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Abstract: Citrus plants are important fruit tree species; however, the breeding of high-quality varieties
of citrus species is a time-consuming process. Using haploid-derived plants from anther culture
may reduce the time required for obtaining purebred lines. This study aimed to genetically verify
whether anther culture-derived sour orange (Citrus aurantium L.) plants developed from somatic
embryos or haploid tissues. Sour orange anthers were cultured in N6 and MS media to induce calli
and somatic embryos. N6 liquid medium supplemented with 1 mg·L−1 gibberellic acid and 200 µM
spermidine resulted in a 10% increase in callus and embryo induction rates. Regenerated plants
were validated using simple sequence repeat markers. Out of the 109 regenerated plants, ploidy
analysis identified 99 diploids, two haploids, and eight putative aneuploids; out of the 99 diploid
plants, 33 were haploid-derived homozygous diploids. The chromosomal analysis confirmed most
plants as diploids, whereas some were identified as aneuploids (19–21 chromosomes). Furthermore,
phylogenetic analysis confirmed that the resultant homozygous or heterozygous plants were haploid-
derived. This is the first report of haploid-derived homozygous diploid and aneuploid sour orange
plants obtained through anther culture. Moreover, the anther cultivation technique described herein
can be applied to other citrus varieties.

Keywords: aneuploidy; callus culture; chromosome analysis; ploidy; simple sequence repeat; somatic
embryo

1. Introduction

Citrus plants belong to the family Rutaceae, which includes some of the most econom-
ically important and globally widespread fruit tree crops [1–4]. In terms of the cultivated
area and production of domestic fruit trees, citrus fruits rank third (after apples and pears)
and are in high supply and demand [5]. Although sour orange (Citrus aurantium L.) prop-
agates through seeds, it is mainly cultivated using rootstocks [6,7]. Recent studies have
shown that this species has various pharmacological properties, including anti-cancer, anti-
anxiety, anti-obesity, antibacterial, antioxidant, insecticidal, and antidiabetic effects [8,9].
However, sour orange is highly susceptible to infection by citrus tristeza virus [6,10]. Fur-
thermore, sour oranges produce numerous seeds, which is a major disadvantage in terms
of its market value [11]. Despite these drawbacks, it has high utility as it can be effectively
used as a tissue culture model [12].

Generating superior lines of citrus cultivars using conventional breeding methods,
such as crossing, is time-consuming and labor-intensive owing to their high heterozygos-
ity, long juvenility, self-incompatibility, and polyploidy [1,13–17]. Furthermore, breeding
and selection of purebred lines are time-consuming processes [18]. However, compared
to conventional breeding, anther culture facilitates the generation of haploid plants in a
shorter period of time. This allows the production of completely homozygous lines from
heterozygous parents in a single generation [15,19]. This technique also permits the imme-
diate confirmation of recessive traits and phenotypes (for example, morphological features
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such as dwarfism) since haploid plants are generally smaller and exhibit significantly less
vigor than their parents [18,20,21].

Haploid plants cannot undergo normal meiosis, which hinders generational progress [18,19].
In contrast, double haploids (homozygous diploids) obtained through natural or artificial
treatments undergo normal meiosis, thus allowing generational progress [18]. Conse-
quently, homozygous individuals obtained from haploids have important applications in
crop breeding, such as mutagenesis, transformation, genetic analysis, and gene sequenc-
ing [15,22,23]. Therefore, anther culture has a high potential for plant breeding and crop
improvement [24,25], and has been studied in a wide range of plant species [26,27]. To date,
citrus plants obtained using anther culture include Poncirus trifoliata (L.) Raf. (trifoliate
orange), Citrus clementina Hort. ex Tan. (clementine), Citrus sinensis (L.) Osbeck (sweet or-
ange), Citrus sinensis (L.) Osbeck (Valencia sweet orange), Citrus limon (L.) Burm. f. (lemon),
and Clausena excavata [1,28–32]. However, systematic breeding of citrus varieties using
a combination of different pure lineages is insufficient for obtaining more pure-lineage
varieties. Therefore, it is necessary to develop a suitable anther culture technique that can
be used to obtain more pure-lineage varieties in large numbers.

