Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model
Abstract
:1. Introduction
2. Results
2.1. Qualitative Phytochemical Analysis
2.2. Spectroscopic Analysis
2.3. Evaluation of In-Vitro Antioxidant Activity
2.4. Assessment of Genoprotective Activity
2.5. Assessment of Hypoglycemic Activity
3. Discussion
4. Materials and Methods
4.1. Acquisition of the Plant Species and Processing in the Laboratory
4.2. Chemicals Used in the Experiments
4.3. Animals in Laboratory Settings
4.4. Qualitative Phytochemical Analysis
4.5. Spectroscopic Analysis
4.6. Evaluation of In Vitro Antioxidant Activity
4.7. Assessment of Genoprotective Activity
4.8. Assessment of Hypoglycemic Activity
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF Diabetes Atlas. International Diabetes Federatión. 10th Edition 2021. Available online: www.diabetesatlas.org (accessed on 20 July 2022).
- Basto-Abreu, A.; López-Olmedo, N.; Rojas-Martínez, R.; Aguilar-Salinas, C.A.; De la Cruz-Góngora, V.; Rivera-Dommarco, J.; Shamah-Levy, T.; Romero-Martínez, M.; Barquera, S.; Villalpando, S.; et al. Prevalence of diabetes and glycemic control in Mexico: National results from 2018 and 2020. Salud Pública Méx. 2021, 63, 725–733. [Google Scholar] [CrossRef]
- ENSANUT. Encuesta Nacional de Salud y Nutrición 2018. Presentación de Resultados (insp.mx). Available online: https://ensanut.insp.mx/encuestas/ensanut2018/doctos/informes/ensanut_2018_presentacion_resultados.pdf (accessed on 24 June 2022).
- Lima-Martínez, M.M.; Carrera-Boadac, C.; Madera-Silva, M.D.; Maríne, W.; Contreras, M. COVID-19 y diabetes mellitus: Una relación bidireccional. Clin. Investig. Arterioscler. 2021, 33, 151–157. [Google Scholar] [CrossRef]
- Giannouchos, T.V.; Sussman, R.A.; Mier, J.M.; Poulas, K.; Farsalinos, K. Characteristics and risk factors for COVID-19 diagnosis and adverse outcomes in Mexico: An analysis of 89,756 laboratory–confirmed COVID-19 cases. Eur. Respir. J. 2021, 57, 202144. [Google Scholar] [CrossRef]
- Bukhman, G.; Bavuma, C.; Gishoma, C.; Gupta, N.; Kwan, G.F.; Laing, R.; Beran, D. Endemic diabetes in the world’s poorest people. Lancet Diabetes Endocrinol. 2015, 3, 402–403. [Google Scholar] [CrossRef]
- Aguilar, A.; Xolalapa, S. La herbolaria Mexicana en el tratamiento de la diabetes. Ciencia 2002, 53, 24–35. [Google Scholar]
- Bye, R.; Linares, E. Plantas medicinales del México prehispánico. Arqueol. Mex. 2018, 39, 4–11. [Google Scholar]
- Santos-Díaz, M.S.; Barba-de la Rosa, A.P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayr, A. Opuntia spp.: Characterization and benefits in chronic diseases. Oxidative Med. Cell. Longev. 2017, 8634249. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Cetto, A.; Wiedenfeld, H. Anti-hyperglycemic effect of Opuntia streptacantha Lem. J. Ethnopharmacol. 2011, 133, 940–943. [Google Scholar] [CrossRef]
- Bouhrim, M.; Elhouda-Daoudi, N.; Ouassou, H.; Benoutman, A.; Loukili, E.H.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Aziz, M.; Bnouham, M. Phenolic content and antioxidant, antihyperlipidemic, and antidiabetogenic effects of Opuntia dillenii seed oil. Sci. World J. 2020. [Google Scholar] [CrossRef]
- Pingali, U.; Abid-Ali, M.; Gundagani, S.; Nutalapati, C. Evaluation of the effect of an aqueous extract of Azadirachta indica (Neem) leaves and twigs on Glycemic control, endothelial dysfunction and systemic inflammation in subjects with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled clinical study. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 4401–4412. [Google Scholar]
- Patil, S.M.; Shirahatti, P.S.; Ramith Ramu, R. Azadirachta indica A. Juss (neem) against diabetes mellitus: A critical review on its phytochemistry, pharmacology, and toxicology. J. Pharm. Pharmacol. 2022, 74, 681–710. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Heinrich, M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef]
- Blanco, L. Pata de Vaca: Características, Hábitat, Propiedades, Ingesta. Available online: www.lifeder.com/pata-de-vaca/ (accessed on 20 June 2022).
