Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Specific Discussion
3.2. General Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Pathogen Isolates
4.3. Testing Procedure
4.4. Evaluation
5. Conclusions
- Accurate genotyping is essential for research and plant breeding, so it is surprising that minimal attention is paid to this fundamental topic in the scientific literature.
- Breeding barley resistant to powdery mildew has been based on major genes and their exploitation and utilization was monitored.
- While most of the barley traits exhibit significant genotype × environment interactions, major resistance genes are stable and knowledge of their presence in varieties is suitable for genotype characterisation.
- In total, 157 spring barley lines derived from 15 varieties which showed a discrepancy among previous results reported from different sources and originating from seven foreign GBs were tested here with 53 isolates of the pathogen.
- Fourteen known Ml genes, 12 of their combinations and two unknown genes were found.
- We compared our results of identically labelled accessions from different GBs, including domestic ones with published data.
- From 32 accessions lodged in foreign GBs, 12 (37.5%) were heterogeneous containing two or more genotypes, and at least 6 out of 30 accessions, i.e., 20.0% were mislabelled.
- Our results show that a detailed investigation to ensure true and homogeneous variety genotypes is needed; due to non-authentic genotypes, the solution of many research projects must result in improper findings, conclusions and recommendations.
- Authentic identity of varieties should be verified by reliable methods before performing experiments focused on new varietal characterisations, especially those involving molecular analyses.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabe, S.; Iwata, H.; Jannink, J.L. Impact of mislabeling on genomic selection in cassava breeding. Crop Sci. 2018, 58, 1470–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreiseitl, A. Powdery mildew resistance in winter barley cultivars. Plant Breed. 2007, 126, 268–273. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Zavřelová, M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. PLoS ONE 2018, 13, e0208719. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Genotype heterogeneity in accessions of a winter barley core collection assessed on postulated specific powdery mildew resistance genes. Agronomy 2021, 11, 513. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Nesvadba, Z. Powdery mildew resistance genes in single-plant progenies derived from accessions of a winter barley core collection. Plants 2021, 10, 1998. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. Powdery mildew resistance phenotypes of wheat gene bank accessions. Biology 2021, 10, 846. [Google Scholar] [CrossRef]
- af Satra, J.S.; Troggio, M.; Odilbekov, F.; Sehic, J.; Mattisson, H.; Hjalmarsson, I.; Ingvarsson, P.K.; Garkava-Gustavsson, L. Genetic status of the Swedish central collection of heirloom apple cultivars. Scientia Hortic. 2020, 272, 109599. [Google Scholar] [CrossRef]
- Shan, F.; Clarke, H.C.; Plummer, J.A.; Yan, G.; Siddique, K.H.M. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor. Appl. Genet. 2005, 110, 381–391. [Google Scholar] [CrossRef]
- Jreisat, C.S.; Laten, H.M. Ribosomal RNA internal transcribed regions identify possible misidentification or mislabeling among Trifolium (Clover) specimens from germplasm collections. Crop Sci. 2017, 57, 322–326. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Y.Z.; Liu, J.; Xu, C.; Zou, X.H.; Chen, X.; Liu, Y.L.; Wu, P.; Yang, X.Y.; Zhou, S.L. DNA barcoding of Oryza: Conventional, specific, and super barcodes. Plant Molec. Biol. 2021, 105, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Girma, G.; Korie, S.; Dumet, D.; Franco, J. Improvement of accession distinctiveness as an added value to the global worth of the yam (Dioscorea ssp.) genebank. Int. J. Conservation Sci. 2012, 3, 199–206. [Google Scholar]