Aneuploidy is a type of chromosomal anomaly that involves an increase or decrease
in the number of chromosomes [33] and is caused by the non-separation of chromosomes
during meiosis and mitosis [34–36]. While aneuploidy causes serious disorders in ani-
mals [35,37], in plants, the known consequences include myriad phenotypic and structural
changes, such as growth retardation [38–41]. Although aneuploidy occurs spontaneously
in some plants [42], it has also been reported to occur through crossbreeding in many crops,
such as tobacco, corn, guava, pear, apple, and citrus [43–46]. Moreover, anther culture
has been used to produce aneuploid tobacco plants [47]. Among haploid-derived plants
obtained from some maize lines and anthurium plants, the incidence of aneuploidy is
reportedly up to 15% [48,49]. Aneuploid plants have also been generated in citrus cultivars
through anther culture [30,34,50,51]. The frequent occurrence of aneuploid individuals—
including haploids and diploids—in plants obtained through anther culture [49] requires
further investigation.

In this study, an optimum medium for anther culture of sour orange was developed.
This medium was used to culture citrus embryos to determine the efficiency of anther
culture of sour orange plants. Furthermore, the ploidy status of haploid-derived plants
was verified and the associated genetic changes were investigated. Additionally, chromoso-
mal analysis was used to verify the presence of homodiploid and aneuploid plants, and
phylogenetic analysis was used to confirm whether homozygous or heterozygous plants
were haploid-derived.

2. Results
2.1. Plant Regeneration System

The anthers swelled within 1–2 weeks; a few callus cells and embryos formed in
3–4 weeks (Figure 1a,b). When N6 liquid medium was supplemented with 1 mg·L−1 GA3
and 200 µM spermidine was added to the anther culture medium, the rates of callus induc-
tion and embryo formation increased by approximately 10%; the original callus induction
rate was 25% and that of embryo formation was approximately 2% without the addition
of the liquid medium (Table S1). The obtained callus cells were transferred to a medium
for somatic embryo induction to induce embryo formation (Figure 1c). After 6 weeks of
culture, the induced somatic embryos were transferred to a plant regeneration medium, and
normal plants were obtained at a rate of approximately 50–60% after 4–6 weeks of culture
(Figure 1d). Normal plants with roots and shoots were transferred to Murashige and Skoog
(MS) medium without hormones. The remaining abnormal embryos were transferred to
MS medium containing 500 mg·L−1 malt extract, 50 g·L−1 sucrose, and 0.5 mg·L−1 GA3,
which induced continuous plant growth from non-regenerated calli and embryos at a rate
of approximately 70–80%. Normal plants were rapidly induced to proliferate and grow
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through in vitro and in vivo grafting (Figure 1e,f). Ultimately, more than 1000 regenerated
plants were obtained using the anther culture method.
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Figure 1. Plant regeneration from anther culture of Citrus aurantium L. (sour orange). (a) Callus
and embryo induction on N6 liquid medium supplemented with GA3 (1 mg·L−1) and spermidine;
(b) formation of callus and direct somatic embryo caused by bursting anther; (c) proliferation of
induced callus cells and induction of somatic embryo; (d) plant regeneration; (e) in vitro grafting;
(f) in vivo grafting.

2.2. Genetic Verification

To confirm whether the plants obtained through anther culture were haploid-derived,
eight simple sequence repeat (SSR) markers (CiSSR-P1, -P2, -43, -226, -246, -253, -254, and
-260) out of eight combinations of heterozygous SSR markers were used. Out of >1000
plants obtained through anther culture, 271 were randomly selected for analysis using
P1 and P2 markers (Table S2). Of the 271 plants, 11 were randomly selected for analysis
using all eight SSR markers. Amplification using the SSR marker CiSSR-P1 showed four
plants (lanes 1–4; Figure 2a) with similar amplification patterns (double band) as that in the
control (donor plant). In contrast to the control, three of the seven putative haploid-derived
plants (lanes 5–7) showed a single amplification product. The remaining four plants (lanes
8–11) did not show a single amplification product, but their amplification patterns differed
from those of the control.

