy metal (e.g., cadmium and zinc) accumulation and tolerance [5], Arabis
alpina in ecological studies [6], Barbarea vulgaris for insect resistance [7], Boechera species in
apomixis research [8], Brassica species in crop evolution [9], C. sativa in metabolic oils [10],
Cardamine hirsuta in leaf structure and morphology [11], Eutrema salsugineum in salinity
stress [12] and Lepidium meyenii in floral structure [13]. In addition, species, such as Amoracia
rusticana, Cheiranthes cheiri, Isatis tinctoria, Matthiola incana and Raphanus raphanistrum, have
industrial uses (biofuels, dyes, etc.) [14–18], while species in the genera Aethionema, Cheiran-
thus, Erysimum, Hesperis, Iberis, Lobularia, Lunaria, Malcolmia and Matthiola are cultivated as
ornamentals [19,20].

The production of Brassicaceae species, especially the crop members, is limited by
various pathogens, such as Leptosphaeria species (L. maculans, L. biglobosa), Sclerotinia sclero-
tiorum, Albugo candida, Hyaloperonospora species (H. parasitica, H. arabidopsidis), Pseudomonas
syringae, Plasmodiophora brassicae, Xanthomonas spp., Fusarium oxysporum matthioli, Botrytis
cinerea, Erysiphe cichoracearum and Alternaria species (A. brassicicola, A. brassicae), which
cause blackleg, Sclerotinia stem rot, white rust, downy mildew, bacterial leaf spot, clubroot,
black rot, Fusarium wilt, grey mould, powdery mildew and Alternaria black spot diseases,
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respectively [21–25]. Crops have qualitative and quantitative disease resistance to over-
come pathogens. The quantitative resistance, governed by many minor genes, is a partial
resistance manifesting at later stages of the crop, while qualitative resistance, governed by
major genes or resistance genes (R genes), is largely manifested from the early stages up to
the maturity stage of the crop. Among the types of resistance in Brassicaceae crops, qualita-
tive resistance is commonly used to screen lines in early stages of the genotypes for disease
resistance breeding and development. For instance, a set of pathogen isolates containing
avirulence (Avr) genes is used to screen white rust resistance in B. juncea genotypes [26] and
blackleg resistance in B. napus genotypes [27,28] by assessing a hypersensitive response
observed in the cotyledons. Clubroot resistance is also screened either in the cotyledon and
roots of the seedlings in Brassicaceae species [29–32].

The crop wild relatives (CWRs) of the cultivated Brassicaceae species can be used
to improve disease resistance by integrating favourable alleles harboured by the CWRs
into the crop members. For example, Brassica fruticulosa and Erucastrum cardaminoides
were introgressed, via wide hybridization, including chromosome doubling and bridging
species, to B. juncea with disease R genes against Sclerotinia stem rot [33,34]. In addition,
B. juncea-S. alba hybrids were developed through somatic hybridization, which leads to the
transfer of Alternaria black spot disease resistance to B. juncea [35]. The wild C genome
of Brassica incana was also introduced to B. napus through interspecific hybridization
and pyramiding for Sclerotinia stem rot resistance [36], while Alternaria black spot and
white rust resistance from the wild crucifers Diplotaxis erucoides and Brassica maurorum
were introduced into B. rapa with the aid of sequential ovary-ovule culture [37]. Lastly,
A. thaliana, B. insularis, B. atlantica, B. macrocarpa, Diplotaxis muralis, Eruca pinnatifia, Erucas-
trum gallicum, R. raphanistrum, Sinapsis arvensis, Sisymbrium loeselii and Thlaspi arvense have
been found with proteins/compounds that may enhance blackleg resistance
in B. napus [38–45].

Plant disease R genes, also called resistance-gene analogs (RGAs), play a significant
role in triggering the genetic resistance-defence response in crops [46] and are grouped
into three main classes: nucleotide-binding site (NBS)-leucine rich repeats (LRR) (NLRs),
receptor-like protein kinases (RLKs) and receptor-like proteins (RLPs). NLRs, with the
subclasses coiled-coil (CC)-NBS (CN), CNL, NBS, NBS-LRR (NL), Toll/Interleukin-1 re-
ceptor (TIR)-NBS-LRR (TNL), TIR-NBS (TN), TIR with unknown domains (TX), NLR with
other domains (Other-NLR), are generally involved in effector-triggered plant immunity
(ETI) and plant defence [47–50]. On the other hand, RLKs, with the subclasses, includ-
ing LRR-RLK, Lysin motif (LsyM) (LysM-RLK) and other receptor (Other-RLK) [51] and
RLPs, with the subclasses, including LRR-RLP and LysM (LysM-RLP), are not only in-
volved in the first line of defence by recognising pathogen elicitors [52,53], but also in plant
development [54,55].

This study aimed to determine what RGAs are homologous to cloned fungal and bac-
terial R genes across 20 Brassicaceae genomes and to assess the retention and diversification
of RGA domains in the homologs and their physical clustering patterns.