- Sinou, C.; Forest, F.; Bruneau, A. The genus Bauhinia s.l. (Leguminosae): A phylogeny based on the plastid trnLtrnF region. Botany 2009, 87, 947–960. [Google Scholar] [CrossRef]
- Aragadvay-Yungán, R.G.; Barros-Rodríguez, M.; Ortiz, L.; Carro, M.D.; Navarro-Marcos, C.; Yasseen-Elghandour, M.M.M.M.; Mohamed-Salem, A.Z. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. Environ. Sci. Pollut. Res. 2022, 29, 3438–3445. [Google Scholar] [CrossRef]
- Lubkowski, J.; Durbin, S.V.; Silva, M.C.C.; Farnsworth, D.; Gildersleeve, J.C.; Oliva, M.L.V.; Wlodawe, A. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. FEBS J. 2017, 284, 429–450. [Google Scholar] [CrossRef] [Green Version]
- Cechinel-Filho, V. Chemical composition and biological potential of plants from the genus Bauhinia. Phytother. Res. 2009, 23, 1347–1354. [Google Scholar] [CrossRef]
- Cechinel-Zanchett, C.C.; de Andrade-Fonseca da Silva, R.C.M.V.; Tenfena, A.; Siebertb, D.A.; Mickeb, G.; Vitalib, L.; Cechinel-Filhoa, V.; Faloni de Andradea, S.; de Souza, P. Bauhinia forficata link, a Brazilian medicinal plant traditionally used to treat cardiovascular disorders, exerts endothelium-dependent and independent vasorelaxation in thoracic aorta of normotensive and hypertensive rats. J. Ethnopharmacol. 2019, 243, 112118. [Google Scholar] [CrossRef]
- Da Cunha, A.M.; Menon, S.; Menon, R.; Couto, A.G.; Burger, C.; Biavatti, M.W. Hypoglycemic activity of dried extracts of Bauhinia forficata Link. Phytomedicine 2010, 17, 37–41. [Google Scholar] [CrossRef]
- Fernandes-Salgueiro, A.C.; Folmer, V.; Pires-da Silva, M.; Loureiro-Mendez, A.S.; Pegoraro-Zemolin, A.P.; Posser, T.; Luis-Franco, J.; Luiz-Puntel, R.; Orione-Puntel, G. Effects of Bauhinia forficata Tea on oxidative stress and liver damage in diabetic mice. Oxidative Med. Cell. Longev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Silva-dos-Santos, J.; Gonçalves-Cirino, J.P.; De-Oliveira-Carvalho, P.; Ortega, M.M. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front. Pharmacol. 2021, 11, 565700. [Google Scholar] [CrossRef]
- Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001, 50, 537–546. [Google Scholar] [PubMed]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konrad, R.J.; Mikolaenko, I.; Tolar, J.F.; Liu, K.; Kudlow, J.E. The potential mechanism of the diabetogenic action of streptozotocin: Inhibition of pancreatic β-cell O-GlcNAc-selective N-acetyl-β-D-glucosaminidase. Biochem. J. 2001, 356, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Mosic, M.; Dramicanin, A.; Ristivojevic, P.; Milojkovic-Opsenica, D. Extraction as a critical step in phytochemical Analysis. J. AOAC Int. 2020, 103, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Ajebli, M.; Khan, H.; Eddouks, M. Natural alkaloids and diabetes mellitus: A review. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 111–130. [Google Scholar] [CrossRef]
- Chang, W.; Chen, L.; Hatch, G.M. Berberine as a therapy for type 2 diabetes and its complications: From mechanism of action to clinical studies. Biochem. Cell Biol. 2015, 93, 479–486. [Google Scholar] [CrossRef]
- Zhang, M.; Xiao-Yan, L.; Li, J.; Zhi-Gang, X.; Chen, L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp. Diabetes Res. 2008. [Google Scholar] [CrossRef] [Green Version]