The SSR marker CiSSR-43 showed two amplification bands, similar to that shown by
CiSSR-P1 in the control (Figure 2b). Putative heterozygous plants (lanes 1–4) also showed
the same amplification pattern of bands as the control plants (Figure 2c). However, three
of the seven putative haploid-derived plants (lanes 5–7) exhibited the same pattern as
the upper amplification band of the control. Four other plants (lanes 8–11) had the same
pattern as the lower amplification band of the control (Figure 2b). In four plants (lanes 1–4;
Figure 2c,d) regenerated from anther culture, the SSR markers CiSSR-226 and CiSSR-246
showed the same amplification pattern (double band as in the control. Seven regenerated
plants (lanes 5–11) that were putatively haploid-derived showed a single amplification
product (Figure 2c,d). In the case of the CiSSR-246 marker, putative haploid plants (lanes
5–7) showed a pattern of double amplification bands, which differed from those of the
control.
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The SSR markers CiSSR-254 and CiSSR-260 showed two amplification bands, which
was similar to the pattern exhibited by the CiSSR-P1 marker in the control (Figure 2e,f).
Three of the seven putative haploid-derived plants (lanes 5–7) showed a single band pattern.
However, the other four plants (lanes 8–11) had a different amplification pattern (double
amplification bands) from that of the control (Figure 2e,f).
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Figure 2. Molecular analysis of simple sequence repeat (SSR) marker in control and regenerated plants
obtained from the anther culture. Polymerase chain reaction was performed using the following
primers: (a) BM-CiSSR-P1; (b) BM-CiSSR-43; (c) BM-CiSSR-226; (d) BM-CiSSR-246; (e) BM-CiSSR-254;
and (f) BM-CiSSR-260. M, molecular marker (20 and 100 bp DNA ladder); C, control plant; lanes
2–11, regenerated plants obtained using anther culture.

Unlike CiSSR-P1, the SSR markers CiSSR-P2 (Figure 3a) and CiSSR-253 (Figure 3b)
showed three amplification bands in the control (Figure 3). Putative heterozygous plants
(lanes 1–4) showed the same amplification band pattern as those of the control (Figure 3).
However, putative haploid-derived plants (lanes 5–11) showed a single band pattern (Figure 3).
The abovementioned results (Table S2) indicate that approximately 84% (228 plants among a
total of 271) were heterozygous plants derived from the anther wall, and approximately
13% (35 plants among a total of 271) were haploid-derived homozygous; a few plants
(approximately 3%; eight plants out of 271) were presumed as aneuploid plants (Table S2).
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Figure 3. Simple sequence repeat (SSR) molecular analysis of the control and regenerated plants
obtained using anther culture. Polymerase chain reaction analysis using the primers (a) BM-CiSSR-P2;
(b) BM-CiSSR-253. M, molecular marker (20 and 100 bp DNA ladder); C, control plant; lanes 2–11,
regenerated plants obtained through anther culture.

2.3. Polyploidy Verification and Morphological Selection

Polyploidy was investigated in 109 plants obtained through anther culture. These
included 41 out of 43 (two specimens were lost due to contamination) genetically selected
plants and 68 genetically validated plants (Figure 4 and Table S3).

Verification of ploidy in the 109 plants identified about 91% of plants as diploids (66 of
the 109 plants were heterozygous diploids; 33 were haploid-derived homozygous diploids;
Figure 4a); about 2% of the plants were identified as haploids (two plants; Figure 4b,c), and
7% were identified as putative aneuploids (eight plants; Figure 4d and Table S3).

Although most of the haploid-derived diploid plants (Figure 5b) were morphologically
similar to the control plants (Figure 5a), morphological differences were observed in some
of the plants (Figure 5c) in terms of leaf width, size, and growth rate. Moreover, the roots of
putative haploid-derived plants appeared as thin threads; either the shoots failed to form,
or the roots grew without shoot elongation (sample lost due to contamination).
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Figure 4. Ploidy analysis using flow cytometry. (a) Donor plant used as the control; (b) Haploid
plants obtained through anther culture; (c) Mixed haploids and diploids obtained through anther
culture; (d) Putative aneuploid plants obtained through anther culture. The red arrows indicate
patterns associated with polyploidy.
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Figure 5. Morphological characteristics of plants produced using anther culture. Plants obtained
through anther culture after approximately 2 months of in vivo grafting. (a), hetero-diploid plant
(control); (b,c), putative haploid-derived regenerated plants.

