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Abstract: As a response to the current challenges in agriculture, the application of alternatives
to a more sustainable management is required. Thus, biofertilizers begin to emerge as a reliable
alternative to improve crop development and resistance to stresses. Among other effects on the plant,
the use of beneficial strains may cause changes in their metabolic regulation, as in cell wall biogenesis
and in nutrient/ion transportation, improving their growth process. Previous works showed that
inoculation with the strain Priestia megaterium YC4-R4 effectively promoted vegetative growth of
Arabidopsis thaliana Col-0 plants. Hence, the present work recorded a strain-mediated induction of
several pathways of the central and secondary metabolism of the plant, as the induction of lipid,
cellulose, phenol, and flavonoid biosynthesis, by using transcriptomic and biochemical analyses.

Keywords: biofertilizers; plant metabolism induction; Priestia megaterium; cell wall biogenesis;
biochemical traits

1. Introduction

Despite the advances in agriculture management during the last few decades, we find
ourselves in a scenario where productivity is beginning to be compromised. A higher input
of chemical fertilizers is not generating the expected increases in production [1,2]. Apart
from the biological limits of plants, soil depletion and climate change conditions are placing
productivity in check throughout the world’s arable land [3]. In this context, soil health
is closely linked to the biodiversity of its microbiota, and this is being compromised by
the impoverishment and desertification of the soil due in part to current management. In
addition, the increase in temperatures and in drought intensity are causing desertification
to advance. In this sense, better and more sustainable practices in terms of land use and
agricultural production are necessary to face production problems in the future [4–7].

Here, the use of beneficial bacteria has been shown to be a sustainable alternative to
enhance crop management and soil health. They have been used to fertilize and improve
plant growth (biofertilizers), to protect plants against pests and pathogens (biocontrol), or
to improve their response to different environmental stresses [8–10]. In recent decades,
more and more studies have pointed out that the beneficial microbiota has the necessary
potential to make notable and positive changes in agriculture management. In the case of
key crop species, improvements in growth have been reported in all key plant species for
current food (i.e., corn, soybeans, wheat, beans, rice, potato, tomato, or pepper), as well as
plants with growing interest, such as quinoa, chia, or oca [11–15]. This broad spectrum of
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crops shows that the use of this biotechnology may become a reliable eco-friendly and safe
substitute for widespread use [16,17]. This does not implicate stopping the use of chemical
fertilizers or pest controllers, but reducing them drastically and making more efficient use
of them.

The main problem applying this alternative is that the effectiveness in the field is usu-
ally reduced or limited, with respect to that registered under lab- or greenhouse-controlled
conditions. In this sense, the mechanisms behind the beneficial interaction must be pre-
cisely uncovered in order to apply this technology. We know that beneficial bacteria are
capable of increasing nutrient accessibility to plants (P-solubilization, siderophores, and
N2 fixation), regulating their development by controlling or producing phytohormones
(ethylene, auxins, and cytokinins), boosting their defense system (abscisic acid, jasmonic
acid, and salicylic acid), improving their response, and protecting against abiotic stresses
(xeroprotectors, halotolerants, and osmoregulators) [18–20]. However, under this interac-
tion, the plant metabolic activity can also be modulated by the bacteria. This may occur
as a result of an adjustment in the regulation to make it more efficient, but also to provide
the bacteria with substrates through which to synthesize the support compounds that
the plant needs [21,22]. In this way, it has been described how some bacteria are capable
of inducing the production of lipids and polysaccharides in the plant, as an element re-
lated to the growth process and the defensive system [23,24]. In addition to influencing
genetic regulation in the plant, certain compounds provided by bacteria could improve
the availability of ions, such as iron or calcium, as well as their distribution throughout
the plant (improvement in ion transfer) [25,26]. These ions, which are essential for plant
growth, in turn have a cascading influence on the production of metabolites related to plant
productivity and development. In this way, deciphering the metabolic regulation in plants
behind the beneficial interactions with bacteria, becomes a relevant feature to control and
improve such interactions.