2. Results
2.1. Prediction of RGAs in Brassica cretica, Capsella bursa-pastoris and Sinapis alba

RGAugury predicted a combined total of 3738 RGAs in B. cretica (982 RGAs; with
230 NLRs, 614 RLKs and 138 RLPs), C. bursa-pastoris (1474 RGAs; with 353 NLRs, 925 RLKs
and 196 RLPs) and S. alba (1282 RGAs; with 208 NLRs, 943 RLKs and 131 RLPs) genomes
(Figure 1, Table S1). Of these RGAs, 791 were NLRs (195 TNL, 161 NL, 161 TX, 110 CNL,
53 TN, 51 NBS, 26 CN and 34 Other-NLR), 2482 were RLKs (1486 Other-RLK, 982 LRR-RLK
and 14 LysM-RLK) and 465 were RLPs (457 LRR-RLP and 8 LysM-RLP) (Figure 1).
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sin motif (LsyM)-RLK or LysM-RLK, RLK with other receptor or Other-RLK, LRR- receptor-like 
protein (RLP) or LRR-RLP and LysM-RLP in Brassica cretica (Bcr), Capsella bursa-pastoris (Cbp) and 
Sinapis alba (Sal) genomes. 
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The 3172 cloned disease R gene homologs (CDRHs) identified were all RGAs: 2062 

NLRs, 497 RLKs and 613 RLPs, with an average of 159 CDRHs (RGAs) in each of the 20 
studied genomes/species (Figure 2, Table S2). C. sativa contained the highest number of 
CDRHs: 307, followed by Boechera stricta (296), C. hirsuta (240), A. alpina (226), C. bursa-
pastoris (197), B. vulgaris (171) and Arabidopsis lyrata (162) (Figure 2). The rest of the studied 
Brassicaceae contained less than the average CDRHs per species, with the lowest in 
Schrenkiella parvula (62), Leavenworthia alabamica (91), Capsella rubella (94) and R. raphan-
istrum (99) (Figure 2). It should also be noted that A. lyrata, C. bursa-pastoris and R. sativus 
(135 CDRHs) had the highest number of CDRHs in their respective subfamilies (Figure 2). 

Figure 1. The number and distribution of resistance-gene analog (RGA) subclass nucleotide-binding
site (NBS), coiled-coil (CC)-NBS or CN, CN-leucine rich repeats (LRR) or CNL, NBS-LRR or NL,
Toll/Interleukin-1 receptor (TIR)-NBS-LRR or TNL, TIR-NBS or TN, TIR with unknown domains or
TX, NBS-LRR with other domains or Other-NLR, LRR- receptor like kinase (RLK) or LRR-RLK, Lysin
motif (LsyM)-RLK or LysM-RLK, RLK with other receptor or Other-RLK, LRR- receptor-like protein
(RLP) or LRR-RLP and LysM-RLP in Brassica cretica (Bcr), Capsella bursa-pastoris (Cbp) and Sinapis alba
(Sal) genomes.

2.2. Identification of CDRHs across the Study Species and Diseases

The 3172 cloned disease R gene homologs (CDRHs) identified were all RGAs: 2062 NLRs,
497 RLKs and 613 RLPs, with an average of 159 CDRHs (RGAs) in each of the 20 studied
genomes/species (Figure 2, Table S2). C. sativa contained the highest number of CDRHs:
307, followed by Boechera stricta (296), C. hirsuta (240), A. alpina (226), C. bursa-pastoris (197),
B. vulgaris (171) and Arabidopsis lyrata (162) (Figure 2). The rest of the studied Brassicaceae
contained less than the average CDRHs per species, with the lowest in Schrenkiella parvula
(62), Leavenworthia alabamica (91), Capsella rubella (94) and R. raphanistrum (99) (Figure 2). It
should also be noted that A. lyrata, C. bursa-pastoris and R. sativus (135 CDRHs) had the highest
number of CDRHs in their respective subfamilies (Figure 2).
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alabamica (Lal), Lepidium meyenii (Lme), Raphanus raphanistrum (Rra), Raphanus sativus (Rsa), Sinapis 
alba (Sal), Sisymbrium irio (Sir), Schrenkiella parvula (Spa) and Thlaspi arvense (Tar) genomes. 
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Figure 2. The number and distribution of cloned disease resistance gene homologs containing
resistance domains including nucleotide-binding site (NBS), coiled-coil (CC)-NBS or CN, CN-leucine
rich repeats (LRR) or CNL, NBS-LRR or NL, Toll/Interleukin-1 receptor (TIR)-NBS-LRR or TNL,
TIR-NBS or TN, TIR with unknown domains or TX, NBS-LRR with other domains or Other-NLR,
LRR- receptor like kinase (RLK) or LRR-RLK, Lysin motif (LsyM)-RLK or LysM-RLK, RLK with other
receptor or Other-RLK, LRR- receptor like protein (RLP) or LRR-RLP and LysM-RLP in Arabidopsis
halleri (Aha), Arabidopsis lyrata (Aly), Arabis alpina (Aal), Barbarea vulgaris (Bvu), Boechera stricta (Bst),
Brassica cretica (Bcr), Camelina sativa (Csa), Capsella grandiflora (Cgr), Capsella bursa-pastoris (Cbp),
Capsella rubella (Cru), Cardamine hirsuta (Chi), Eutrema salsugineum (Esa), Leavenworthia alabamica
(Lal), Lepidium meyenii (Lme), Raphanus raphanistrum (Rra), Raphanus sativus (Rsa), Sinapis alba (Sal),
Sisymbrium irio (Sir), Schrenkiella parvula (Spa) and Thlaspi arvense (Tar) genomes.