2.4. Chromosomal Analysis

The number of chromosomes was analyzed in the root tips of 30 haploid-derived
plants identified using SSR markers (Table S2). Most plants (22 of 30 plants) were identified
as diploids with 18 chromosomes (Figure 6a and Table S4). In contrast, some plants (8
of 30 plants) that appeared to be either diploids or triploids were identified as putative
aneuploids with 19–21 chromosomes (Figure 6b–d and Table S4).
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Figure 6. Chromosomal analysis of plants obtained through sour orange anther culture. (a) Diploid
plants (2n:18); (b) Aneuploid plants (2n:19); (c) Aneuploid plants (2n:20); (d) Aneuploid plants (2n:21).
Numbers in green indicate chromosome numbers; scale bar = 5 µm.

2.5. Phylogenetic Analysis

The internal transcribed spacer (ITS) chromosomal regions were analyzed to determine
the genetic relationship between the donor and regenerated plantlets and to establish
whether the anther culture-derived plants were somatically mutated or haploid-derived.



Plants 2022, 11, 3022 7 of 15

The results indicated a genetic difference in the chromosomal ITS region between plants
identified using SSR markers and the control plants (Figure 7). Subsequently, genetic
relationships between these plants were analyzed using nucleotide sequences in the ITS1
region to determine the zygosity of cultivars identified using SSR markers (Figure 8a,b).
Phylogenetic analysis allowed the clustering of cultivars into two large groups and three
small groups: Group 1 included Gp1 (Figure 8c: control, lanes 1–4, and lanes 10 and 11)
and Gp2 (Figure 8c: lanes 8 and 9), and Group 2 included Gp3 (Figure 8c: lanes 5–7).
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3. Discussion

This study investigated embryo formation and callus induction in sour oranges using
anther culture to obtain haploid and double-haploid plants. The production of haploid-
derived plants through anther culture is more challenging in citrus cultivars than in herba-
ceous species [1] because Citrus plants are characterized by long juvenility [14]. Successful
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production of haploid plants using anther culture has primarily been reported in grain
species (especially Cruciferae) and some Solanaceae species [52–55]. However, recent
studies have reported successful embryo induction and plant regeneration through anther
culture in Citrus species [1,16,17,56]. In addition, the generation of haploid (homozygous
diploid) and triploid plants has also been reported [16,17,34,57]. Among Citrus species,
sour orange varieties are widely used as rootstocks for industrial use and tissue culture.
The rootstocks also serve as useful models for anther culture [6,27]. However, there are
no previous reports on the generation of putative haploid or aneuploid plants, as most
anther-derived plants are reportedly diploids [12].

Previous studies on anther culture in sour orange cultivars [1,12,27] have shown
that N6 medium is more effective than MS medium (both supplemented with growth
hormones) for embryo and callus formation, although no significant differences have
been reported between the two media. Both gibberellic acid (GA3) and spermidine are
indicated in callus induction or stimulate somatic embryogenesis [57,58]. In this study,
the N6 liquid medium supplemented with spermidine and GA3, when added to the solid
medium during culturing of sour orange anthers, caused swelling of the anthers and
exerted a greater effect on embryo and callus formation (Table S1). A previous study
also showed that the addition of liquid medium to a solid medium [59] proved effective
for anther culture in several plant species, including barley [60], wheat [61], tobacco [62],
and black pepper [63]; similar results were obtained in this study (Figure 1 and Table S1).
However, the composition of plant hormones used for anther culture in this study differed
from those used in previous studies [1,12,27,31]. Satisfactory results were obtained when a
combination of plant growth regulators similar to that described by Chiancone et al. [57]
was used (Figure 1 and Table S1).

Genetic verification of plants obtained through anther culture was performed for 271
plants using eight combinations of heterozygote-specific SSR markers (Figures 2 and 3).
Therefore, eight SSR markers (CiSSR-P1, -P2, -43, -226, -246, -253, -254, and -260) were
confirmed to indicate whether haploid plants were present. The results confirmed the
existence of haploid-derived and heterozygous plants. PCR amplification products that
were not found in the control were also identified. Through the verification of ploidy,
most plants were confirmed as diploids. Some plants were also determined to be putative
diploids or triploids; however, based on chromosomal analysis, it was confirmed that an
aneuploid plant had 19–21 chromosomes instead of 27. Previous studies have reported that
approximately 80% of anther culture-derived clementine plants were triploid when the
anther culture was subjected to spermidine treatment [30,57]. However, this pattern was
not observed in the present study, which could be attributed to differences between citrus
varieties.