Among the best studied genera of bacteria beneficially interacting with plants, Bacillus
has been frequently reported [27,28]. This genus includes a huge variety of species and
subspecies that have been cataloged as beneficial in different fields, some being multispec-
tral in their interaction. In general, this group of bacteria have in common a broad genetic
background, which makes them very interesting in many agricultural aspects. Among
them, the motility and aggregation capacity, the production of phytohormones, the ROS-
scavenging and detoxifying actions, or the resistance to stress are quite common skills. In
particular, the case of Priestria megaterium (formerly Bacillus megaterium) is a very interesting
strain in agriculture: it is an ubiquitous soil strain with the ability to promote the growth in
a number of different plants, and with high resistance to stress and biocontrol effect [29–33].
In addition, the recruitment process of the P. megaterium YC4-R4 strain by the plant under
stressful conditions and in the context of the epigenetic regulation was recently accurately
described [34]. Its beneficial interaction process consists mainly of the production of phy-
tohormones, the solubilization of nutrients, and the production of protective/compatible
compounds to enhance plant responses to stress. It is, therefore, a very interesting strain
to use as a model of interaction and to study a future application in agriculture. In the
present study, we make use of massive sequencing techniques and biochemical assays to
understand the metabolic regulation in the plant behind the interaction with this beneficial
strain. This will allow us to better understand the aspects necessary to use this strain as
a biofertilizer.

2. Materials and Methods
2.1. Bacteria Growth and Inoculation Process

In this work, we used Priestia megaterium YCR-R4 as plant growth-promoting test strain.
This strain has been characterized as a phosphate solubilizer, siderophore, and indoleacetic
acid producer, as well as able to regulate ethylene by producing aminocyclopropane
carboxylate (ACC) deaminase; moreover, this strain was able to induce the IRT1 gene in
Arabidopsis thaliana, one of the main markers of plant growth induction [34]. This strain was
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cultured on Luria–Bertani (LB) agar plates and refreshed monthly. The bacterial inoculum
for the tests was prepared by dispersing a single colony in 5 mL of LB liquid medium and
incubating it for 10 h (30 ◦C; 150 r.p.m.). Then, this fresh culture was scaled in the necessary
volume of LB to inoculate 40 mL per pot. These new cultures were incubated under
same conditions until reaching an optical density of OD600nm ≈ 1.0, for an approximate
amount of 108–109 colony-forming units (CFUs) per mL. After centrifugation at room
temperature for 10 min. at 7000 r.p.m., the bacteria were resuspended in same volume of
0.45% sodium chloride saline solution (as a carrier for inoculation), in order to maintain the
OD of the culture.

2.2. Plant Material, Growth Conditions, and Phenotyping

For this test, we used Arabidopsis thaliana ecotype Col-0 as model plants. Fresh
seeds were surface-sterilized sequentially by using 100% ethanol (1 min) and 20% sodium
hypochlorite solution (15 min), washing three times with sterile double-distilled water at
the end of the process. The seeds were then plated on 1/2 ×MS (Murashigue & Skoog) agar
(0.7%) plates and stratified for 48 h at 4 ◦C. Then, they were placed in a growth chamber
(Femor Gewächshaus, Germany; 22 ◦C; 12 h of the day–night light cycle, 60% relative
humidity, and about 170 µmol/m2·s light intensity) to germinate and grow for 5 days
before being transferred to the soil. The soil mixture was composed of turf:vermiculite
(3:1, v/v) mix (SIRO Turfa (Mira, Portugal) and PROJAR Vermiculite 0,5-3 mm (Agualva-
Cacém, Portugal), respectively), and 50 mL pots were fulfilled with this mix. The seedlings
(5 per pot) were kept covered with transparent film for 24 h to maintain soil moisture and
improve their adaptation and survival before inoculating them. Inoculation was carried out
with 40 mL of the previously mentioned 0.45% NaCl carrier solution per pot, and carefully
dispensed around each plant. Five pots and three repetitions of each treatment were carried
out. Nine days after treatment (DAT), the phenotype of the seedlings was recorded by root
length and total dry weight (DW) biomass determination. Samples for subsequent tests
were prepared from fresh material, dry-grinded material, or grinded to powder by freezing
with liquid nitrogen and mortaring, depending on each test requirement.