The cloned R genes against bacterial leaf spot (At_ADR1, At_BAK1, At_FLS2, At_NDR1,
At_NRG1a, At_NRG1b, At_PBS1, At_RLP30, At_RLP32, At_RPM1, At_RPS2, At_RPS4,
At_RPS5, At_RRS1 and At_SOBIR1) had a total of 752 CDRHs (Figure 3). C. sativa had
the highest number of CDRHs, 85, followed by 59 and 58 in C. hirsuta and L. meyenii,
respectively (Figure 3). For the gene conferring resistance to another bacterial disease (black
rot), At_RLP1, a total of 36 CDRHs were identified, with the highest numbers found in C.
hirsuta and C. bursa-pastoris with 6 and 5, respectively (Figure 3).
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Figure 3. The number and distribution of cloned disease resistance gene homologs associated to
Alternaria black spot (ABS), blackleg (BL), black rot (BR), bacterial leaf spot (BLS), clubroot (CR),
downey mildew (DM), Fusarium wilt (FW), grey mould (GM), powdery mildew (PM), Sclerotinia
stem rot (SSR) and white rust (WR) resistance in Arabidopsis halleri (Aha), Arabidopsis lyrata (Aly),
Arabis alpina (Aal), Barbarea vulgaris (Bvu), Boechera stricta (Bst), Brassica cretica (Bcr), Camelina sativa
(Csa), Capsella grandiflora (Cgr), Capsella bursa-pastoris (Cbp), Capsella rubella (Cru), Cardamine hirsuta
(Chi), Eutrema salsugineum (Esa), Leavenworthia alabamica (Lal), Lepidium meyenii (Lme), Raphanus
raphanistrum (Rra), Raphanus sativus (Rsa), Sinapis alba (Sal), Sisymbrium irio (Sir), Schrenkiella parvula
(Spa) and Thlaspi arvense (Tar) genomes.

In total, 921 CDRHs associated with cloned R genes against the fungal disease downey
mildew (At_ADR1, At_NRG1a, At_NRG1b, At_RLP42, At_RPP1, At_RPP2a, At_RPP2B,
At_RPP4, At_RPP5, At_RPP7, At_RPP8, At_RPP13 and At_RPP39) were identified (Figure 3).
Of these, 89 and 86 CDRHs were the highest numbers obtained in C. sativa and B. stricta,
respectively. The cloned R genes against white rust (Bju_WRR1, At_RAC1, At_WRR4a,
At_WRR4b, At_WRR8, At_WRR9 and At_WRR12) (Table 1) were recorded having a total
of 544 CDRHs (Figure 3). The highest count was found in B. stricta: 106 CDRHs, followed
by A. alpina (52 CDRHs). For blackleg, the cloned R genes (Bna_MAPk, Bna_LepR3/Rlm2,
Bna_Rlm9/4/7, At_RLM1a, At_RLM1b and At_RLM3) had a total of 509 CDRHs (Figure 3).
Both A. alpina and B. stricta had the most CDRHs, with 49 each, followed by C. hirsuta with
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44 and C. sativa with 40. For Sclerotinia stem rot, the cloned R genes (At_BAK1, At_RLP23,
At_RLP30 and At_SOBIR1) had a total of 310 CDRHs with the highest count observed in C.
sativa with 48 (Figure 3).

Table 1. Cloned genes with resistance against Brassicaceae diseases and their corresponding homologs
(similar by sequence identity) along the homolog types across the 20 studied genomes.