Aneuploid plants were obtained with two types of leaf morphologies; leaves of aneu-
ploid plants were either narrower or wider than those of their diploid counterparts. This
may be attributed to spermidine treatment, which stimulates embryogenesis during anther
culture [57]. To confirm whether these individuals were formed via somatic mutations or
from the anther walls [64], the chromosomes were analyzed by investigating the ITS region,
which is related to parental inheritance [65–67]. The two morphological types differed
from the control group and could be considered the same plant type based on their ITS
regions (Figures 5 and 7). Hence, these two plant types were not generated from somatic
cell mutations or the anther wall. Based on the phylogenetic analysis, four (Figures 2 and 3,
lanes 8–11) out of seven putative haploid-derived plants (Figures 2 and 3, lanes 5–11) were
identified as anther-derived aneuploids (Figure 8c, Group I). The remaining three individu-
als (Figures 2 and 3, lanes 5–7) were estimated to be diploids derived from a completely
homozygous line (Figure 8c, Group II). Therefore, the aneuploid plants obtained in this
study presumably underwent a mutation that occurred during meiosis.

In this study, the majority of the regenerated plants derived from anther culture
were identified as heterozygous plants (228 out of 271), 33 of the remaining plants were
haploid-derived homozygous diploids, two plants were haploids, and eight were identified
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as putative aneuploids (Figure 5 and Tables S2 and S3). Hidaka et al. [12] reported that
haploid-derived diploid plants could not be obtained in sour orange. In addition, there
are no reports of anther culture-derived aneuploid plants. Most anther culture-derived
clementine plants were triploids, and few, or none, were haploids [30,57]. In this study,
two haploid plants were obtained (although these samples were lost due to contamination),
which is consistent with the results of Germanà et al. [30]. The stems of these two plants
did not grow, and only small shoots proliferated as if they were stacked in layers. In
some cases, the roots grew extremely thin compared with those of other plants. These
results were similar to those of Chiancone et al. [57], who identified similar plant types
as triploids. However, chromosomal analysis revealed that these were aneuploid plants.
Therefore, estimating polyploidy based on morphological differences may cause errors.
Further studies are needed to confirm whether the plants obtained in this study were
triploids or aneuploids. Nevertheless, the proposed microspore culture method [68] can
help obtain triploid plants more efficiently.

4. Materials and Methods
4.1. Plant Materials and Pretreatment

Approximately 100 sour orange (seed-forming variety) flower buds were randomly
sampled from approximately 15-year-old C. aurantium L. trees obtained from the green-
house at Citrus Research Center, RDA, Korea, in April 2020 (Figure 9a,b). The selected
flower buds (3–5 mm in diameter) were stored in the dark at 4 ◦C for 24 h and sterilized by
immersion in 70% ethanol for 30–60 s. The flower buds were then dried on sterilized filter
paper for approximately 2–3 h. The petals were aseptically removed using a small pair of
forceps and a scalpel, and the anthers were collected in a Petri dish (60 mm in diameter)
containing a solid medium (refer to Section 4.2 for medium composition). Based on the
efficiency of anther culture, N6 liquid medium supplemented with GA3 (1 mg·L−1) and
spermidine (200 µM) was added—except in the control treatment—to two types of culture
media [59]. The culture media were (1) N6 and (2) MS basic media supplemented with
plant growth hormones (Figure 9c).
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4.2. Composition of Anther Culture Medium and Culture Conditions

Callus cells and embryos were induced in an anther culture medium comprising N6
medium [69] supplemented with Nitsch and Nitsch vitamins [70], and MS medium [71]
supplemented with MS vitamins, sucrose (50 g·L−1) and malt extract (500 mg·L−1). The
following growth regulators were added to the two media: 0.2 mg·L−1 2,4-dichlorophenoxy
acetic acid, 0.2 mg·L−1 α-naphthalene acetic acid, 1.0 mg·L−1 kinetin, 0.8 mg·L−1 6-
benzyladenine, 0.43 mg·L−1 zeatin, and 0.44 mg·L−1 thidiazuron. The pH of the media was
adjusted to 5.8 using 1 N KOH and 0.1 N HCl; 0.8% (w/v) agar was used for solid media.
Callus and embryo induction rates were compared between anther cultures with and
without N6 liquid medium supplemented with GA3 (1 mg·L−1) and spermidine (200 µM).
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The anthers were cultured in the dark at 4 ◦C for the first 14 d and then cultured under a
16 h light-dark photoperiod at 25 ± 2 ◦C.