2.3. Total RNA Extraction and Transcriptomic Analysis

Three biological replicates of whole-seedling samples were prepared 7 days after
treatment (when the phenotype was still not noticeable). They were frozen with liquid
nitrogen to avoid degradation and ground with a mortar. RNA was extracted with the
RNeasy Plant Mini Kit (Qiagen), following the manufacturer indications. Thereafter, library
preparing (NEBNext Ultra Directional RNA Library Prep Kit for Illumina; New England
Biolabs, Ipswich, MA, USA) was carried out with 1 µg total RNA per sample. Hence, the
library and sequencing were prepared by the Core Facility for Genomics at the Shanghai
Center for Plant Stress Biology. Subsequently, the raw data were pre-processed with
Trimmomatic (v0.36) and clean reads were analyzed with Rockhopper (v2.04) in order
to ensure the quality of the data, followed by HISAT2 (v2.1.0) for clean read alignment
(using TAIR10 as reference), and HTSeq-count (v0.9.1) for the read count matrix. Finally,
to identify DEGs, we used edgeR software, adjusting the cut-off fold-change ≥ 1.5 and
false-discovery rate ≤ 0.05. The data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus [35] and are accessible through GEO Series accession
number GSE199501 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199501
(accessed 30 March 2022).

2.4. Gene Expression Level by qPCR

The quantification of key genes involved in plant–bacteria interaction was initially
performed by using TransScript One-Step gDNA Removal and cDNA Synthesis Super Mix
(TransGen Biotech, Beijing, China) to synthesize cDNA from RNA samples. Subsequently,
quantitative PCR was performed using iTaq Universal SYBR Green Supermix (Bio-Rad,
Hercules, CA, USA) in a CFX96Touch Real-Time PCR Detection System (Bio-Rad). Here, the

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE199501


Plants 2022, 11, 3039 4 of 16

program used consisted of an initial denaturation at 95 ◦C (3 min), a 40-cycle amplification
phase, a denaturation phase at 95 ◦C (10 s), and finally, an annealing phase at 60 ◦C (45 s).
As internal control, the housekeeping gene actin 2 (AT3G18780; ACT2) was included [36].
The primer list is included in Table 1.

Table 1. Primers used in qRT-PCR procedure for gene expression level evaluation.

Gene Locus Read Sequence (5′–3′)

IRT1 AT4G19690
Forward GGAAGAATGTGGAAGCGAGT

Reverse TCTGGTTGGAGGAACGAAAC

FRO2 AT1G01580
Forward ATAGGGAGACGAAGGGAGGA

Reverse AGGAGTGATAGTGGCGAAGC

FLS1 AT5G08640
Forward TCCTCACTTCCTCCCTCCTT

Reverse CGCTGGTTGTTCTTTCTCTG

XTH14 AT4G25820
Forward CATCCTTACACTATCCACACCAA

Reverse CCACCCCATTTTTCTCGTT

SPS4F AT4G10120
Forward GCTCTTTGTGGTTGCTGTTG

Reverse CGCTTTGATGTTTCCGTTGT

LAS1 AT3G45130
Forward TGTTTCTCTTGCCTGCTCTG

Reverse GTAGTCCCCATCCTCCATCC

2.5. Iron Determination

For the iron content in the seedlings, we followed up the colorimetric assay proposed
by Gautam et al. [37]. In brief, 9 DAT plant samples (200 mg) were completely dried for
2 days and then ground to powder. Once mineralized with nitric acid (65%) and H2O2
(30%) solutions, 5 µL of each sample was dissolved in 1 mM bathophenanthroline disulfonic
acid solution (containing 0.6 M sodium acetate and 0.48 M hydroxylamine hydrochloride)
up to 250 µL, and incubated at room temperature for 5 min. Iron presence was revealed by
pink/red coloration in the solution, and it was measured at 535 nm in a spectrophotometer
(Multiskan Sky, ThemoFisher Scientific, Waltham, MA, USA). Iron standards were used for
the calibration curve. This experiment was repeated three times with similar results and
n = 3 biologically independent samples.

