Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize
Abstract
:1. Introduction
2. Results
2.1. Maize Yield
2.2. Dry Weight of the Plant
2.3. Leaf area and Chlorophyll Content
2.4. Internodal Length, Plant Height, and Panicle Height
2.5. Stem Strength and Internodal Diameter
2.6. Cortex of Maize Stalk
2.7. Maize Quality
2.8. Se Content in Maize Grains
3. Discussion
3.1. Effects of Basal Se fertilization on Maize Yield and Quality
3.2. Effects of Se Fertilization on Agronomic Traits of Maize
3.3. Effects of Se Fertilization on Maize Stalks
3.4. Effects of Basal Se Fertilization on Se Content in Maize Grains
4. Material and Methods
4.1. Site Description and Experimental Design
4.2. Agronomic Trait
4.3. Plant and Soil Collection and Processing
4.4. Plant Analyses
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amato, R.; Feudis, M.D.; Guiducci, M.; Businelli, D. Zea mays L. Grain: Increase in Nutraceutical and Antioxidant Properties Due to Se Fortification in Low and High Water Regimes. J. Agric. Food Chem. 2019, 67, 7050–7059. [Google Scholar] [CrossRef] [PubMed]
- Bocchini, M.; D’Amato, R.; Ciancaleoni, S.; Fontanella, M.C.; Palmerini, C.A.; Beone, G.M.; Onofri, A.; Negri, V.; Marconi, G.; Albertini, E.; et al. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance. Front. Plant Sci. 2018, 9, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilić, S.; Serpen, A.; Akıllıoğlu, G.; Gökmen, V.; Vančetović, J. Phenolic compounds, carotenoids, anthocyanins and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Grujcic, D.; Yazici, A.M.; Tutus, Y.; Cakmak, I.; Singh, B.R. Biofortification of Silage Maize with Zinc, Iron and Selenium as Affected by Nitrogen Fertilization. Plants 2021, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, F.; Yang, W.; Peng, Q.; Man, N.; Liang, D. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere 2017, 182, 284–292. [Google Scholar] [CrossRef]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Bukhari, M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015, 175, 350–357. [Google Scholar] [CrossRef]
- Pieters, A.J.; El Souki, S. Effects of drought during grain filling on PS II activity in rice. J. Plant Physiol. 2005, 162, 903–911. [Google Scholar] [CrossRef]
- Nawaz, F.; Ahmad, R.; Waraich, E.A.; Naeem, M.S.; Shabbir, R.N. Nutrient Uptake, Physiological Responses, and Yield Attributes of Wheat (Triticum Aestivum L.) Exposed to Early and Late Drought Stress. J. Plant Nutr. 2012, 35, 961–974. [Google Scholar] [CrossRef]
- Ngigi, P.B.; Lachat, C.; Masinde, P.W.; Laing, G.D. Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ. Geochem. Health 2019, 41, 2577–2591. [Google Scholar] [CrossRef]