Cloned Gene (RGA Subclass) Same RGA Domain Different RGA Domain (Total) Total

At_ADR1 (NL) 33 NL 5 CNL, 6 NBS, 1 TNL (12) 45

At_BAK1 (LRR-RLK) 117 LRR-RLK 2 Other-RLK (2) 119

At_FLS2 (LRR-RLK) 24 LRR-RLK 0 24

At_NDR1 (TM) 0 0 0

At_NRG1a (RNL) 0 31 CNL, 28 NL, 1 LRR-RLP, 3 CN, 3 NBS (66) 66

At_NRG1b (RNL) 0 31 CNL, 26 NL, 1 LRR-RLP, 3 CN, 3 NBS (64) 64

At_PBS1 (Other-RLK) 20 Other-RLK 0 20

At_RAC1 (TNL) 48 TNL 10 NL, 3 NBS, 13 TN, 6 TX, 1 Other-NLR (33) 81

At_RFO1 (Other-RLK) 119 Other-RLK 0 119

At_RFO2 (LRR-RLP) 31 LRR-RLP 28 LRR-RLK (28) 59

At_RFO3 (Other-RLK) 50 Other-RLK 0 50

At_RIN4 (CC) 0 0 0

At_RLM1a (TNL) 61 TNL 5 NBS, 12 NL, 9 Other-NLR, 16 TN, 38 TX (80) 141

At_RLM1b (TNL) 81 TNL 4 NBS, 23 NL, 8 Other-NLR, 16 TN, 31 TX, 1 LRR-RLP (83) 164

At_RLM3 (TN) 5 TN 3 NL, 2 NBS, 1 Other-NLR, 7 TNL, 4 TX (17) 22

At_RLP1 (LRR-RLP) 36 LRR-RLP 0 36

At_RLP23 (LRR-RLP) 117 LRR-RLP 0 117

At_RLP30 (LRR-RLP) 47 LRR-RLP 0 47

At_RLP32 (LRR-RLP) 159 LRR-RLP 1 LRR-RLK (1) 160

At_RLP42 (LRR-RLP) 112 LRR-RLP 0 112

At_RPM1 (NL) 14 NL 1 LRR-RLP, 1 NBS (2) 16

At_RPP1 (TNL) 26 TNL 1 CNL, 22 Other-NLR, 2 NBS, 6 NL, 15 TN, 30 TX (76) 102

At_RPP13 (CNL) 14 CNL 4 NBS, 1 CN, 16 NL (21) 35

At_RPP2a (TNL) 56 TNL 19 NL, 9 Other-NLR, 7 TN, 7 TX (42) 98

At_RPP2b (TNL) 20 TNL 1 CNL, 2 NBS, 3 NL, 4 Other-NLR (10) 30

At_RPP39 (CNL) 71 CNL 11 CN, 3 NBS, 26 NL, 3 LRR-RLP (43) 114

At_RPP4 (TNL) 8 TNL 3 NL, 2 Other-NLR, 5 TN, 5 TX (15) 23

At_RPP5 (TNL) 8 TNL 2 NL, 3 Other-NLR, 6 TN, 11 TX (22) 30

At_RPP7 (NL) 56 NL 1 CN, 12 CNL, 1 LRR-RLP, 10 NBS (24) 80

At_RPP8 (CNL) 80 CNL 12 CN, 6 NBS, 24 NL (42) 122

At_RPS2 (NL) 6 NL 18 CNL, 3 NBS (21) 27

At_RPS4 (TNL) 32 TNL 1 NBS, 6 NL, 7 Other-NLR (14) 46

At_RPS5 (TNL) 0 58 CNL, 6 CN, 7 NBS, 22 NL (93) 93

At_Rpw8.1 (RNL) 0 0 0

At_Rpw8.2 (RNL) 0 0 0

At_RRS1 (TNL) 26 TNL 0 (15) 41

At_SOBIR1 (LRR-RLK) 26 LRR-RLK 1 Other-RLK (1) 27

At_WRR12 (TNL) 29 TNL 5 NL, 2 TX, 4 LRR-RLP (11) 40

At_WRR4a (TNL) 37 TNL 4 NL, 4 Other-NLR, 6 TN, 33 TX (47) 84
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Table 1. Cont.

Cloned Gene (RGA Subclass) Same RGA Domain Different RGA Domain (Total) Total

At_WRR4b (TNL) 51 TNL 2 LRR-RLP, 5 NL, 6 Other-NLR, 17 TN, 38 TX (68) 119

At_WRR8 (TNL) 56 TNL 12 TN, 4 NBS, 11 NL, 2 Other-NLR, 6 TX (35) 91

At_WRR9 (NL) 6 NL 1 NBS, 1 Other-NLR, 9 TN, 35 TNL, 16 TX (62) 68

Bju_WRR1 (CNL) 39 CNL 10 NL, 9 CN, 3 NBS (22) 61

Bna_LepR3/Rlm2 (LRR-RLP) 97 LRR-RLP 0 97

Bna_MAPk (Other-RLK) 8 Other-RLK 0 8

Bna_Rlm9/4/7 (Other-RLK) 101 Other-RLK 0 101

Bol_FocBo1 (TNL) 23 TNL 3 Other-NLR, 7 TN, 14 TX, 8 NL (32) 55

Bra_cRa/cRb (TNL) 14 TNL 1 Other-NLR, 5 TN, 1NBS, 7 TX (14) 28

Bra_Crr1a (TNL) 28 TNL 7 NL, 6 Other-NLR, 28 TN, 19 TX, 2 NBS (62) 90

Total 1992 1181 3172

At = Arabidopsis thaliana, Bju = Brassica juncea, Bol = Brassica oleracea, Bra = Brassica rapa, Bna = Brassica napus,
Resistance-gene analogs (RGA) domain in comparison to the cloned gene. CN = coiled-coil (CC)-nucleotide-
binding site (NBS), CNL = CC-NBS-leucine rice repeats (LRR), NL = NBS-LRR, TN = Toll/Interleukin-1 re-
ceptor (TIR)-LRR, TNL = Toll/Interleukin-1 receptor (TIR)-NBS-LRR, TX = Toll/Interleukin-1 receptor (TIR)
with other domains, Other-NLR = NBS-LRR with other domains, RNL = resistance to powdery mildew 8
(Rpw8)-NBS-LRR, LRR-RLK = LRR-receptor-like kinase proteins (RLK), Other-RLK= RLK with other domains,
LRR-RLP = LRR-receptor-like proteins, TM = transmembrane.

The cloned R genes (Bol_FocBo1, At_RFO1, At_RFO2 and At_RFO3) against Fusarium
wilt had 283 CDRHs in total with the highest numbers being 38 (C. sativa) and 23 CDRHs
(C. hirsuta and A. alpina) (Figure 3). The cloned R genes against grey mould (At_RLP42
and At_RLM3) had a total of 134 CDRHs with the highest CDRHs obtained in C. sativa
(21 CDRHs), S. alba (13 CDRHs) and C. bursa-pastoris (13 CDRHs) (Figure 3). The cloned R
genes (Bra_Crr1a and cRa/cRb) against clubroot had a total of 117 CDRHs with A. alpina
and S. alba containing the highest counts with 17 and 12 CDRHs, respectively (Figure 3).
At_ADR1 against powdery mildew had 45 CDRHs, with 7 CDRHs in C. sativa as the
highest count. At_RLM3 conferring resistance to Alternaria black spot had 22 CDRHs
with 2 CDRHs as the highest in each of eight species (A. alpina, B. stricta, B. vulgaris, C.
bursa-pastoris, Capsella grandiflora, E. salsugineum, R. sativus and T. arvense) (Figure 3).

2.3. Retention and Diversification of RGA Domains in CDRHs

In terms of RGA subclasses, CDRHs were composed of 647 TNL, 613 LRR-RLP, 402 NL,
361 CNL, 301 Other-RLK, 271 TX, 196 LRR-RLK, 168 TN, 89 Other-NLR, 78 NBS and 46 CN
(Figure 2), which shows the variation in CDRHs throughout the Brassicaceae family.