2.6. Quantification of Chlorophyll Levels

The chlorophyll content was measured in 3 leaves per plant (6 plants in total) at 9 DAT.
Pigment extraction was performed by submerging a disk of 0.3 cm per leave in 10 mL
of 100% methanol for 24 h, in darkness. After incubation, the samples were centrifuged
at 5000 rpm for 10 min at room temperature. The disks were previously weighed (fresh
weight) to normalize the data, and the chlorophyll and pigments content (Ca, chlorophyl a;
Cb, chlorophyl b; and Cx+c, xanthophyles and carotenoids) of the supernatants was mea-
sured by reading optical density (OD) using a Multiskan Sky spectrophotometer (The-
moFisher Scientific, USA). To quantify the chlorophyll content of the samples, we measured
the optical densities at the wavelength of 666, 653, and 470 nm, and applied Wellburn’s
equations to determine pigments’ concentration [38] by using the following formulas:

Ca = 16.72 A666 − 9.16 A653

Cb = 34.09 A653 − 15.28 A666

Cx+c = (1000 A470 − 1.63Ca − 104.96Cb)/221

This experiment was repeated three times with similar results and n = 3 biologically
independent samples.
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2.7. Cellulose and Lipid Determination

The cellulose content in plants was measured according to Updegraff, 1969, with input
from Rui and Anderson [39,40]. In summary, 24 h before sampling, 9 DAT plant samples
were placed in darkness and then 100 mg of rosette leaves was incubated overnight in
1 mL of ethanol 80% at 65 ◦C. Subsequently, ethanol was removed and the samples were
incubated overnight in 1 mL of acetone at room temperature. After the acetone, dried
samples were completely ground and the resulting powder was weighed for normalization
thereafter. Subsequently, 1 mL of acetic acid:nitric acid:water (8:2:1) solution was added
and boiled 30 min. After centrifuging the mixture at 10,000 rpm for 5 min, the pellets were
resuspended in 1 mL of sulfuric acid solution (67%). Finally, a 50 µL aliquot was added to
a tube containing 1 mL of 0.2% anthrone solution in sulfuric acid. After 10 min of incubation
at room temperature, the samples were measured at 620 nm on a spectrophotometer. Pure
cellulose was used as standard.

On the other hand, three replicas of 9 DAT plant samples were prepared to deter-
mine the lipid content by the phospho-vanillin reagent method, following the indications
in Men et al. [41], with slight modifications. Briefly, 100 mg of plant was homogenized
in 100 µL of sodium sulfate solution (2%), and completed up to 1 mL with chloroform:
methanol solution (1:1). After centrifuging at 10,000 r.p.m. for 5 min, the supernatant was
collected and mixed with 300 µL of distilled water. The mixture was then centrifuged under
the same conditions, and the chloroform layer was transferred to a 96-well microplate.
After the sample was completely dried, 50 µL of 98% sulfuric acid was added, and the plate
was incubated for 20 min at 90 ◦C. Finally, 150 µL of phospho-vanillin reagent was added.
Absorbance was measured at 530 nm after cooling for 10 min. A triolein solution was used
as standard. Both experiments were repeated three times with similar results and n = 3
biologically independent samples.

2.8. Determination of Total Phenol and Flavonoid Compounds

To determine total phenol content, we used the Folin–Ciocalteu (F–C) reagent derived
from Ainsworth and Gillespie [42], with minor modifications from López-Hidalgo et al. [43].
Briefly, 95% methanol was used to extract 50 mg of freeze-ground material, with the help
of ultrasound treatment for 30 min. The sample was centrifuged at 10,000 r.p.m. for 15 min
and the extract was decanted. The supernatant was later mixed and diluted with methanol.
Thereafter, 200µL of 10% F–C reagent was added to 100 µL each sample and incubated at
room temperature for 2 min. Finally, 800µL of 700 mM sodium carbonate was added and
incubated in darkness for 2 h. The samples were measured in a 96-well microplate at 720 nm.
The total phenol content was expressed as gallic acid equivalents using a calibration curve.

On the other hand, the total content of flavonoids was determined by using the alu-
minum chloride method [44]. Briefly, 150 µL of supernatant, obtained in the previous
process, was mixed with 20 µL of 10% (w/v) aluminum chloride and 20µL of 1 M potas-
sium acetate. The mixture was diluted with 700µL of 95% methanol and incubated at
room temperature for 30 min. Samples were transferred to a 96-well microplate and the
absorbance was measured at 415 nm. The total content was expressed as quercetin equiva-
lents using the calibration curve. Both experiments were repeated three times with similar
results and n = 3 biologically independent samples.