- Sinan, K.I.; Zengin, G.; Zheleva-Dimitrova, D.; Etienne, O.K.; Mahomoodally, M.F.; Bouyahya, A.; Lobine, D.; Chiavaroli, A.; Ferrante, C.; Menghini, L.; et al. Qualitative phytochemical fingerprint and network pharmacology investigation of Achyranthes aspera Linn. extracts. Molecules 2020, 25, 1973. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, T.S.R.; Passos, M.S.; Pessanha-S-Nascimento, L.; Barreto-de-S-Arantes, M.; Monteiro, N.O.; Imad-da-S-Boeno, S.; De-Carvalho-Junior, A.; Azevedo, O.A.; Da-S-Terra, W.; Gonçalves-C-Vieira, M.; et al. Chemical compounds and biologic activities: A review of Cedrela genus. Molecules 2020, 25, 5401. [Google Scholar] [CrossRef]
- Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.M.; Ong, C.N. Anti-cancer properties of anthraquinones from rhubarb. Med. Res. Rev. 2007, 27, 609–630. [Google Scholar] [CrossRef]
- Liu, Y.; Mapa, M.S.T.; Sprando, R.L. Anthraquinones inhibit cytochromes P450 enzyme activity in silico and in vitro. J. Appl. Toxicol. 2021, 41, 1438–1445. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.G. Health functions and structure-activity relationships of natural anthraquinones from plants. Food Funct. 2018, 9, 6063–6080. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Silva, S.T.; Valentao, P.; Andrade, P.B. Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chem. 2012, 134, 894–904. [Google Scholar] [CrossRef]
- Srisawat, P.; Fukushima, E.O.; Yasumoto, S.; Robertlee, J.; Suzuki, H.; Seki, H.; Muranaka, T. Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: A step toward discovering preponderant a-amyrin-producing activity. New Phytol. 2019, 224, 352–366. [Google Scholar] [CrossRef]
- De Souza, P.; Mota, L.; Boeing, T.; Somensi, L.B.; Cecconi, C.; Zanchett, C.; Campos, A.; De Medeiros, C.; Krueger, A.; Bastos, J.K.; et al. Influence of prostanoids in the diuretic and natriuretic effects of extracts and kaempferitrin from Bauhinia forficata Link leaves in rats. Phytother. Res. 2017, 31, 1521–1528. [Google Scholar] [CrossRef]
- Farag, M.A.; Sakna, S.T.; El-fiky, N.M.; Shabana, M.M.; Wessjohann, L.A. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochemistry 2015, 119, 41–50. [Google Scholar] [CrossRef]
- Fernandes-de-Aráujo, F.; De-Paulo-Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021, 338, 127535. [Google Scholar] [CrossRef]
- Rodrigues-Franco, R.; Da-Silva-Carvalho, D.; Borges-Rosa-de-Moura, F.; Benatti-Justino, A.; Guerra-Silva, H.C.; Gomes-Peixoto, L.; Salmen-Espindola, F. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. J. Ethnopharmacol. 2018, 215, 140–146. [Google Scholar] [CrossRef]
- Pinafo, M.S.; Benedetti, P.R.; Gaiotte, L.B.; Costa, F.G.; Schoffen, J.P.F.; Fernandes, G.S.A.; Chuffa, L.G.A.; Seiva, F.R.F. Effects of Bauhinia forficata on glycaemia, lipid profile, hepatic glycogen content and oxidative stress in rats exposed to Bisphenol A. Toxicol. Rep. 2019, 6, 244–252. [Google Scholar] [CrossRef]
- Zúñiga-González, G.; Torres-Bugarín, O.; Luna-Aguirre, J.; González-Rodríguez, A.; Zamora-Perez, A.; Gómez-Meda, B.C.; Ventura-Aguilar, A.J.; Ramos-Ibarra, M.L.; Ramos-Mora, A.; Ortíz, G.G.; et al. Spontaneous micronuclei in peripheral blood erythrocytes from 54 animal species (mammals, reptiles and birds): Part two. Mutat. Res. 2000, 467, 99–103. [Google Scholar] [CrossRef]
- Meléndez-Gélvez, I.; Quijano-Vargas, M.J.; Quijano-Parra, A. Actividad mutagénica indicida por hidrocarburos aromáticospolicíclicos en muestras de PM2.5 en un sector residencial de villa del rosario-norte de Santander, Colombia. Rev. Int. Contam. Ambient. 2016, 32, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Knasmueller, S.; Bolognesi, C.; Holland, N.; Bonassi, S.; Kirsch-Volders, M. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat. Res. 2020, 786, 108342. [Google Scholar] [CrossRef] [PubMed]
