Phytosynthesis of Zinc Oxide Nanoparticles Using Ceratonia siliqua L. and Evidence of Antimicrobial Activity
Abstract
:1. Introduction
2. Results
2.1. Phytosynthesis and Characterization of Zinc Oxide Nanoparticles
2.2. Determination of the Chemical Profile of C. siliqua Pods by HPLC-MS
2.3. Evaluation of the Antimicrobial Activity of bioZnONP
3. Discussion
4. Materials and Methods
4.1. Biosynthesis and Characterization of Biosynthesized C. siliqua L. Bio-ZnONPs
4.2. Elemental Analysis of Bio-ZnONPs
4.3. Determination of Dry Biomass (DM), Organic Biomass (OM), Mineral Biomass (MM) and Total Nitrogen
4.4. Elemental Analysis
4.5. Measurement of Pod Fiber Content
4.6. Assay of Free Amino Acids and Total Soluble Sugars
4.7. Determination of the Phenolic Compounds by HPLC-MS
4.8. Evaluation of the Antibacterial Activity of bioZnONP
4.9. Evaluation of Activity against Yeast Growth
4.10. Evaluation of Antifungal Activity
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabrez, S.; Musarrat, J.; Al-khedhairy, A.A. Colloids and surfaces B: Biointerfaces countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf. B Biointerfaces 2016, 146, 70–83. [Google Scholar] [CrossRef]
- Venkatesan, P.; Selvamani, A.; Balasubramanian, R.; Babu, C.M.; Poovarasan, S.; Srinivasan, V.V.; Shakila Parveen, A.; Thirukumaran, P.; Sundaravel, B.; Ramkumar, V. Green synthesis of silver nanoparticles for antimicrobial activity. Green Rep. 2020, 1, 8–15. [Google Scholar] [CrossRef]
- Dimkpa, C.O. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J. Basic. Microbiol. 2014, 54, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O. Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Curr. Opin. Environ. Sci. Health 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Rao, M.D.; Gautam, P. Synthesis and characterization of ZnO nanoflowers using chlamydomonas reinhardtii: A green approach. Environ. Prog. Sustain. Energy 2016, 35, 1020–1026. [Google Scholar] [CrossRef]
- Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.Z.M.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017, 24, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, T.; Misni, N.; Ithnin, N.R.; Daskum, A.M.; Unyah, N.Z. A Review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int. J. Environ. Res. Public Health 2022, 19, 674. [Google Scholar] [CrossRef]
- Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef]
- Pradeep, M.; Kruszka, D.; Kachlicki, P.; Mondal, D.; Franklin, G. Uncovering the Phytochemical Basis and the Mechanism of Plant Extract-Mediated Eco-Friendly Synthesis of Silver Nanoparticles Using Ultra-Performance Liquid Chromatography Coupled with a Photodiode Array and High-Resolution Mass Spectrometry. ACS Sustain. Chem. Eng. 2022, 10, 562–571. [Google Scholar] [CrossRef]
- Shafey, A.M.E. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Process. Synth. 2020, 9, 304–339. [Google Scholar] [CrossRef]
- Dobrucka, R.; Dlugaszewska, J.; Kaczmarek, M. Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed. Microdevices 2018, 20, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 143, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Velmurugan, S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica. Appl. Surf. Sci. 2015, 345, 329–336. [Google Scholar] [CrossRef]
- Sangani, M.H.; Moghaddam, M.N.; Mahdi, M. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed J. 2015, 2, 121–128. [Google Scholar]
- Hameed, A.S.; Karthikeyan, C.; Ahamed, A.P.; Thajuddin, N.; Alharbi, N.S.; Alharbi, S.A.; Ravi, G. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 2016, 6, 24312. [Google Scholar] [CrossRef] [Green Version]
- Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett. 2014, 24, 4298–4303. [Google Scholar] [CrossRef]