- Yang, C.; Yao, H.; Wu, Y.; Sun, G.; Yang, W.; Li, Z.; Shang, L. Status and risks of selenium deficiency in a traditional selenium-deficient area in Northeast China. Sci. Total Environ. 2020, 762, 144103. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. Selenium accumulation by plants. Ann. Bot. 2016, 117, 217–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartes, P.; Jara, A.A.; Pinilla, L.; Rosas, A.; Mora, M.L. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann. Appl. Biol. 2010, 156, 297–307. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Guo, A.; Yang, S.; Chen, J.; Qiao, Y.; Anwar, S.; Wang, K.; Yang, Z.; Gao, Z.; et al. Combined foliar and soil selenium fertilizer improves selenium transport and the diversity of rhizosphere bacterial community in oats. Environ. Sci. Pollut. Res. Int. 2021, 28, 64407–64418. [Google Scholar] [CrossRef]
- Dong, J.Z.; Wang, Y.; Wang, S.H.; Yin, L.P.; Xu, G.J.; Zheng, C.; Lei, C.; Zhang, M.Z. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinenseleaves. J. Sci. Food Agric. 2013, 93, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Chilimba, A.D.C.; Young, S.D.; Black, C.R.; Meacham, M.C.; Lammel, J.; Broadley, M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crops Res. 2012, 125, 118–128. [Google Scholar] [CrossRef]
- Luo, H.W.; He, L.X.; Du, B.; Wang, Z.M.; Zheng, A.X.; Lai, R.F.; Tang, X.R. Foliar application of selenium (Se) at heading stage induces regulation of photosynthesis, yield formation, and quality characteristics in fragrant rice. Photosynthetica 2019, 57, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Fontanella, M.C.; D'Amato, R.; Regni, L.; Proietti, P.; Beone, G.M.; Businelli, D. Selenium speciation profiles in biofortified sangiovese wine. J. Trace Elem. Med. Biol. 2017, 43, 87–92. [Google Scholar] [CrossRef]
- Yao, X.; Chu, J.; Wang, G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009, 130, 283–290. [Google Scholar] [CrossRef]
- Ghouri, F.; Ali, Z.; Naeem, M.; Ul-Allah, S.; Babar, M.; Baloch, F.S.; Chattah, W.S.; Shahid, M.Q. Effects of Silicon and Selenium in Alleviation of Drought Stress in Rice. Silicon 2021, 14, 5453–5461. [Google Scholar] [CrossRef]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crops Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.T.; Li, Z.; Tran, T.A.T.; Wang, D.; Liang, D. Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere 2017, 184, 618–635. [Google Scholar] [CrossRef]
- Feudis, M.D.; D’Amato, R.; Businelli, D.; Guiducci, M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci. Total Environ. 2019, 659, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Sharma, S.; Kaur, S.; Nayyar, H. Selenium in agriculture: A nutrient or contaminant for crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Ligas, B.; Mikula, K.; Witek-Krowiak, A.; Moustakas, K.; Chojnacka, K. Biofortification of edible plants with selenium and iodine—A systematic literature review. Sci. Total Environ. 2021, 754, 141983. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.; Naeem, M.; Ashraf, M.Y.; Tahir, M.N.; Zulfiqar, B.; Salahuddin, M.; Shabbir, R.N.; Aslam, M. Selenium Supplementation Affects Physiological and Biochemical Processes to Improve Fodder Yield and Quality of Maize (Zea mays L.) under Water Deficit Conditions. Front. Plant Sci. 2016, 7, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Li, X.; Wu, Q.; Lu, P.; Kang, Q.; Zhao, M.; Wang, A.; Dong, Q.; Sun, M.; Yang, Z.; et al. Selenium Application Enhances the Accumulation of Flavones and Anthocyanins in Bread Wheat (Triticum aestivum L.) Grains. J. Agric. Food Chem. 2022, 70, 13431–13444. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Cai, M.; Hu, C.; Sun, X.; Cheng, Q.; Jia, W.; Yang, T.; Nie, M.; Zhao, X. Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ. Pollut. 2019, 254, 113051. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, Y.; Gao, D.; An, X.; Kong, F. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci. Hortic. 2017, 218, 87–94. [Google Scholar] [CrossRef]
- Halli, H.M.; Angadi, S.; Kumar, A.; Govindasamy, P.; Madar, R.; Baskar, V.D.; Elansary, H.O.; Tamam, N.; Abdelbacki, A.M.M.; Abdelmohsen, S.A.M. Assessment of Planting Method and Deficit Irrigation Impacts on Physio-Morphology, Grain Yield and Water Use Efficiency of Maize (Zea mays L.) on Vertisols of Semi-Arid Tropics. Plants 2021, 10, 1094. [Google Scholar] [CrossRef]
- Gui, J.Y.; Rao, S.; Huang, X.; Liu, X.; Cheng, S.; Xu, F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. Sci. Total Environ. 2022, 853, 158673. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Ning, Z.; Kwon, S.Y.; Li, M.-L.; Tack, F.M.G.; Kwon, E.E.; Rinklebe, J.; Yin, R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. J. Hazard. Mater. 2022, 422, 126876. [Google Scholar] [CrossRef]
- Poldma, P.; Tonutare, T.; Viitak, A.; Luik, A.; Moor, U. Effect of selenium treatment on mineral nutrition, bulb size, and antioxidant properties of garlic (Allium sativum L.). J. Agric. Food Chem. 2011, 59, 5498–5503. [Google Scholar] [CrossRef]
- Luo, H.; Xing, P.; Liu, J.; Pan, S.; Tang, X.; Duan, M. Selenium improved antioxidant response and photosynthesis in fragrant rice (Oryza sativa L.) seedlings during drought stress. Physiol. Mol. Biol. Plants 2021, 27, 2849–2858. [Google Scholar] [CrossRef]
- Taha, R.S.; Seleiman, M.F.; Shami, A.; Alhammad, B.A.; Mahdi, A.H.A. Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Plants 2021, 10, 1040. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wen, D.; Wu, C.; Zhang, C. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength. BMC Plant Biol. 2022, 22, 49. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, J.; Li, W.; Gong, Z.; Jia, C.; Li, P. Effect of foliar application of the selenium-rich nutrient solution on the selenium accumulation in grains of Foxtail millet (Zhangzagu 10). Environ. Sci. Pollut. Res. Int. 2022, 29, 5569–5576. [Google Scholar] [CrossRef]