- Grossi, M.R.; Berni, A.; Pepe, G.; Filippi, S.; Mosesso, P.; Shivnani, A.A.; Papeschi, C.; Natarajan, A.T.; Palitti, F. A comparative study of the anticlastogenic effects of chlorophyllin on N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) or 7,12-dimethylbenz(α)anthracene (DMBA) induced micronuclei in mammalian cells in vitro and in vivo. Toxicol. Lett. 2012, 214, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Düsman, E.; De Almeida, I.V.; Coelho, A.C.; Balbi, T.J.; Düsman-Tonin, L.T.; Pimenta-Vicentini, V.E. Antimutagenic effect of Medicinal plants Achillea millefolium and Bauhinia forficata In Vivo. Evid. Based Comp. Altern. Med. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugunadevi, G.; Suresh, K.; Vijayaanand, M.A.; Rajalingam, K.; Sathiyapriya, J. Anti genotoxic effect of Mosinone-A on 7, 12-dimethyl benz[a] anthracene induced genotoxicity in male golden Syrian hamsters. Pathol. Oncol. Res. 2012, 18, 69–77. [Google Scholar] [CrossRef]
- Borges-dos Santos, F.J.; Moura, D.J.; Flores-Pérez, V.; De Moura-Sperotto, A.R.; Bastos-Caramão, E.; Melo-Cavalcante, A.M.C.; Saffi, J. Genotoxic and mutagenic properties of Bauhinia platypetala extract, a traditional Brazilian medicinal plant. J. Ethnopharmacol. 2012, 144, 474–482. [Google Scholar] [CrossRef]
- Ferri, F.F. Diabetes mellitus. In Ferri’s Clinical Advisor 2018, 1st ed.; Elsevier: Alpharetta, GA, USA, 2018; 2011p. [Google Scholar]
- Powers, A.C.; Niswender, K.D.; Evans-Molina, C. Diabetes Mellitus: Diagnosis, Classification, and Pathophysiology. In Harrison’s Principles of Internal Medicine, 20th ed.; Jameson, J., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Loscalzo, J., Eds.; McGraw Hill: New York, NY, USA, 2018; Available online: https://accessmedicine.mhmedical.com/content.aspx?bookid=2129§ionid=192288322 (accessed on 15 July 2018).
- Hirata, Y.; Nomura, K.; Senga, Y.; Okada, Y.; Kobayashi, K.; Okamoto, S.; Minokoshi, Y.; Imamura, M.; Takeda, S.; Hosooka, T.; et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis. JCI Insight 2019, 4, e124952. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, Y.A.; Garud, M.S. Bauhinia variegata (Caesalpiniaceae) leaf extract: An effective treatment option in type I and type II diabetes. Biomed. Pharmacother. 2016, 83, 122–129. [Google Scholar]
- Pepato, M.T.; Martins-Baviera, A.; Vendramini, R.C.; Brunetti, I.L. Evaluation of toxicity after one-months treatment with Bauhinia forficata decoction in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 2004, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Franco, R.; Mota-Alves, V.H.; Ribeiro-Zabisky, L.F.; Benatti-Justino, A.; Machado-Martins, M.; Lopes-Saraiva, A.; Goulart, L.R.; Espindola, F.S. Antidiabetic potential of Bauhinia forficata Link leaves: A non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed. Pharmacother. 2020, 123. [Google Scholar] [CrossRef]
- Sharma, D.; Tekade, R.K.; Kalia, K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 2020, 76, 153235. [Google Scholar] [CrossRef]
- Trojan-Rodrigues, M.; Alves, T.L.S.; Soares, G.L.G.; Ritter, M.R. Plants used as antidiabetics in popular medicine in Rio Grande do Sul, southern Brazil. J. Ethnopharmacol. 2012, 139, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Yang, H.; Tang, C.; Yao, G.; Kong, L.; He, H.; Zhou, Y. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. Int. Immunopharmacol. 2015, 28, 744–750. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Quian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef]