2.9. Soluble Sugar Measuring

To ensure the content of soluble sugar, the anthrone method [45], with minor modi-
fications, of López-Hidalgo et al. [43] was used. In brief, 50µL of supernatant (from the
previous procedure) was added to 750µL of anthrone reagent and incubated at 100 ◦C for
10 min, and then cooled on ice for 10 min. Then, the sample was transferred to a 96-well
microplate and measured at 625 nm. The content was calculated with respect to a d-glucose
in a standard curve of ethanol 80%.
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2.10. Statistical and Analysis Software

Statistical analysis was performed in Prism (v5.04; GraphPad Software). Therefore,
we applied Student’s t-test and one-way ANOVA (with Tukey’s post-test) for pairwise and
multi-group comparisons, respectively. The significancy level was set up at p ≤ 0.05. In
transcriptome analysis (Gene Ontology enrichment), we used Cytoscape (v3.9) software, im-
plemented with the BiNGO plug-in (default configuration database for Arabidopsis thaliana).

3. Results
3.1. Bacteria Inoculation and Plant Phenotyping

Nine days after carrying out the inoculation process, the early phenotype began to be
visible, as shown in Figure 1a. At that point, the main root length was measured, as well
as seedlings’ total dry weight (DW) under each condition. The seedlings inoculated with
Priestia megaterium YC4-R4 (Treated) showed bigger leaf appearance (Figure 1a); meanwhile,
the main root length reached up to 30% higher values (4.31 ± 0.19 cm, compared to
3.23 ± 0.33 cm in control plants) (Figure 1b; Supplementary Figure S1). Similarly, the dry
weight achieved by the inoculated plants was almost double (20.8 ± 1.15 mg) compared to
that registered in the non-inoculated ones (10.96 ± 0.87 mg) (Figure 1c).
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Figure 1. Plant growth promotion test. (a) The picture shows the 9 DAT phenotype of seedlings under
‘Mock’ (control) and ‘Treated’ conditions; (b,c) boxplot graphs record the main root length (b) and
dry weight of the whole plant (c). Four independent experiments (each one with n = 5 biologically
independent samples) were prepared in this test. Whiskers represent the minimum to maximum data
range, and the median is represented by the central horizontal line. The upper and lower limits of the
box outline represent the first and third quartiles. Error bars represent s.d., including p-value when
they were significant.
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3.2. Total RNA Extraction and Transcriptomic Analysis

In order to unveil insights into plant responses to the treatment with P. megaterium
YC4-R4, we performed RNA sequencing analysis (RNA-Seq) to investigate the transcrip-
tomes of treated versus untreated plants. Thus, 7 DAT resulted in 734 upregulated
and 630 downregulated differentially expressed genes (DEGs) (fold-changes ≥ 1.5; false-
discovery rate ≤ 0.05), with respect to control conditions. Gene ontology (GO) analyses
showed that growth-and-development-related DEGs were in general upregulated after
bacteria treatment (Figure 2). Meanwhile, the downregulated DEGs were highlighted by
the three categories including defense responses, ethylene biosynthesis, and regulation, as
well as biosynthesis of indole, phytoalexin, and camalexin (downregulated GO analysis in
Supplementary Figure S2; heatmap in Supplementary Figure S3).
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Figure 2. Plant transcriptomic regulation under inoculation with P. megaterium YC4-R4. Gene
Ontology categorization of YC4-R4-induced DEGs. The size of solid-lined circles represents the
number of genes in each category; meanwhile, the color indicates the significance of gene expression
in each category. Clustered biological processes are indicated manually by outline-dashed circles,
numbered as (1) in blue, for lipid biosynthesis; (2) in yellow, for cell wall biogenesis; (3) in orange,
for carbohydrate biosynthesis; (4) in green, for phenol and flavonoid biosynthesis; and (5) in red, for
metallic and organic ion transport. See Supplementary Figure S4 (heatmap).

Among upregulated GO, the main regulated areas include lipid biosynthesis, cell wall
biogenesis, carbohydrate biosynthesis, phenol and flavonoid biosynthesis, and metallic and
organic ion transport. They suggest that the recorded phenotype was obtained through
the induction of DEGs related to the biogenesis and reorganization of the cell wall, such as
glucans, cellulose, polysaccharides, lipids, phospholipids, or glycerolipids biosynthesis.
Similarly, another area of interest in plant growth and development was notably represented
by DEGs related to ion transportation. We found upregulated DEGs of organic ion transport
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of some of the most relevant nutrients, such as phosphate or nitrogen (as ammonium
transporters), but also metallic ion transport, such as molybdenum, zinc, or ion. These
last two types of ion transporters are very relevant in growth and development by cell-
wall-related enzymes and hormones (i.e., metalloenzymes and indoleacetic acid) and in
chlorophyll biosynthesis. Some other growth-related GOs were upregulated as well, as
with amino acid metabolism, glucosinolate biosynthesis, or sulfate assimilation. Finally,
reactive oxygen species scavengers such as phenols or flavonoids were also detected as
part of the facilitation of growth promotion by the bacteria treatment.