- Baumel, A.; Mirleau, P.; Viruel, J.; Kharrat, M.B.D.; La Malfa, S.; Ouahman, L.; Diadema, K.; Moakhar, M.; Sanguin, H.; Médail, F. Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale. Plant Ecol. Evol. 2018, 151, 185–193. [Google Scholar] [CrossRef]
- Karababa, E.; Coşkuner, Y. Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop. Ind. Crops Prod. 2013, 42, 440–446. [Google Scholar] [CrossRef]
- Dakia, P.A.; Wathelet, B.; Paquot, M. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem. 2007, 102, 1368–1374. [Google Scholar] [CrossRef]
- Biner, B.; Gubbuk, H.; Karhan, M.; Aksu, M.; Pekmezci, M. Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food Chem. 2007, 100, 1453–1455. [Google Scholar] [CrossRef]
- Fidan, H.; Stankov, S.; Petkova, N.; Petkova, Z.; Iliev, A.; Stoyanova, M.; Ivanova, T.; Zhelyazkov, N.; Ibrahim, S.; Stoyanova, A.; et al. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 2020, 57, 2404–2413. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; Campos, M.G.N.; Fugice, J.; Glass, K.; Ozcan, A.; Huang, Z.; Singh, U.; Santra, S. Synthesis and characterization of novel dual-capped Zn-urea nanofertilizers and application in nutrient delivery in wheat. Environ. Sci. Adv. 2022, 1, 47–58. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Shahbaz, A.; Shah, S.A.; Uddin, S.; Ma, X.; Raouf, B.; Kanwal, S.; et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021, 11, 20988. [Google Scholar] [CrossRef]
- Rao, C.N.R. Chemical Applications of Infrared Spectroscopy; Academic Press: New York, NY, USA; London, UK, 1963; pp. 25–40. [Google Scholar]
- Singh, R.P.; Shukla, V.K.; Yadav, R.S.; Sharma, P.K.; Singh, P.K. Pandey, Biological approach of zinc oxide nanoparticles formation and its characterization A.C. Adv. Mater. Lett. 2011, 2, 313–317. [Google Scholar] [CrossRef]
- Beattie, I.R.; Haverkamp, R.G. Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 2011, 3, 628–632. [Google Scholar] [CrossRef]
- Haverkamp, R.G.; Marshall, A.T. The mechanism of metal nanoparticle formation in plants: Limits on accumulation. J. Nanopart. Res. 2009, 11, 1453–1463. [Google Scholar] [CrossRef]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Patel, V.; Berthold, D.; Puranik, P.; Gantar, M. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol. Rep. 2015, 5, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 2015, 26, 1294–1299. [Google Scholar] [CrossRef]
- Ifeanyichukwu, U.L.; Omolola, E.F.; Collins, N.A. Green Synthesis of Zinc Oxide Nanoparticles from Pomegranate (Punica granatum) Extracts and Characterization of Their Antibacterial Activity. Molecules 2020, 25, 4521. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A.; Joseph, J.; Sadeghfar, F.R.; Anuf, A.; Kyzas, K.R.G.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct. 2020, 1211, 128107. [Google Scholar] [CrossRef]
- Gupta, M.; Tomar, R.S.; Kaushik, S.; Mishra, R.K.; Sharma, D. Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol. 2018, 9, 2030. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, S.; Subramaniyan, S.; Karunanithi, N.; Vasanthakumar, P.; Kutzner, A.; Kim, P.-S.; Heese, K. Antibacterial, Antifungal, and Antioxidant. Activities of silver nanoparticles biosynthesized from Bauhinia tomentosa Linn. Antioxidants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Dhabalia, D.; Ukkund, S.J.; Syed, U.T.; Uddin, W.; Kabir, M.A. Antifungal activity of biosynthesized silver nanoparticles from Candida albicans on the strain lacking the CNP41 gene. Mater. Res. Express 2020, 7, 125401. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Bogdanchikova, N.; Garibo, D. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne Incognita, plant pathogens Ralstonia Solanacearum and Fusarium Oxysporum. Molecules 2021, 26, 2462. [Google Scholar] [CrossRef]