- van de Wouw, M.; van Treuren, R.; van Hintum, T. Authenticity of old cultivars in genebank collections: A case study on Lettuce. Crop Sci. 2011, 51, 736–746. [Google Scholar] [CrossRef]
- Hempel, P.; Hohe, A.; Trankner, C. Molecular Reconstruction of an Old Pedigree of Diploid and Triploid Hydrangea macrophylla Genotypes. Front. Plant Sci. 2018, 9, 429. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. Genes 2020, 11, 971. [Google Scholar] [CrossRef]
- Brown, J.K.M.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Risø National Laboratory, Roskilde, Denmark, 23–25 January 1990; Jørgensen, J.H., Ed.; Risø National Laboratory: Roskilde, Denmark, 1991; pp. 263–286. [Google Scholar]
- Dreiseitl, A.; Jørgensen, J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. Plant Breed. 2000, 119, 203–209. [Google Scholar] [CrossRef]
- Dreiseitl, A. Powdery mildew resistance genes in European barley cultivars registered in the Czech Republic from 2016 to 2020. Genes 2022, 13, 1274. [Google Scholar] [CrossRef]
- Volk, G.M.; Byrne, P.F.; Coyne, C.J.; Flint-Garcia, S.; Reeves, P.A.; Richards, C. Integrating genomic and phenomic approaches to support plant genetic resources conservation and use. Plants 2021, 10, 2260. [Google Scholar] [CrossRef]
- Jørgensen, J.H. Discovery, characterisation and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992, 63, 141–152. [Google Scholar] [CrossRef]
- Xu, Y.H.; Jia, Q.J.; Zhou, G.F.; Zhang, X.Q.; Angessa, T.; Broughton, S.; Yan, G.; Zhang, W.Y.; Li, C.D. Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol. 2017, 17, 11. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, J.H.; Jensen, H.P. Powdery mildew resistance gene Ml-a8 (Reg1h8) in northwest European spring barley varieties. Barley Genet. Newsl. 1983, 13, 51–52. [Google Scholar]
- Jørgensen, J.H. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994, 13, 97–119. [Google Scholar] [CrossRef]
- Hiura, U.; Heta, H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of Erysiphe graminis hordei in Japan. Ber. Ohara Inst. Landwirtsch. Biol. 1955, 10, 135–156. [Google Scholar]
- Wiberg, A. Sources of resistance to powdery mildew in barley. Hereditas 1974, 78, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Diez, M.J.; De la Rosa, L.; Martin, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simó, J.; Rivera, A.; Anastasio, G.; et al. Plant genebanks: Present situation and proposals for their improvement. The case of the Spanish network. Front. Plant Sci. 2018, 9, 1794. [Google Scholar] [CrossRef] [Green Version]
- Czembor, J.H. Resistance to powdery mildew in populations of barley landraces from Morocco. Australas. Plant Pathol. 2000, 29, 137–148. [Google Scholar] [CrossRef]
- van Hintum, T.J.L.; Visser, D.L. Duplication within and between germplasm collections. II Duplication in four European barley collections. Genet. Resourc. Crop Evol. 1995, 42, 135–145. [Google Scholar] [CrossRef]
- Jayakodi, M.; Padmarasu, S.; Haberer, G.; Bonthala, V.S.; Gundlach, H.; Monat, C.; Lux, T.; Kamal, N.; Lang, D.; Himmelbach, A.; et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020, 588, 7837. [Google Scholar] [CrossRef]
- Jiang, Y.; Weise, S.; Graner, A.; Reif, J.C. Using genome-wide predictions to assess the phenotypic variation of a barley (Hordeum sp.) gene bank collection for important agronomic traits and passport information. Frontiers Plant Sci. 2021, 11, 604781. [Google Scholar] [CrossRef]
- Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. Plant Breed. 2019, 138, 840–845. [Google Scholar] [CrossRef]