The RGA domain retention in the CDRHs (same RGA domain compared to its refer-
ence cloned R gene) and diversification (different RGA domain compared to its reference
cloned R gene) were also noted in this study (Table 1). In total, 1992 (63%) and 1180
(37%) out of the 3172 CDRHs had retained and diversified their RGA domain compared
to their reference cloned R gene, respectively (Table 1). It can be noted that the cloned R
genes classed as Other-RLK had their corresponding CDRHs also classified as Other-RLK
(100%, 298 out of 298 CDRHs). The next highest numbers retaining the same RGA domain
were 98%, 95% and 61% in CDRHs from the LRR-RLK (167 out of 170 CDRHs), LRR-RLP
(599 out of 628 CDRHs) and CNL (204 out of 332 CDRHs) cloned R genes, respectively.
The remaining CDRHs from the NL, TNL and TN cloned R genes had 49% (115 out of
236 CDRHs), 45% (604 out of 1356 CDRHs) and 38% (5 out of 13 CDRHs) RGA domain
retention, respectively.

The gene diversification could either be through truncation (one or two domains
omitted), addition (one or two domains were added) or the combination of truncation and
addition of RGA domains. Of the diversification results in CDRHs, 100% (130 CDRHs) of
the CDRHs from RNL cloned R genes did not have an RNL domain. Diversification was
also observed in CDRHs from cloned R genes that were TN (62% or 8 out of 13 CDRHs),
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TNL (55% or 752 out of 1356 CDRHs), NL (51% or 121 out of 236 CDRHs), CNL (49% or 128
out of 332 CDRHs), LRR-RLP (5% or 29 out of 628 CDRHs) and LRR-RLK (2% or 3 out of 170
CDRHs). Of the cloned R genes, which were NLs, all the CDRHs (29) had additional RGA
domains, while for the LRR-RLP cloned R genes 59% (71 out of 121 diversified CDRHs) had
an additional one or two RGA domains. On the other hand, the combination of truncation
and addition of RGA domains was observed in CDRHs from cloned R genes TN (63% or 5
out 8 diversified CDRHs), TNL (55% or 411 out of 752 diversified CDRHs) and RNL (54%
or 70 out of 130 diversified CDRHs).

2.4. Identification of CDRH Clusters in Arabis alpina, Camelina sativa and Cardamine hirsuta

The organisation of CDRHs with RGA domains across chromosomes of A. alpina, C.
sativa and C. hirsuta was studied to investigate the gene clustering of CDRHs in Brassica crop
relatives. We identified a total of 72 gene clusters, consisting of 62 homogeneous RGA clusters
(38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters (Figures 4–6). C.
sativa contained the highest number of gene clusters with 28 (Figure 5), followed by C. hirsuta
with 24 gene clusters (Figure 6) and A. alpina with 20 gene clusters (Figure 4).
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Figure 4. Distribution of cloned disease resistance gene homologs in Arabis alpina (1st inner layer
in their corresponding position in A. alpina genome). The tracks in the circos plot, from outer
to inner, show chromosome (Chr) number and types of gene cluster. GC_NLR = gene cluster
(GC) with all nucleotide-binding site leucine rice repeats (NLR) members, GC_RLP = GC with all
receptor-like proteins (RLP) members, GC_RLK = GC with all receptor-like kinase proteins (RLK)
members, GC_H = GC with members are a mixture of NLR, RLK and/or RLP, Chr = chromosome and
M = position in million base pairs.
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Figure 5. Distribution of cloned disease resistance gene homologs in Camelina sativa (1st inner
layer in their corresponding position in C. sativa genome). The tracks in the circos plot, from outer
to inner, show chromosome (Chr) number and types of gene cluster. GC_NLR = gene cluster
(GC) with all nucleotide-binding site leucine rice repeats (NLR) members, GC_RLP = GC with all
receptor-like proteins (RLP) members, GC_RLK = GC with all receptor-like kinase proteins (RLK)
members, GC_H = GC with members are a mixture of NLR, RLK and/or RLP, Chr = chromosome
and M = position in million base pairs.
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Figure 6. Distribution of cloned disease resistance gene homologs in Cardamine hirsuta (1st inner
layer in their corresponding position in C. hirsuta genome). The tracks in the circos plot, from
outer to inner, show chromosome (Chr) number and types of gene cluster. GC_NLR = gene cluster
(GC) with all nucleotide-binding site leucine rice repeats (NLR) members, GC_RLP = GC with all
receptor-like proteins (RLP) members, GC_RLK = GC with all receptor-like kinase proteins (RLK)
members, GC_H = GC with members are a mixture of NLR, RLK and/or RLP, Chr = chromosome
and M = position in million base pairs.
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3. Discussion

By aligning the 49 cloned R genes from 11 diseases, across 20 Brassicaceae genomes
(crop species C. sativa, R. sativus and S. alba and wild species A. halleri, A. lyrata, A. alpina,
B. vulgaris, B. stricta, B. cretica, C. grandiflora, C. bursa-pastoris, C. rubella, C. hirsuta, E.
salsugineum, L. alabamica, L. meyenii, R. raphanistrum, Sisymbrium irio, S. parvula and T.
arvense), an inventory of specific RGAs associated with cloned R genes was found. This
provides an opportunity to search for novel CDRHs, which may confer disease resistance
(especially the CDRHs in wild species), which can be used for future crop improvement
once function is established in the crop species. Once cloned, molecular markers can be
developed as a diagnostic tool in screening additional germplasm to characterise further
lines for resistance.