4.3. Plant Regeneration

Callus cells induced in the anther culture medium were transferred to a somatic
embryo induction medium (MS medium supplemented with 500 mg·L−1 malt extract
and 164 mM lactose) according to the method described by Jin et al. [72] and cultured
for 6 weeks. Somatic embryos were then transferred to MS medium supplemented with
thidiazuron (0.5 mg·L−1), GA3 (1 mg·L−1), malt extract (500 mg·L−1), sucrose (50 g·L−1),
and Gelrite® (0.2%) to induce germination. The embryos showing shoot development were
transferred and cultured in a Magenta box (PlantMediaTM, Dublin, OH, USA) containing
MS medium with GA3 (0.5 mg·L−1), malt extract (500 mg·L−1), sucrose (50 g·L−1), and
agar (8 g·L−1). The roots were induced following a 6-week culture period. Each of the
newly formed shoots was grafted onto the cultivated citron root. Subsequently, these plants
were transferred outdoors from the greenhouse for acclimation to field conditions.

4.4. Genetic Analysis of Regenerants

To verify whether the plants obtained from the anther culture were haploid-derived,
two SSR marker primers (S. Biomedics Co., Ltd., Seoul, Korea) specific to the heterozygote
were used (Table 1). Primers specific to citrus plants were used to screen 53 microsatellite
markers [73]; six SSR markers specific to sour orange plants were used (Table 1). Using
the donor plant as a control, total genomic DNA was extracted from approximately 0.2 g
of plant material (leaves) using an automated DNA extraction system (MX 16; Promega,
Madison, WI, USA). The extracted DNA was stored at−20 ◦C until further use. The PCR re-
action consisted of genomic DNA and AccuPower® Multiplex PCR PreMix (Bioneer, Corp.,
Daejeon, Korea), comprising 250 µM dNTPs, 1.5 mM MgCl2, 1 U Taq DNA polymerase,
10 mM Tris-HCl (pH 9.0), and 40 mM KCl. To this mixture, 20 ng of 0.5 µM primer was
added, and the reaction volume was adjusted to 20 µL. The PCR cycle conditions were as
follows: initial denaturation at 94 ◦C for 5 min, followed by 35 cycles of denaturation at
94 ◦C for 30 s, annealing at 58 ◦C for 30 s, and elongation at 72 ◦C for 40 s, followed by final
extension at 72 ◦C for 5 min. The PCR products were then analyzed electrophoretically
using the QiAxcel Advanced System (Qiagen, Hilden, Germany).

Table 1. Nucleotide sequence and repeat motifs of the simple sequence repeat markers used in the
study.

No. Product Name
Primer Sequence (5′-3′)

Repeat Motif Homozygous
Cultivars [References]Forward Reverse

1 BM-CiSSR-P1 CCCCCTCTTCTTTCACACAA GGTGAGCAGCCATCTTCTTC (TA)6
C. clementina ‘Fina
Sodea’, C. erythrosa

‘Dingjeongkyul’

2 BM-CiSSR-P2 GAATTGGGAGGACGAACTGA CGAGCCCTAGACAGAGATGG (AGA)7 C. pseudogulgul, Citrus
hybrid ‘Haruka’

3 BM-CiSSR-043 ATTAGTGCGGGTAAGATGAA AAGGATTTGGTGTAGGAAGTAA (AAAAT)3 Woo et al. [73]
4 BM-CiSSR-226 ATTAAGGCTGGAAATGCCAC ATTCTGCTGACGCTTCAATG (ATT)9 Woo et al. [73]
5 BM-CiSSR-246 CCCTAGGGAAATTTGGGAAT GCACTCGAGAGTTCTCGTTAAG (CAT)11 Woo et al. [73]
6 BM-CiSSR-253 AATTTCCTGCTCCAAACCAG TCCAACAACTTGAACACGGT (TAA)14 Woo et al. [73]
7 BM-CiSSR-254 TAAAATCCCTCGGAAACAGG CTTTGCATGTTCAACGTTCC (ATC)6 Woo et al. [73]
8 BM-CiSSR-260 TCATCTGAACGGACCACAAT TAACTGCACTTGCTTCCCTG (TTC)6 Woo et al. [73]