On the other hand, downregulated DGEs were mainly corresponding to GOs of
defense regulation, such as the general immune response, jasmonic acid response, and
ethylene response and signaling. These GOs are related to the hosting process of beneficial
interaction with microbes, which indicates the positive response of the plant to the treatment
with P. megaterium YC4-R4. All DEGs considered under this analysis could be found in the
Supplementary Table S1.

3.3. Gene Expression Level by qRT-PCR

In order to assess transcriptomic analysis results, we decided to the check gene ex-
pression level of some key genes of each area of relevance highlighted by the RNA-seq
study, including IRT1 and FRO2 (which regulate iron transportation and are related to plant
growth), XTH14 (xyloglucan endotransglycosylase and in relation to cell wall biogenesis),
FLS1 (flavonol synthase), SPS4F (sucrose biosynthesis) and LAS1 (lanosterol synthase)
(Figure 3). Consequently, the quantitative real-time PCR results further supported pre-
viously described gene ontology analyses. In this way, the upregulation of two of the
main iron transport genes showed how the inoculation with P. megaterium YC4-R4 was
able to induce the plant growth by enhancing the transportation of metallic ions as Fe2+,
necessary for chlorophyll synthesis. Similarly, the upregulation of some key genes for lipid
and carbohydrate biosynthesis may be related to plant growth regulation in terms of cell
wall biogenesis. In the case of the XTH14 gene, it was even induced by 4-fold. On the
other hand, phenols’ and derivates’ biosynthesis were shown to be as well upregulated
as part of the plant growth-promoting mechanisms, especially related to reactive-oxygen-
species scavenging during such a process. These results collectively suggest that the
bacteria-induced transcript regulation plays an important role in plant general growth
patterns. In Supplementary Figure S5, we included the gene expression level for some of
the downregulated key gene expression levels.
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3.4. Iron and Chlorophyll Content

The amount of iron and total chlorophylls was recorded 9 DAT, coinciding with
the early emergence of the growth promotion phenotype induced by treatment with
P. megaterium YC4-R4. Thus, the amount of iron accumulated in the treated seedlings
was up to 4% higher (483.3 ± 10.6 µg·g−1 DW) than that accumulated in those of the
control group (467.1 ± 18.8 µg·g−1 DW) (Figure 4a). Regarding total chlorophyll content,
despite observing a slight increase in it, this was not significant in the treated seedlings
with respect to the control group (Figure 4b). In this early phenotype stage, it is shown
that a greater accumulation of iron is sufficient to produce more biomass in the treated
seedlings, without even showing a significant increase in their content of chlorophylls.

3.5. Cellulose and Lipid Determination

After observing an increase in total biomass in plants with bacterial treatment, the
metabolomic factors behind it were evaluated. Thus, the measurement of the total content
of cellulose and lipids was carried out as the most relevant compounds for the formation of
new cell walls. Thus, the seedlings treated with P. megaterium YC4-R4 showed an increase
of slightly higher than 7% (118.3 ± 6.7 µg·g−1 FW) compared to the seedlings of the control
group (109.7± 6.6 µg·g−1 DW) (Figure 4c). On the other hand, the total % of lipids recorded
was also higher in the treated seedlings (almost 38%) compared to those in the control
group (35%) (Figure 4d). The higher accumulation of cellulose and the higher percentage
of lipids in the processed samples of treated seedlings are shown as a direct support of the
early phenotype of higher DW detected above.