- Wang, S.; Liang, D.; Wang, D.; Wei, W.; Fu, D.; Lin, Z. Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci. Total Environ. 2012, 427, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, T.; Gama, F.; Rodrigues, M.A.; Abadia, J.; de Varennes, A.; Pestana, M.; Da Silva, J.P.; Correia, P.J. Effects of foliar application of organic acids on strawberry plants. Plant Physiol. Biochem. 2022, 188, 12–20. [Google Scholar] [CrossRef]
- Li, J.; Yang, W.; Guo, A.; Qi, Z.; Chen, J.; Huang, T.; Yang, Z.; Gao, Z.; Sun, M.; Wang, J. Combined foliar and soil selenium fertilizer increased the grain yield, quality, total se, and organic Se content in naked oats. J. Cereal Sci. 2021, 100, 103265. [Google Scholar] [CrossRef]
Site | Treatment | Kernels No. Ear−1 | 1000-Kernel Weight (g) | Grain Yield Per Mu (kg) | Grain Yield Per Hectare (kg) |
---|---|---|---|---|---|
DY | Se0 | 612.6 ± 69.1ab | 316.3 ± 19.5b | 980.3 ± 121.0b | 14,704.4 ± 1815.1b |
Se1 | 604.3 ± 28.4ab | 290.0 ± 19.6a | 881.9 ± 35.9a | 13,228.2 ± 537.7ab | |
Se2 | 635.8 ± 44.2b | 305.8 ± 18.1ab | 979.9 ± 51.0b | 14,698.1 ± 765.2ab | |
Se3 | 610.9 ± 43.0ab | 289.0 ± 15.2a | 878.3 ± 43.8a | 13,174.0 ± 656.7a | |
Se4 | 581.0 ± 70.2a | 314.5 ± 32.6b | 927.5 ± 139.6ab | 13,911.8 ± 2093.9b | |
SY | Se0 | 640.4 ± 42.2a | 293.1 ± 8.5bc | 939.2 ± 27.1b | 14,087.3 ± 406.3b |
Se1 | 697.9 ± 49.2b | 291.0 ± 6.7b | 1016.9 ± 23.4c | 15,253.1 ± 350.3c | |
Se2 | 700.6 ± 48.0b | 300.3 ± 5.0c | 1054.2 ± 17.7d | 15,813.2 ± 265.5d | |
Se3 | 695.4 ± 45.1b | 290.8 ± 12.8b | 1013.4 ± 44.6c | 15,200.8 ± 668.5c | |
Se4 | 634.9 ± 42.0a | 279.8 ± 7.3a | 884.6 ± 23.2a | 13,268.2 ± 347.9a |
Site | Treatment | Stem (g) | Leaf (g) | Ear (g) | Maize Cob (g) | Grain (g) | The Total Weight (g) |
---|---|---|---|---|---|---|---|
DY | Se0 | 79.8 ± 8.7ab | 29.1 ± 1.2a | 192.1 ± 7.0ab | 23.8 ± 1.2a | 168.2 ± 6.1ab | 301.1 ± 15.2a |
Se1 | 89.9 ± 12.3b | 32.3 ± 6.3a | 220.3 ± 19.8b | 25.0 ± 2.3b | 195.2 ± 18.0b | 342.0 ± 38.0a | |
Se2 | 83.7 ± 7.4ab | 26.8 ± 3.0a | 189.3 ± 18.2ab | 22.6 ± 1.3ab | 166.7 ± 17.0ab | 299.8 ± 19.7a | |
Se3 | 64.5 ± 8.7a | 22.1 ± 1.4a | 154.2 ± 24.9a | 18.6 ± 3.5a | 135.6 ± 21.4a | 240.8 ± 34.6a | |
Se4 | 83.4 ± 18.7ab | 27.4 ± 9.0a | 187.0 ± 33.9ab | 20.9 ± 3.5ab | 166.2 ± 30.4ab | 297.8 ± 56.6a | |
SY | Se0 | 98.4 ± 1.1a | 42.3 ± 0.6ab | 190.9 ± 9.9a | 24.8 ± 1.1a | 166.1 ± 9.9a | 331.5 ± 10.6a |
Se1 | 123.4 ± 18.0b | 47.0 ± 5.3b | 232.8 ± 13.8b | 30.8 ± 2.2b | 201.9 ± 11.7b | 403.3 ± 36.8a | |
Se2 | 132.8 ± 18.3b | 48.3 ± 6.8b | 254.1 ± 20.8b | 32.9 ± 2.9b | 221.2 ± 17.9b | 435.3 ± 45.0a | |
Se3 | 114.3 ± 7.1ab | 45.5 ± 3.3b | 241.2 ± 14.1b | 29.8 ± 2.6b | 211.4 ± 12.0b | 401.0 ± 24.4a | |
Se4 | 92.0 ± 10.6a | 36.2 ± 3.6a | 177.0 ± 22.1a | 22.6 ± 2.4a | 154.4 ± 19.7a | 305.1 ± 35.1a |
Site | Treatment | Leaf Area (cm2 Plant−1) | Chlorophyll Content (μmol m−2) | |||
---|---|---|---|---|---|---|
Tasseling | Milk Stage | Bighorn Mouth Stage | Tasseling | Milk Stage | ||