The RGAs in B. cretica, C. bursa-pastoris and S. alba genomes and specific RGAs (CDRHs)
obtained here are additional gene resources to the previously identified Brassicaceae RGA
repertoire [51,56,57]. The number of S. alba RGAs in this study was higher than the RGAs
obtained in the 18 species: Aethionema arabicum, A. halleri, A. lyrata, A. thaliana, A. alpina, B.
vulgaris, B. stricta, B. rapa, C. grandiflora, C. rubella, C. hirsuta, E. salsugineum, L. alabamica,
R. raphanistrum, R. sativus, S. irio, S. parvula and T. arvense genomes; the number of C.
bursa-pastoris RGAs identified in this study was higher than the number of RGAs in the
21 species: Aethionema arabicum, A. halleri, A. lyrata, A. thaliana, A. alpina, B. vulgaris, B.
stricta, B. rapa, B. nigra, B. oleracea, C. grandiflora, C. rubella, C. hirsuta, E. salsugineum, L.
alabamica, R. raphanistrum, R. sativus, S. irio, S. parvula and T. arvense genomes [51,58].
Only the tetraploid Brassica crops (B. juncea, B. napus and B. carinata), C. sativa (hexaploid)
and the wild species L. meyenii (octaploid) had greater numbers of RGAs than C. bursa-
pastoris (tetraploid) [51,56], indicating that polyploidisation is a factor leading to more
RGAs in species in the Brassicaceae family. Polyploid plants also have a greater number of
transposable elements, an evolution driver of genome expansion [59,60], compared to its
progenitors [61,62].

Brassica crops have experienced extensive breeding and development to improve
disease resistance due to their long history of domestication that may have been a factor
for RGA number expansion [63]. A previous study showed an average of 1563 RGAs
in 11 genomes of the domesticated species compared to the average of 863 RGAs in 19
genomes of the wild species [51]; a similar trend was observed in this study between the
domesticated and wild species. The number of RGAs in B. cretica (wild species) in this
study was lower compared to the number of RGAs found in domesticated Brassica crops.
This was also the case with the specific RGAs for R. sativus and R. raphanistrum (CDRHs in
this study) and the RGAs obtained in a previous study [51], where domesticated radish
had more RGAs compared to wild radish. However, this is not always the case as B.
macrocarpa (wild cabbage species) had more RGAs compared to 10 domesticated cabbage
species in pangenome analysis [58]. Here, the lesser RGAs in B. cretica and R. raphanistrum
than their domesticated counterpart species may also be due to the quality of genomes, as
domesticated crops often have better genome qualities.

The domesticated Brassicaceae members (used in this study) have also been reported
as excellent sources of disease resistance. For instance, C. sativa has been reported to have
R genes providing resistance against Alternaria black spot, blackleg, downey mildew and
Sclerotinia stem rot [40,64,65], R. sativus has resistance against black rot [66], clubroot [67,68],
downey mildew [69,70], Fusarium wilt [71], white rust [72] and Turnip mosaic virus [73,74]
and S. alba has resistance to blackleg [39,75], Turnip mosaic virus [76] and Sclerotinia stem
rot [77,78]. However, further investigation is needed as to whether the RGAs we identified
in these three species are associated with the resistant phenotype. Nevertheless, our study
supports the previous findings and the RGAs we identified are a valuable reference for
future studies.

Unlike the cultivated crops, information towards genetic disease resistance in Bras-
sicaceae wild species is limited. Of the wild Brassicaceae species we included, a few of
them have been reported previously as potential R gene source against a particular disease,
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for instance, B. vulgaris against Alternaria black spot and black rot [79], B. cretica against
Verticillium wilt disease [80], C. bursa-pastoris against clubroot [81], Sclerotinia stem rot [82]
and Alternaria black spot [83], R. raphanistrum against blackleg [38], clubroot [84], downey
mildew [85] and Sclerotinia stem rot [86] and T. arvense against blackleg [42]. However, the
association between the reported phenotypic disease resistance in these species and the
identified RGAs here needs further research.

The retention and diversification of RGA domains in the Brassicaceae family are
a result of evolutionary events, such as whole-genome triplication/duplication [87–91].
Homologs may confer similar or dissimilar function to the reference gene [92,93]. A func-
tional study revealed the A. lyrata homologs AL.MTP11A and AL.MTP11B are redundant to
AT.MTP11 in A. thaliana [94], a gene involved in Mn2+ transport and tolerance [95]. Similarly,
AL.TSO2A and AL.TSO2B in A. lyrata are homologous to AT.TSO2 in A. thaliana [94], a gene
functionally related to ribonucleotide reductase [96]. On the other hand, diversification in
domains may indicate a different function of the original gene. For instance, the At_RPP1
homolog At_RPP1Nd (Nd accession) recognises a single allele of Avr gene ATR1NdWsB, while
At_RPP1WsB (WsB accession) also detects ATR1NdWsB plus three additional alleles with
divergent sequences to confer resistance against downey mildew [97].