3.6. Total Phenol and Flavonoid Content

The presence of phenols and flavonoids is usually related to plant defense, as well as
part of the antioxidant systems of plants. In general, growth and development processes
produce reactive oxygen species (ROS), which are increased in proportion to the increase
in biomass generated. Thus, we carried out the determination of the total phenols and
flavonoids of the treated seedlings compared to those of the control group. Starting with the
determination of total phenols, the seedlings treated with P. megaterium YC4-R4 showed an
increase of about 45% (16.243 ± 0.576 µg·g−1 FW) compared to the seedlings of the control
group (9.118 ± 1.144 µg·g−1 DW) (Figure 4e). Regarding the total flavonoids, we also
detected an increase in their production in the treated seedlings (3.112 ± 0.346 µg·g−1 FW),
compared to those of the control group (2.689 ± 0.188 µg·g−1 FW), assuming an increase in
accumulated flavonoids of 13.6% (Figure 4f).

3.7. Soluble Sugar Content

Finally, considering that the synthesis of simple sugars and compounds derived from
carbohydrates is directly related to the plant’s growth rate, we decided to determine the
total soluble sugar content after the treatment with P. megaterium YC4-R4. Thus, mea-
surements of soluble sugars showed that the treated seedlings accumulated only 2% more
(151.01 ± 6.58 µg·g−1 FW) compared to the seedlings of the control group
(147.79 ± 6.59 µg·g−1 DW), not enough to be statistically significant (Figure 4g). Probably,
the rate of consumption of the same to carry out the vegetative growth leads to the accu-
mulation of the same in treated plants not showing to be significant. This experiment was
repeated three times with similar results and n = 3 biologically independent samples.
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Figure 4. Plant-growth-promotion key metabolite determination. The panel shows the determination
of different compounds related to the bacteria-mediated plant growth-promotion process. Thus,
(a–f) boxplots show the iron content (a) and the total chlorophyll content (b); the total cellulose (c) and
lipid proportion (d); total phenol (e) and flavonol content (f); and the total soluble sugar content (g).
Three repetitions of three replicas (n = 9) were prepared for this test. All the boxplots and violin
plots in this figure show representative data from three independent experiments (each one with
n = 9 biologically independent samples). Whiskers represent the minimum to maximum data range,
and the median is represented by the central horizontal line. The upper and lower limits of the box
outline represent the first and third quartiles. Dots in violin plots represent the dispersion of each
sample recorded. Error bars represent s.d., including p-value when they were significant, or ‘ns’,
when they were not significant.
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4. Discussion

Nowadays, bacterial biofertilizers are considered to represent a sustainable alterna-
tive with great potential. Their combined use may drastically reduce the use of phy-
tosanitary products of chemical origin, also reducing their impact on the soil and the
environment [16,17,46]. However, these products also require a good understanding of
their working mechanisms, not only to enhance their use and make them more efficient,
but also to guarantee their safety and reliability in the future [47–49]. In this way, they have
usually been classified as having a direct action, for example, improving the availability of
nutrients, or an indirect action, such as the biocontrol of pathogens [16]. However, we have
to consider that the involved mechanisms and effects can go further.

In this work, we have sought to elucidate how the regulation of the central and
secondary metabolism of the plant occurs during the processes of beneficial interac-
tion, through a transcriptomic and biochemical analysis of some of the most relevant
development-related compounds. The model strain, Priestia megaterium YCR-R4, as with
many other related to Priestia or Bacillus genus, has been described as a beneficial strain
capable of solubilizing phosphates, producing auxins, or controlling ethylene levels via
aminocyclopropane-1-carboxylic acid (ACC) deaminase [30]. Moreover, similar kinds of
strains have been reported as well to be able to modulate some specific mechanisms in
plants [50,51]. By using Arabidopsis thaliana Col-0 as a model plant, we detected, firstly
through transcriptomic analysis and gene expression level, that many central metabolism-
related genes were upregulated. These results were assessed by biochemical tests, showing
this regulation was finally reflected in an increase in total cellulose and in percentage
of lipids, which is consistent with previous studies regarding the accumulation of these
compounds in plants with accelerated growth rates, capable of tolerating environmental
stresses, as well as resistant to pathogen infections [52–56]. In this sense, some authors
such as Pršić and Ongena have reported how beneficial bacteria enhance the cell wall
related to plant immunity triggering [57]. In our study, defensive systems were down-
regulated in plants under treatment, indicating the cell wall biogenesis was related to
a direct vegetative growth instead of a defensive mechanism. Moreover, some secondary
metabolism biosynthetic pathways were upregulated as well. One of the most interesting
was the increasing levels of phenols and flavonoids. Despite them being described as ROS
scavengers (which can over-accumulate in growth processes and limit them) or defense
activation molecules, many studies have pointed their influence on the bacteria-mediated
plant growth promotion process [58–60]. In this sense, these compounds have also been
described as fundamental as signal molecules in cell wall biogenesis [61–64].