- Sastry, M.; Ahmad, A.; Islam Khan, M.; Kumar, R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 2003, 85, 162–170. [Google Scholar] [CrossRef]
- Thiex, N.J.; Manson, H.; Andersson, S.; Persson, J.A. Determination of crude protein in animal feed, forage, grain, and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: Collaborative study. J. AOAC Intern. 2002, 85, 309–317. [Google Scholar] [CrossRef] [Green Version]
- French National Organization for Standardization. Norme U, 42-246, Tour Europe, Paris. SUDRAUD P. Bull. OIV 1969, 462–463, 933. [Google Scholar]
- Moore, S.; Stein, W.H. Procedures for the chromatographic determination of amino acids on four percent cross-linked sulfonated polystyrene resins. J. Biol. Chem. 1954, 211, 893–906. [Google Scholar] [CrossRef]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owens, H.S. Determination of starch and amylose in vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
Minerals | Ca | Cu | Fe | K | Mg | Mn | Mo | Na | P | Pb | S | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean value | 2.719 | 0.006 | 0.052 | 0.209 | 0.165 | 0.00243 | 0.002 | 4.157 | 0.1 | 0.032 | 0.927 | 8.576 |
±SD | 0.304 | 0.004 | 0.011 | 0.035 | 0.023 | 0.0006 | 0.003 | 0.969 | 0.018 | 0.049 | 0.214 | 1.239 |
Phenolic Compounds | Level (ppm) |
---|---|
Quinic acid | 49.276 |
Gallic acid | 16.15 |
Protocatechuic acid | 0.032 |
p-coumaric acid | 0.195 |
transferulic acid | 0.037 |
Luteolin-7-o-glucoside | 0.278 |
Quercetin | 0.135 |
Quercetin (quercetin-3-o-rhamonosic) | 9.469 |
Hyperoside(quercetin-3-o-galactoside) | 4.019 |
Naringin | 2.155 |
Naringenin | 1.276 |
Apegenin-7-o-glucoside | 0.401 |
Apegenin | 0.449 |
trans cinnamic | 1.816 |
cirsiliol | 5.144 |
catechin(+) | 0.873 |
Epicatechin | 0.041 |
syringic acid | 0.141 |
Bacterial Strains | Antibacterial Activity Inhibition Diameter (mm) |
Staphylococcus aureus ATCC 25 923 | 12 ± 0.71 |
Micrococcus luteus NCIMB 8166 | 0 |
Salmonella enterica sérotype Typhimurium ATCC 1408 | 0 |
Escherichia coli ATCC35218 | 0 |
Yeast strains | Activity against yeast growth Inhibition diameter (mm) |
Candida albicans ATCC90028 | 14 ± 0.71 |
Candida krusei ATCC6258 | 14 ± 0.00 |
Candida neoformans ATCC14116 | 13 ± 0.71 |
Fungal strains | Antifungal activity Inhibition diameter (mm) |
Aspergillus flavus 15UA005 | 17 ± 0.71 |
Aspergillus niger 15UA006 | 0 |
Aspergillus fumigatus ATCC204305 | 15 ± 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmous, I.; Taheur, F.B.; Zuverza-Mena, N.; Jebahi, S.; Vaidya, S.; Tlahig, S.; Mhadhbi, M.; Gorai, M.; Raouafi, A.; Debara, M.; et al. Phytosynthesis of Zinc Oxide Nanoparticles Using Ceratonia siliqua L. and Evidence of Antimicrobial Activity. Plants 2022, 11, 3079. https://doi.org/10.3390/plants11223079
Karmous I, Taheur FB, Zuverza-Mena N, Jebahi S, Vaidya S, Tlahig S, Mhadhbi M, Gorai M, Raouafi A, Debara M, et al. Phytosynthesis of Zinc Oxide Nanoparticles Using Ceratonia siliqua L. and Evidence of Antimicrobial Activity. Plants. 2022; 11(22):3079. https://doi.org/10.3390/plants11223079
Chicago/Turabian StyleKarmous, Inès, Fadia Ben Taheur, Nubia Zuverza-Mena, Samira Jebahi, Shital Vaidya, Samir Tlahig, Mohsen Mhadhbi, Mustapha Gorai, Amel Raouafi, Mohamed Debara, and et al. 2022. "Phytosynthesis of Zinc Oxide Nanoparticles Using Ceratonia siliqua L. and Evidence of Antimicrobial Activity" Plants 11, no. 22: 3079. https://doi.org/10.3390/plants11223079
APA StyleKarmous, I., Taheur, F. B., Zuverza-Mena, N., Jebahi, S., Vaidya, S., Tlahig, S., Mhadhbi, M., Gorai, M., Raouafi, A., Debara, M., Bouhamda, T., & Dimkpa, C. O. (2022). Phytosynthesis of Zinc Oxide Nanoparticles Using Ceratonia siliqua L. and Evidence of Antimicrobial Activity. Plants, 11(22), 3079. https://doi.org/10.3390/plants11223079