RGA domains have also been reported to be prone to alteration, such as truncation
or even loss of function, as they respond to selection pressure (e.g., presence of virulent
pathogens) [98,99]. Truncated R genes encoding two-part proteins, such as CN, TN and
NL, are evolutionary gene reservoirs and they readily allow for the formation of new
genes through duplications, translocation and fusions [100–102]. In an RGA, added LRR
domains can indicate pathogen specificity. For instance, the LRR domain in At_RPP1
directly interacts with Avr ATR1 [103], much like the L6 recognition of AvrL567 and the
L11 recognition of AvrL11 [104,105]. The LRR domain is also important for gene/protein
stability [106]. Solo RGA domains could also confer resistance, as reports showed that
the overexpression of NBS domains in a potato R gene Rx (CNL) resulted in an HR [107].
However, the case is different to the CC domain overexpression in At_RPS5, as it did not
yield a hypersensitive response, but when both CC and NBS were overexpressed, it resulted
in a hypersensitive response [108].

In gene clustering, C. sativa contained the highest total number of CDRHs clusters due
to its higher number of chromosomes, 20, compared to 8 chromosomes of A. alpina and
C. hirsuta. The RGA clusters are more prone to evolutionary processes, such as sequence
exchanges, insertion or duplication, followed by neofunctionalisation [109–112]. The NLRs
in a gene cluster can undergo mono or polymerisation, which results in massive expansions
of pathogen recognition [111]. For instance, an NLR cluster with eight members contained
two functionally characterised R genes, At_RPP4 and At_RPP5, recognizing the Avr genes
ATR4 and ATR5 in the downey mildew resistance response, respectively [113]. Furthermore,
it has been shown that RLPs in a gene cluster are most likely pathogen responsive [114].
Two cloned RLP genes, At_RLP30 and At_RLP32, which are involved in bacterial leaf spot
resistance, form a gene cluster on At03 in A. thaliana [56,115,116], while a gene cluster
on A10 in B. napus consists of LepR3/Rlm2, two alleles of a cloned RLP gene that confers
blackleg resistance [117,118] and a homolog of At_PBS1 [56]. On the other hand, 16 RLK
clusters associated with disease resistance were found in A. thaliana and Brassica crops [56].
Heterogeneous gene clusters with members having RGA domains and including secreted
peptides associated to blackleg and clubroot were also observed in B. napus [119]. Thus, the
CDRHs obtained here, especially those that were clustered, are putative R genes that may
confer disease resistance.

4. Materials and Methods
4.1. Mining the Protein Sequences of the Cloned Genes

In total, 49 cloned R genes identified in Brassica crop species and A. thaliana that confer
resistance against fungal and bacterial diseases that affect Brassicaceae species (Table 2)
were selected based on the following criteria set in a previous study [56]: (1) the R gene
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pairs to an effector or Avr gene in a gene-for-gene resistance or (2) confers resistance
in the form of a hypersensitive response (usually observed early stage), indicating its
involvement in a gene-for-gene interaction or (3) acts as a helper or accessory gene pairing
to the existing R–Avr interaction. The protein sequences of the 49 cloned R genes were
retrieved from the UniProtKb (https://www.uniprot.org/uniprot/, verified and accessed
on 8 August 2022) [120] or NCBI (https://www.ncbi.nlm.nih.gov/, verified and accessed
on 8 August 2022) website.

Table 2. The 49 cloned R genes from Arabidopsis thaliana (At), Brassica juncea (Bju), Brassica napus (Bna)
and Brassica rapa (Bra) used for homology searches.

Gene (Accession ID/Reference) Pathogen

At_ADR1 (Q9FW44 U) [121–123] Hyaloperonospora arabidopsidis F, Erysiphe
cichoracearum F and Pseudomonas syringae B

At_BAK1 (Q94F62 U) and At_SOBIR1 (Q9SKB2 U) [124,125] and At_RLP30
(Q9MA83 U) [115,126] P. syringae and Sclerotinia sclerotiorum F

At_RPS2 (Q42484 U) [127], At_RPS4 (Q9XGM3 U) [128] and At_RPS5 (O64973 U)
[129], At_FLS2 (Q9FL28 U) [130,131], At_NDR1 (O48915 U) [132], At_PBS1

(Q9FE20 U) [133], At_RLP32 (Q9M9X0 U) [116], At_RPM1 (Q39214 U) [134,135],
At_RIN4 (Q8GYN5 U) [136–140] and At_RRS1 (P0DKH5 U) [141,142]

P. syringae

At_NGR1a (Q9FKZ1 U) and At_NGR1b (Q9FKZ0 U) [122,123] Albugo candida F, H. arabidopsidis,
and P. syringae

At_RFO1 (Q8RY17 U) [143], At_RFO2 (Q9SHI4 U) [144] and At_RFO3 (Q9LW83 U)
[145] Fusarium oxysporum matthioli F

At_RLM1a (F4I594 U) and At_RLM1b (Q9CAK1 U) [146], Bna_MPK9 (A0A078IFE9
U) [147], Bna_LepR3/Rlm2 (I7C3X3 U/A0A0B5L618 U) [118,148], Bna_Rlm9/4/7

(CDX67982.1 N) [149,150]
Leptosphaeria maculans F

At_RLM3 (Q9FT77 U) [151] L. maculans, Botrytis cinerea F,
Alternaria brassicicola F and A. brassicae F

At_RLP1 (Q9LNV9 U) [152,153] Xanthomonas spp. B

At_RLP23 (O48849 U) [125,154] S. sclerotiorum

At_RLP42 (Q9LJS0 U) [155] B. cinerea and H. arabidopsidis

At_RPP1 (F4J339 U) [156], At_RPP2a (F4JT78 U) and At_RPP2b (F4JT80 U) [157],
At_RPP4 (F4JNA9 U) [158], At_RPP5 (F4JNB7 U) [159], At_RPP7 (Q8W3K0 U)