- Kølster, P.; Munk, L.; Stølen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. Crop Sci. 1986, 26, 903–907. [Google Scholar] [CrossRef]
- Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars; Year-book, 1978; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102. [Google Scholar]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Kosman, E.; Chen, X.; Dreiseitl, A.; McCallum, B.; Lebeda, A.; Ben-Yehuda, P.; Gultyaeva, E.; Manisterski, J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. Phytopathology 2019, 109, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitl, A. Postulation of specific powdery mildew resistance genes in cereals: A widely used method and its detailed description. Pathogens 2022, 11, 284. [Google Scholar] [CrossRef]
Ml Gene(s) | Bgh Isolates, Their Country of Origin and Year of Collection | |||||||
---|---|---|---|---|---|---|---|---|
Race I | J-462 | EA30 | U-54 | I-20 | M-3 | GH | X-30 | |
JAP 1 | ISR | SWE | URQ | CZE | CZE | AUS | CZE | |
1953 | 1979 | 1976 | 2005 | 2011 | 2014 | 2005 | 2012 | |
None | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a6 | 0 | 4 | 4 | 0 | 4 | 4 | 0 | 4 |
a6, g | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 4 |
a6, La | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 2–3 |
a7 | 0 | 0 | 1 | 0 | 4 | 4 | 0 | 4 |
a7, g | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 4 |
a7, k1, g | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 2 |
a7, k1, La | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 2–3 |
a7, La | 0 | 0 | 1 | 0 | 4 | 4 | 0 | 2–3 |
a8 | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
a8, He2 | 0 | 4 | 4 | 2–3 | 4 | 4 | 4 | 4 |
a8, He2, La | 0 | 4 | 2–3 | 2–3 | 4 | 4 | 2–3 | 2–3 |
a8, La | 0 | 4 | 2–3 | 4 | 4 | 4 | 2–3 | 2–3 |
a9 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
a12 | 1 | 4 | 4 | 0 | 4 | 4 | 1 | 4 |
a13 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 4 |
a13, g | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
Ch | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Ch, He2 | 2 | 4 | 4 | 2–3 | 4 | 4 | 4 | 4 |
g | 0 | 4 | 0 | 4 | 0 | 4 | 4 | 4 |
g, He2 | 0 | 4 | 0 | 2–3 | 0 | 4 | 4 | 4 |
mlo | 0(3) 2 | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) | 0(3) |
n | 4 | 4 | 1–2 | 4 | 1–2 | 1–2 | 1–2 | 1–2 |
ra | 4 | 4 | 0 | 4 | 4 | 4 | 4 | 4 |
Variety | CZE 1,2 | USA | DEU | GBR | POL | HUN | SVK | SWE | Sum |
---|---|---|---|---|---|---|---|---|---|
Abyssinian 1102 | T b | T a | T a | 2 | |||||
Asse | T c | T b | 1 | ||||||
Black Hull-less | T a | T a | 1 | ||||||
Diamant | T b | T a | T b | 2 | |||||
Donaria Ackermans | T b | T a | T a | T a | 3 | ||||
Emir | T b | T a | T a | T a | 3 | ||||
Falcon | T a | T a | 1 | ||||||
Gerda | T b | T a | T a | T c | 3 | ||||
Hana | T a | T b | 1 | ||||||
Hanna | T a | T a | T b | T c | 3 | ||||
Manchuria | T a | T a | 1 | ||||||
Rupee | T b | T a | T a | T c | 3 | ||||
Schwarzenb. Gerste 21 | T b | T | T | 2 | |||||
Trumpf | T d | T b | T a | T c | 3 | ||||
Vega Abed | T b | T a | T a | T a | 3 | ||||
Sum | 15 | 10 | 8 | 6 | 5 | 1 | 1 | 1 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreiseitl, A.; Zavřelová, M. Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions. Plants 2022, 11, 3059. https://doi.org/10.3390/plants11223059
Dreiseitl A, Zavřelová M. Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions. Plants. 2022; 11(22):3059. https://doi.org/10.3390/plants11223059
Chicago/Turabian StyleDreiseitl, Antonín, and Marta Zavřelová. 2022. "Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions" Plants 11, no. 22: 3059. https://doi.org/10.3390/plants11223059
APA StyleDreiseitl, A., & Zavřelová, M. (2022). Non-Authenticity of Spring Barley Genotypes Revealed in Gene Bank Accessions. Plants, 11(22), 3059. https://doi.org/10.3390/plants11223059