DY | Se0 | 457.2 ± 100.2a | 659.7 ± 62.7a | 1632.8 ± 84.2a | 1827.7 ± 187.7a | / |
Se1 | 520.8 ± 39.8a | 734.6 ± 67.5a | 1655.5 ± 76.4a | 1764.2 ± 175.7a | / | |
Se2 | 604.9 ± 167.8a | 693.2 ± 20.5a | 1725.7 ± 244.0a | 1845.5 ± 49.2a | / | |
Se3 | 608.8 ± 237.3a | 675.4 ± 45.3a | 1702.9 ± 124.8a | 1824.8 ± 155.1a | / | |
Se4 | 609.4 ± 111.0a | 684.7 ± 94.3a | 1638.3 ± 76.1a | 1797.9 ± 120.6a | / | |
SY | Se0 | 701.9 ± 47.5a | 748.7 ± 41.8a | 1708.6 ± 143.2a | 1871.5 ± 153.0a | 1543.5 ± 96.6a |
Se1 | 710.0 ± 65.9a | 780.6 ± 38.5a | 1752.1 ± 165.3a | 1807.5 ± 272.7a | 1651.7 ± 269.2a | |
Se2 | 723.8 ± 56.8a | 680.3 ± 111.1a | 1743.1 ± 96.7a | 1814.5 ± 220.4a | 1596.5 ± 143.2a | |
Se3 | 684.3 ± 63.8a | 722.0 ± 6.4a | 1663.2 ± 145.5a | 1829.4 ± 190.9a | 1652.5 ± 110.6a | |
Se4 | 686.9 ± 64.3a | 782.8 ± 85.6a | 1637.0 ± 122.1a | 1813.0 ± 111.7a | 1549.9 ± 193.8a |
Se Fertilizer | Grain Yield Per Hectare | The Total Weight | Leaf Area Tasseling | Chlorophyll Content Tasseling | Internode Length Milk Stage 4th | Plant Height Tasseling | Ear Height Tasseling | Stem Strength Tasseling 3rd | Internode Diameter Tasseling 3rd | Hard Tissue Thickness | Crude Fiber | Soluble Sugar | Crude Protein | Crude Fat | Starch | Se Content | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Se fertilizer | 1 | ||||||||||||||||
Grain yield per hectare | −0.163 | 1 | |||||||||||||||
The total weight | −0.350 | −0.044 | 1 | ||||||||||||||
Leaf area | 0.375 * | −0.086 | −0.431 | 1 | |||||||||||||
Chlorophyll content | 0.007 | 0.268 | 0.239 | −0.201 | 1 | ||||||||||||
Internode length | −0.060 | −0.005 | 0.343 | −0.534 * | 0.568 * | 1 | |||||||||||
Plant height | −0.446 | −0.116 | 0.253 | 0.015 | −0.143 | −0.046 | 1 | ||||||||||
Ear height tasseling | −0.176 | −0.337 | 0.337 | 0.005 | −0.415 | −0.255 | −0.060 | 1 | |||||||||
stem strength | 0.727 ** | 0.045 | −0.579 * | 0.597 * | 0.200 | 0.079 | −0.285 | −0.502 | 1 | ||||||||
internode diameter Tasseling 3rd | 0.133 | 0.273 | −0.058 | −0.004 | 0.725 ** | 0.631 * | −0.252 | −0.390 | 0.590 * | 1 | |||||||
Hard tissue thickness | 0.633 ** | −0.169 | −0.305 | 0.339 | 0.285 | −0.028 | −0.380 | −0.400 | 0.668 * | 0.157 | 1 | ||||||
Crude fiber | 0.831 ** | −0.076 | −0.353 | 0.552 * | 0.262 | −0.307 | −0.434 | −0.226 | 0.675 ** | 0.307 | 0.782 ** | 1 | |||||
Soluble sugar | −0.529 * | 0.582 * | 0.046 | −0.248 | 0.015 | −0.159 | −0.125 | 0.012 | −0.345 | −0.252 | −0.044 | −0.138 | 1 | ||||
Crude protein | 0.872 ** | −0.339 | −0.414 | 0.598 * | 0.225 | −0.289 | −0.322 | −0.220 | 0.681 ** | 0.364 | 0.830 ** | 0.940 ** | −0.331 | 1 | |||
Crude fat | −0.266 | −0.388 | 0.291 | −0.110 | −0.058 | −0.165 | 0.375 | 0.438 | −0.427 | −0.122 | 0.101 | −0.277 | 0.052 | −0.157 | 1 | ||
Starch | 0.875 ** | 0.032 | −0.506 | 0.500 | 0.296 | −0.094 | −0.608 * | −0.323 | 0.756 ** | 0.468 | 0.834 ** | 0.866 ** | −0.152 | 0.806 ** | −0.546 * | 1 | |