4.5. Analysis of Polyploidy

To verify the ploidy of the plants derived from anther culture, leaf samples were
collected from each plant obtained through in vitro grafting. The samples were prepared
according to Chiancone et al. [57]. The ploidy of the prepared samples was determined
using flow cytometry (CyStain UV Precise PAm Flugplatz 13. 02828; Sysmex Partec GmbH,
Görlitz, Germany). Approximately 0.1 g of leaf sample from heterozygous donor plants
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were chopped using a sharp razor blade and added to a plastic Petri dish containing 0.5 mL
of nuclei extraction buffer and 2 mL of staining buffer. The samples were passed through
a 30-µm Partec CellTrics® filter (Sysmex Partec GmbH) directly into the sample test tube.
This test tube was loaded into the machine for analysis. A total of 109 regenerant lines were
analyzed.

4.6. Chromosomal Analysis

To confirm ploidy, the samples were pretreated and prepared according to the method
described by Ha et al. [74]. Young root tips (0.5–1.0 cm) were collected from plants obtained
through anther culture. The root tips were pretreated in 2 mM 8-hydroxyquinoline for
5 h at 25 ◦C, followed by treatment with a fixative solution (ethyl alcohol: acetic acid, 3:1).
The fixed root tips were washed three times with distilled water and then treated with an
enzyme mixture (0.3% cellulase, 0.3% cytohelicase, and 0.3% pectolyase) at 37 ◦C for 60 min.
The enzyme-treated roots were then transferred to a 1.5-mL tube containing the fixative
solution and homogenized by vortexing for 20 s. The homogenate was placed on ice for
5 min and then centrifuged at 13,000 rpm. The supernatant was discarded, and the pelleted
material was immediately resuspended in an acetic acid-ethanol (9:1) solution. To prevent
changes in chromosome morphology during chromosome preparation, the suspension
was spread onto pre-warmed (80 ◦C) glass slides [75], which were then placed in a humid
chamber and air-dried at room temperature. The slides were then counterstained with
1 µg·mL−1 4,6-diamidino-2-phenylindole (Roche, Indianapolis, IN, USA), mounted in
VECTASHIELD® (H-1000; Vector Laboratories, Newark, CA, USA), and examined under
an Olympus BX53 fluorescence microscope (100×magnification).

4.7. Phylogenetic Analysis

The genetic relationship between the donor plant (control plants) and anther culture-
derived regenerated plants was analyzed as described previously [65,66]. The entire
ITS region (ITS15.8S-ITS2) in the nuclear ribosomal DNA was analyzed by PCR using
the primers ITS1F1 (5′-GAAGGATCATTGTCGACCTGCCAGCAGACG-3′) and ITS2R2
(5′-GACCTGGGGTCGCAATGCGAGCGCCGCTT-3′) [65]. The amplified PCR products
were electrophoresed at 100 V for 30 min in a 1.2% agarose gel. Amplified products
con-firmed on the agarose gel were extracted using the GeneAll® Gel purification kit
(GeneAll Biotechnology, Co., Seoul, Korea). The purified amplification products were
cloned using the pLUG-Prime® TA-Cloning Vector kit (iNtRON, Seongnam-si, Korea) [66].
The cloned PCR products were then sent to SolGent (SolGent Co., Daejeon, Korea) for
nucleotide sequence analysis [66]; the sequences were edited using BioEdit [76] and used for
phylogenetic relationship analysis via MEGA (Molecular Evolutionary Genetics Analysis)
software ver. 5.2.

5. Conclusions

In this study, anther culture of sour orange plants was performed and haploid-derived
homozygous diploid and aneuploid plants were obtained. The findings of this study can
be effectively applied to mutant breeding of citrus cultivars through anther culture. More
importantly, the results would be helpful in the study of anther cultures of other citrus
varieties since haploid-derived homozygous diploid plants were obtained using anther
culture in this study. Future research should focus on chromosomal analysis of pollination-
derived individuals and incorporate microspore culture for the development of marketable,
seedless varieties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11223022/s1, Table S1: Effect of media composition on
callus and somatic embryo formation during anther culture of Citrus aurantium (sour orange); Table S2:
Occurrence rate of haploid-derived plants obtained from anther culture of Citrus aurantium (sour
orange); Table S3. Ploidy analysis of regenerated plants identified through genetic analysis; Table S4:
Chromosome number of regenerated plants.
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