- Saldanha, L.L.; Quintiliano-Delgado, A.; Marcourt, L.; De-Paula-Camaforte, N.A.; Ponce-Vareda, P.M.; Ebrahimi, S.N.; Vilegas, W.; Dokkedal, A.L.; Ferreira-Queiroz, E.; Wolfender, J.; et al. Hypoglycemic active principles from the leaves of Bauhinia holophylla: Comprehensive phytochemical characterization and in vivo activity profile. PLoS ONE 2021, 16, e0258016. [Google Scholar] [CrossRef]
- Cardozo-De-Souza, B.V.; Dos-Reis-Moreira-Araújo, R.S.; Almeida-Silva, O.; Costa-Faustino, L.; Beserra-Gonçalves, M.F.; Lima-Dos-Santos, M.; Rocha-Souza, G.; Moura-Rocha, L.; Sousa-Cardoso, M.L.; Cunha-Nunes, L.C. Bauhinia forficata in the treatment of diabetes mellitus: A patent review. Expert Opin. Ther. Pat. 2018, 28, 129–138. [Google Scholar]
- Tonelli, C.A.; Quintana-De-Oliveira, S.; Da-Silva-Vieira, A.A.; Biavatti, M.W.; Ritter, C.; Reginatto, F.H.; Machado-De-Campos, A.; Dal-Pizzol, F. Clinical efficacy of capsules containing standardized extract of Bauhinia forficata Link (pata-de-vaca) as adjuvant treatment in type 2 diabetes patients: A randomized, double blind clinical trial. J. Ethnopharmacol. 2022, 282, 114616. [Google Scholar] [CrossRef]
- Córdova-Mariángel, P.; Avello-Lorca, M.; Morales-Leon, F.; Fernández-Rocca, P.; Villa-Zapata, L.; Pastene-Navarrete, E. Effects of Bauhinia forficata Link tea on lipid profile in diabetic patients. J. Med. Food 2019, 22, 321–323. [Google Scholar] [CrossRef]
- Alcibar-Muñóz, M.; Alonso, S.; Berdeja-Martínez, B.; Germán-Faz, M.C.; Hernández-de-Jesús, M.L.; Razo, A.; Silva-Torres, R. Manual del curso experimental de fitoquímica para la carrera de Químico Farmaceútico Industrial. Esc. Nac. Cienc. Biol. IPN 2019, 19, 116. [Google Scholar]
- Carbajal-Rojas, L.; Hata-Uribe, Y.; Sierra-Martínez, N.; Rueda-Niño, D. Análisis fitoquímico preliminar de hojas, tallos y semillas de Cupatá (Strychnos schultesiana Krunkoff). Colomb. For. 2009, 12, 161–170. [Google Scholar] [CrossRef]
Secondary Metabolite | Test |
---|---|
Alkaloids | Dragendorff |
Sonnenschain | |
Wagner | |
Flavonoids | Shinoda (Flavones) |
10% sodium hydroxide (Flavonols) | |
Saponins | Liebermann Buchard (triterpenoids) |
Rosenthaler (triterpenoids) | |
Quinones | Ammonium hydroxide (Anthraquinones) |
Börntraguer (Anthraquinones) | |
Reducing sugars | Fehling |
Benedict | |
Tannins | 1% ferric chloride (Phenolic compounds) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Bustos, E.A.; Morales-González, A.; Anguiano-Robledo, L.; Madrigal-Santillán, E.O.; Valadez-Vega, C.; Lugo-Magaña, O.; Mendoza-Pérez, J.A.; Fregoso-Aguilar, T.A. Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model. Plants 2022, 11, 3052. https://doi.org/10.3390/plants11223052
Chávez-Bustos EA, Morales-González A, Anguiano-Robledo L, Madrigal-Santillán EO, Valadez-Vega C, Lugo-Magaña O, Mendoza-Pérez JA, Fregoso-Aguilar TA. Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model. Plants. 2022; 11(22):3052. https://doi.org/10.3390/plants11223052
Chicago/Turabian StyleChávez-Bustos, Erika Anayetzi, Angel Morales-González, Liliana Anguiano-Robledo, Eduardo Osiris Madrigal-Santillán, Cármen Valadez-Vega, Olivia Lugo-Magaña, Jorge Alberto Mendoza-Pérez, and Tomás Alejandro Fregoso-Aguilar. 2022. "Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model" Plants 11, no. 22: 3052. https://doi.org/10.3390/plants11223052
APA StyleChávez-Bustos, E. A., Morales-González, A., Anguiano-Robledo, L., Madrigal-Santillán, E. O., Valadez-Vega, C., Lugo-Magaña, O., Mendoza-Pérez, J. A., & Fregoso-Aguilar, T. A. (2022). Bauhinia forficata Link, Antioxidant, Genoprotective, and Hypoglycemic Activity in a Murine Model. Plants, 11(22), 3052. https://doi.org/10.3390/plants11223052