Se content | 0.579 * | −0.130 | −0.298 | 0.001 | 0.383 | 0.085 | −0.855 ** | −0.039 | 0.400 | 0.406 | 0.569 | 0.626 * | 0.038 | 0.538 * | −0.326 | 0.707 ** | 1 |
Se Fertilizer | Grain Yield Per Hectare | The Total Weight | Leaf Area Tasseling | Chlorophyll Content Tasseling | Internode Length Milk Stage 4th | Plant Height Tasseling | Ear Height Tasseling | Stem Strength Tasseling 3rd | Internode Diameter Tasseling 3rd | Hard Tissue Thickness | Crude Fiber | Soluble Sugar | Crude Protein | Crude Fat | Starch | Se Content | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Se fertilizer | 1 | ||||||||||||||||
Grain yield per hectare | −0.238 | 1 | |||||||||||||||
The total weight | −0.140 | 0.812 ** | 1 | ||||||||||||||
Leaf area | −0.139 | 0.215 | 0.418 | 1 | |||||||||||||
Chlorophyll content | −0.066 | 0.040 | 0.088 | −0.142 | 1 | ||||||||||||
Internode length | −0.068 | 0.500 ** | 0.750 ** | −0.065 | 0.255 | 1 | |||||||||||
Plant height | 0.389 | −0.513 | −0.437 | −0.563 * | −0.108 | −0.434 | 1 | ||||||||||
Ear height tasseling | −0.135 | −0.720 ** | −0.556 * | −0.546 * | −0.061 | −0.363 | 0.652 ** | 1 | |||||||||
stem strength | 0.150 | 0.332 | 0.145 | −0.021 | 0.008 | 0.415 * | −0.101 | −0.165 | 1 | ||||||||
internode diameter tasseling 3rd | −0.148 | 0.365 * | 0.730 ** | 0.087 | 0.130 | 0.800 ** | −0.382 | −0.377 | 0.327 | 1 | |||||||
Hard tissue thickness | −0.551 * | 0.800 ** | 0.805 ** | 0.351 | 0.065 | 0.661 ** | −0.524 | −0.438 | 0.356 | 0.672 ** | 1 | ||||||
Crude fiber | 0.585 * | −0.521 * | −0.537 * | −0.353 | −0.115 | −0.727 ** | 0.252 | 0.192 | −0.389 | −0.778 ** | −0.733 ** | 1 | |||||
Soluble sugar | 0.604 * | −0.384 | −0.130 | −0.277 | −0.544 * | −0.346 | 0.087 | −0.060 | −0.056 | −0.401 | −0.454 | 0.412 | 1 | ||||
Crude protein | −0.104 | 0.861 ** | 0.665 ** | 0.497 | 0.405 | 0.484 | −0.500 | −0.820 ** | 0.140 | 0.568 * | 0.416 | −0.264 | −0.244 | 1 | |||
Crude fat | −0.116 | 0.603 * | 0.589 * | 0.532 | 0.183 | 0.492 | −0.592 * | −0.650 * | 0.071 | 0.472 | 0.255 | −0.257 | 0.083 | 0.780 ** | 1 | ||
Starch | 0.688 ** | −0.026 | 0.129 | −0.112 | −0.076 | −0.185 | −0.013 | −0.355 | −0.063 | −0.180 | −0.285 | 0.474 | 0.657 ** | 0.293 | 0.442 | 1 | |
Se content | 0.963 ** | −0.380 | −0.305 | −0.492 | −0.150 | −0.459 | 0.515 | 0.025 | −0.085 | −0.538 * | −0.638 * | 0.676 ** | 0.574 * | −0.177 | −0.242 | 0.665 ** | 1 |
Site | Treatment | Internode Length (cm) | Plant Height (cm) | Ear Height (cm) | |||
---|---|---|---|---|---|---|---|
Milk Stage 3rd | Milk Stage 4th | Milk Stage 5th | Tasseling | Milk Stage | Tasseling | ||
DY | Se0 | 16.0 ± 0.8b | 19.5 ± 1.4b | 21.5 ± 0.5c | 310.3 ± 4.5b | 308.0 ± 3.5b | 109.0 ± 15.7a |
Se1 | 13.8 ± 1.3a | 17.2 ± 1.7ab | 20.0 ± 1.2bc | 307.0 ± 3.6ab | 305.7 ± 3.1ab | 118.0 ± 6.24a | |
Se2 | 13.1 ± 1.0a | 17.0 ± 1.8ab | 19.9 ± 1.6bc | 304.0 ± 6.8ab | 299.7 ± 2.3a | 107.7 ± 6.0a | |