Finally, it should be noted that, through transcriptomic analysis, we were able to eval-
uate the positive regulation of other genes involved in cell wall organization, such as iso-
prenoid (dolichol), phospholipids, or glycolipid biosynthesis-related genes. Some of them
have been already reported as genes induced under bacteria interaction processes [65–67].
In addition, the upregulation in the synthesis of sugars and polysaccharides (cellulose,
glycoside, sucrose, and glucosinolate) was also revealed after transcriptomic analysis.
Although these compounds did not notably increase in the treated samples (at least the
soluble ones), these compounds may be rapidly consumed, so the detection technique
could not be resolutive enough. Alternatively, they may be employed in fast energy con-
sumption to meet the needs of accelerated growth [68]. Probably, this rate of consumption
in vegetative growth leads to the treated plants not showing a significative accumulation of
sugars [69,70].

Furthermore, through transcriptomic analysis, we were also able to observe an upreg-
ulation of other genes directly related to plant nutrition and the production of essential
compounds such as amino acid derivatives. Among these genes, those related to the
transport of ammonium ions and phosphates, as well as the regulation of the assimilation
of sulfates, stand out, being considered as especially relevant for plant nutrition and de-
velopment. On the other hand, considering the amino acid derivatives’ upregulation, the
synthesis of nicotianamine is noticeable as a metal-chelating agent that can supplement the
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siderophores produced by the bacterium Priestia megaterium YC4-R4 to guarantee the neces-
sary amount of metal ions (as Fe2+ and Zn+) required for plant vegetative growth [30,71,72].
Likewise, through the biochemical study, we were able to describe a substantial increase in
iron concentration in the plant. However, this did not significantly translate into an increase
in total chlorophyll. This can be explained because the content per milligram of tissue
remains the same, but the plant generates more tissues, as it needs more chlorophyll and
iron [73]. Along the same lines, some authors have described that a larger plant size is
not always linked to a higher chlorophyll content. This is the case described for larger
genotypes of Artemisia cina, shown by Kasmiyati, Kristiani and Herawati, where the total
amount of chlorophyll was equal to or slightly less than that of smaller genotypes [74].

Regarding plant general growth, on some occasions it has been mentioned that, de-
spite being treated with a biofertilizer, this is not fully reflected in an increase in fruit
production [75]. Despite nutrients as nitrogen being more accessible, a higher vegetative
growth was not linked to higher productivity level [75]. This induced growth in certain
tissues, such as roots or stems, becomes highly relevant since it is likely to result in a better
state of health or a better response to mild environmental stresses, linked to an efficient reg-
ulation of phytohormones, but still not enough to consider a better final production [76–80].
Further tests considering yield are necessary to cope with this question. However, in the
case of some forage crops such as alfalfa (Medicago sativa), it could be especially interesting
to simply stimulate vegetative growth per se, since the use of these plants mainly includes
as forage the vegetative tissues such as leaves and stems [81–83]. Nevertheless, in the
case of beneficial interaction with microorganisms, we can recommend a higher cell wall
production and plant size as factors to assess the general health status of crops treated with
beneficial bacteria and other types of biofertilizers.

5. Conclusions

In this study, we described how a plant growth-promoting model strain,
Priestia megaterium YC4-R4, is capable of influencing the central and secondary metabolism
of the plant to increase its growth. In this way, we were able to verify through transcrip-
tomics, gene expression, and biochemical determinations how this strain promotes basic
growth areas such as cell wall biogenesis or metal ion transport. In addition, P. megaterium
YC4-R4 was able to induce the production of phenols and flavonoids, which in this context,
may be acting as positive growth regulators, signal molecules for development, as well
as for scavenging ROS molecules. In addition, the positive regulation for the use of basic
nutrients and sugars, as well as the negative regulation of the plant’s defensive response,
has also been supported in this work. Hence, this is one of the first plant–microorganism
models in which we have been able to assess that the promotion of growth is not only given
directly due to nutrient supplementing, but also by influencing the central and secondary
metabolism in order to increase the rate of vegetative growth and improve the efficiency of
the associated mechanisms.
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