[160,161], At_RPP8 (Q8W4J9 U) [162], At_RPP13 (Q9M667 U) [163] and At_RPP39
(H9BPR9 U) [164]

H. arabidopsidis

At_Rpw8.1 (Q9C5Z7 U) and At_Rpw8.2 (Q9C5Z6 U) [165] E. cichoracearum

At_RAC1 (Q6QX58 U) [166], At_WRR4a (Q9C7X0 U) and At_WRR4b (MK034466 N)
[167], At_WRR8 (MK034463 N), At_WRR9 (MK034464 N), At_WRR12 (MK034462

N) [168] and Bju_WRR1 (A0A0B5L618 U) [169]
A. candida

Bra_cRa/cRb (M5A8J3 U) [170,171] and Bra_Crr1a (AB605024.1 N) [172] Plasmodiophora brassicae F

Bol_FocBo1 (BAQ21734.1 N) [173] F. oxysporum f. sp. Conglutinans F

F = fungus, B = bacteria, RGA = resistance-gene analog, U = https://www.uniprot.org/uniprot/, accessed on
10 October 2020) website, N = https://www.ncbi.nlm.nih.gov/ (accessed on 10 October 2020).

4.2. Mining of Resistance Gene Analogs

The list of predicted RGAs and their subclasses (CN, CNL, NBS, NL, TNL, TX, CNL,
TN, Other-NLR, Other-RLK, LRR-RLK, Lysm-RLK, LRR-RLP and Lysm-RLP) derived
from the RGAugury pipeline [174] in A. alpina, A. halleri, A. lyrata, B. vulgaris, B. stricta,
C. sativa, C. grandiflora, C. rubella, C. hirsuta, E. salsugineum, L. alabamica, L. meyenii, R.
raphanistrum, R. sativus, S. irio, S. parvula and T. arvense genomes were taken from a previous
study [51], available at https://research-repository.uwa.edu.au/en/datasets/brassicaceae-

https://www.uniprot.org/uniprot/
https://www.ncbi.nlm.nih.gov/
https://www.uniprot.org/uniprot/
https://www.ncbi.nlm.nih.gov/
https://research-repository.uwa.edu.au/en/datasets/brassicaceae-rga-candidate-protein-sequences
https://research-repository.uwa.edu.au/en/datasets/brassicaceae-rga-candidate-protein-sequences
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rga-candidate-protein-sequences, accessed on 23 November 2020. The RGAugury pipeline
was also used in this study to perform in silico prediction of RGAs and their subclasses in
the genomes of B. cretica [175], C. bursa-pastoris [176] and S. alba [177].

4.3. Identification of Homologs

The RGAs from the 20 Brassicaceae genomes and the 49 cloned R genes were aligned
using Protein Basic Local Alignment Search Tool (BLASTp) [178]. From the BLASTp results,
the criteria of the previous studies in identifying homologous genes in plants were applied
by removing hits with greater than E-45 [56,179–181] and less than 148 amino acid or aa
(coverage) [56] from further analyses. We applied an additional criterion by removing any
BLASTp results lower than 60% similarity from further analyses as the homology search
was conducted between crop R genes and several wild species. Further classification of
RGAs was undertaken, according to whether they had the similar resistance domain to
their homologous cloned R gene counterpart or whether it was different [56].

4.4. Gene Cluster Analysis

Among the 20 Brassicaceae species used in this study, only three genomes, A. alpina [182],
C. hirsuta [11] and C. sativa [183], were used for gene cluster analysis, due to the accessi-
bility of their pseudo-chromosomes (assigned chromosomes), from which gene clusters
were derived. Two types of gene clusters were then identified, with the first defined as a
homogenous RGA cluster (having at least 2–8 RGAs of the same class either NLR, RLK or
RLP) situated within a 200 kb region on the same chromosome [184,185]. The second was
defined as a heterogeneous cluster, containing different classes of RGAs [184,185].

5. Conclusions

CWRs with exotic genetic libraries provide rare RGAs, which could be a GMO alter-
native in improving disease resistance in Brassicaceae crops. This study suggests several
domesticated and wild species could be a potential R gene source for a particular disease re-
sistance. Based on their CDRHs having RGA domains, A. alpina and B. stricta, C. hirsuta and
C. bursa-pastoris and C. sativa are good sources of resistance against white rust, black rot and
Sclerotinia stem rot, respectively. Though the challenge remains in the gene transfer, several
methodologies, such as bridging crosses, chromosome doubling after hybrid crossing and
somatic hybridization, have found success in Brassicaceae crop breeding. Several CDRHs
have also been found in less-explored disease resistance, such as Alternaria black spot,
bacterial leaf spot, black rot, grey mould and powdery mildew in Brassicaceae crops, and
the RGAs obtained are a valuable starting reference for future studies. Lastly, the current
findings of CDRHs in crops C. sativa, R. sativus and S. alba and the 17 wild Brassicaceae
species and the previous findings of CDRHs in A. thaliana and Brassica crops [56] provide
an opportunity to study the evolutionary differences in 49 cloned R genes (reference in this
study) and their homologs throughout the Brassicaceae family.
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www.mdpi.com/article/10.3390/plants11223010/s1, Table S1: List of resistance-gene analogs (RGAs)
in Brassica cretica, Capsella bursa-pastoris and Sinapis alba using RGAugury pipeline.
Table S2: List of resistance-gene analogs (RGAs) homologous to cloned disease resistance genes
(R genes) and the E-value and similarity basis.
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