Se3 | 12.7 ± 1.6a | 15.9 ± 1.1a | 18.1 ± 0.9ab | 300.2 ± 9.4a | 300.7 ± 6.7ab | 103.7 ± 7.1a | |
Se4 | 13.8 ± 0.3a | 15.2 ± 0.4a | 17.4 ± 0.7a | 306.5 ± 3.9ab | 303.3 ± 3.5ab | 110.3 ± 11.0a | |
SY | Se0 | 17.8 ± 4.0a | 21.7 ± 1.9a | 27.6 ± 2.3b | 343.7 ± 9.7a | 328.7 ± 4.2a | 150.0 ± 2.6c |
Se1 | 15.2 ± 1.7a | 20.3 ± 2.8a | 24.5 ± 2.0a | 341.2 ± 6.3a | 325.3 ± 3.2a | 137.0 ± 7.2ab | |
Se2 | 16.2 ± 2.2a | 20.8 ± 3.4a | 24.2 ± 2.0a | 345.3 ± 9.8a | 325.0 ± 2.6a | 130.7 ± 2.9a | |
Se3 | 15.0 ± 1.0a | 19.1 ± 2.0a | 23.7 ± 1.8a | 344.1 ± 6.a | 330.3 ± 3.5a | 140.0 ± 6.2abc | |
Se4 | 16.6 ± 1.3a | 21.3 ± 2.2a | 25.7 ± 2.2ab | 338.8 ± 11.6a | 331.7 ± 4.5a | 144.7 ± 7.2bc |
Site | Treatment | Hard Tissue Thickness (mm) | Cortex Thickness (μm) | Crude Fiber (%) |
---|---|---|---|---|
DY | Se0 | 1.2 ± 0.03a | 56.9 ± 4.6ab | 34.5 ± 1.0a |
Se2 | 1.3 ± 0.03b | 61.8 ± 2.6b | 37.4 ± 1.0bc | |
Se3 | 1.3 ± 0.04b | 54.7 ± 2.6a | 38.4 ± 1.0c | |
Se4 | 1.3 ± 0.04b | 54.2 ± 5.0a | 38.3 ± 1.0c | |
SY | Se0 | 1.3 ± 0.01b | 64.2 ± 2.9a | 38.2 ± 1.0bc |
Se2 | 1.3 ± 0.03c | 60.2 ± 2.3a | 38.8 ± 1.0c | |
Se3 | 1.3 ± 0.01b | 60.3 ± 2.7a | 36.8 ± 1.0ab | |
Se4 | 1.1 ± 0.03a | 58.8 ± 6.2a | 43.3 ± 1.0d |
Site | Treatment | Soluble Sugar (g 100 g−1) | Crude Protein (g 100 g−1) | Crude Fat (g 100 g−1) | Starch (g 100 g−1) |
---|---|---|---|---|---|
DY | Se0 | 2.3 ± 0.1b | 8.3 ± 0.2a | 3.5 ± 0.1b | 70.3 ± 0.2a |
Se1 | 2.4 ± 0.1c | 8.6 ± 0.2a | 3.9 ± 0.1c | 70.6 ± 0.2a | |
Se2 | 2.4 ± 0.1c | 8.7 ± 0.2a | 3.3 ± 0.1a | 72.4 ± 0.2b | |
Se3 | 2.4 ± 0.1bc | 9.3 ± 0.2b | 3.5 ± 0.1b | 72.9 ± 0.2c | |
Se4 | 2.1 ± 0.1a | 9.3 ± 0.2b | 3.5 ± 0.1b | 72.5 ± 0.2b | |
SY | Se0 | 2.6 ± 0.2a | 7.9 ± 0.1a | 2.9 ± 0.1a | 70.9 ± 2.0a |
Se1 | 2.7 ± 0.02ab | 8.2 ± 0.1b | 3.3 ± 0.1b | 73.4 ± 2.0ab | |
Se2 | 2.5 ± 0.2a | 8.5 ± 0.1c | 3.2 ± 0.1b | 74.5 ± 2.0ab | |
Se3 | 2.9 ± 0.2b | 8.0 ± 0.1a | 3.0 ± 0.1a | 75.1 ± 2.0b | |
Se4 | 2.9 ± 0.2b | 8.0 ± 0.1a | 3.0 ± 0.1a | 76.1 ± 2.0b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Gao, F.; Zhang, L.; Zhao, L.; Deng, Y.; Guo, H.; Qin, L.; Wang, C. Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize. Plants 2022, 11, 3099. https://doi.org/10.3390/plants11223099
Wang L, Gao F, Zhang L, Zhao L, Deng Y, Guo H, Qin L, Wang C. Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize. Plants. 2022; 11(22):3099. https://doi.org/10.3390/plants11223099
Chicago/Turabian StyleWang, Le, Fei Gao, Liguang Zhang, Li Zhao, Yan Deng, Hongxia Guo, Lixia Qin, and Chuangyun Wang. 2022. "Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize" Plants 11, no. 22: 3099. https://doi.org/10.3390/plants11223099
APA StyleWang, L., Gao, F., Zhang, L., Zhao, L., Deng, Y., Guo, H., Qin, L., & Wang, C. (2022). Effects of Basal Selenium Fertilizer Application on Agronomic Traits, Yield, Quality, and Se Content of Dryland Maize. Plants, 11(22), 3099. https://doi.org/10.3390/plants11223099