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Abstract: Rhizome fragmentation and sand burial are common phenomena in rhizomatous clonal
plants. These traits serve as an adaptive strategy for survival in stressful environments. Thus
far, some studies have been carried out on the effects of rhizome fragmentation and sand burial,
but how the interaction between rhizome fragmentation and sand burial affects the growth and
reproduction of rhizomatous clonal plants is unclear. We investigated the effect of the burial depth
and rhizome fragment size on the survival and growth of the rhizomatous herb Phragmites communis
using 288 clonal fragments (6 burial depths× 8 clonal fragment sizes× 6 replicates) in a field rhizome
severing experiment. The ramet survival of the rhizomatous species significantly increased with
the sand burial depth and clonal fragment size (p < 0.01), and the effects of the clonal fragment size
on ramet survival depended on the sand burial depth. Sand burial enhanced both the vertical and
horizontal biomass (p < 0.05), while the clonal fragment size affected the vertical biomass rather than
the horizontal biomass. Sand burial facilitated the vertical growth of ramets (p < 0.05) while the
number of newly produced ramets firstly increased and then decreased with the increasing clonal
fragment size, and the maximal value appeared in four clonal fragments under a heavy sand burial
depth. There is an interaction between the burial depth and rhizome fragment size in the growth of
rhizome herbaceous plants. The population growth increases in the increase of sand burial depth,
and reaches the maximum under severe sand burial and moderate rhizome fragmentation.

Keywords: arid sand dunes; adaptive strategy; clonal plants; population regeneration; sand burial;
vegetation restoration

1. Introduction

Clonal plants produce offspring through vegetative propagation and dominate various
terrestrial ecosystems globally [1,2]. Important aspects that vary across clonal species are
the persistence of clonal growth organs connecting ramets and the capacity of physiological
integration, which have demographic and ecological consequences [3]. Previous studies
suggested that clonal species in infertile and frequently disturbed environments tend to
maintain a persistent connection between ramets and exhibit high levels of physiological
integration compared with those in fertile and productive environments [4,5]. Additionally,
the persistent connections permit extensive physiological integration that allows ramets to
relieve the negative effects of heterogeneous and stressful environments [3,6,7].
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In natural ecosystems, the persistent rhizomes of clonal species have multiple func-
tions, including resource storage, regulation of heterogeneous resource distribution, mainte-
nance of bud banks and promotion of vegetation restoration under environmental stresses
and following disturbances [8–10]. In highly disturbed habitats, clonal plants are often
broken into small fragments of various sizes and are buried at various soil depths [11,12].
Accordingly, experimental severing has long been used to assess the importance of phys-
iological connection and integration between ramets and evaluate the consequences of
disrupted integration on ramet survival, growth, and offspring ramet production as well
as population expansion via rhizome systems [9,13,14]. Studies indicate that disrupted
connections often have negative effects on ramets [15–17]. Because the rhizome severing
interrupts the flow of resources among ramets, the ramet survival and biomass accumu-
lation following severing strongly depend on the level of stored resources [18], which is
closely related to the length of the rhizome system and the ability to provide water and soil
nutrients [4,19,20]. Thus, the clonal fragment size caused by different severing positions
might be the key factor affecting plant performance following severing due to the level of
reserves stored in clonal fragments [21]. For instance, an increasing clonal fragment size
(e.g., the diameter of the rhizome) significantly increases the fragment survival of clonal
shrubs [12]. Large rhizome or stolon sizes may positively affect the amount of resources
stored in them and, in turn, increase the survival and regrowth of clonal fragments [22]. De-
spite the substantial number of studies on the consequences of rhizome severing on clonal
species, how rhizome severing induces clonal fragment size interaction with environmental
conditions and disturbance to affect clonal performance has been rarely explored.

In sand dune ecosystems, aeolian activity acts as a strong selective force and greatly
influences individual growth, population maintenance, and colonization as well as vege-
tation restoration or recovery [23]. The strong aeolian activity in sand dunes often leads
to changes in the sand burial depth. Sand burial is a predominant disturbance for plant
species in arid and semi-arid sand dunes, and the biotic (e.g., pathogen activity) [23], and
abiotic (e.g., light, temperature and moisture) conditions dramatically change with the
sand burial depth [24,25]. The sand burial depth can directly affect plant survival and
growth by changing below-ground plant structures [14,26,27]. It has been proved that
rhizomatous plants could adjust their biomass allocation and the relationship between
horizontal rhizome extension and vertical ramet growth in response to the changes in sand
burial depth under wind erosion [28].

In this study, we selected the typical rhizomatous herbaceous species in semi-arid
and arid sand dunes of northern China, Phragmites communis, as the target species, and
examined the effects of the clonal fragment size (by different experimental severing posi-
tions), sand burial depth, and their interaction. P. communis is one of the pioneer colonists
on active sand dunes in Inner Mongolia, and is often selected for mobile sand fixation and
vegetation restoration [29,30]. It can reproduce through both vegetative propagation by
belowground rhizomes and sexual propagation via seeds, but few seedlings are found in
the field. Moreover, this species can inhabit various dune positions with different sand
burial depths [29]. We experimentally severed the rhizomes at different positions with
different numbers of ramets remaining on them and investigated the survival of ramets,
the biomass allocation (vertical biomass and horizontal biomass), the production of new
ramets, the increment in ramet height, the number of new rhizomes, and the increment in
the rhizome length of different clonal fragment sizes under different sand burial depths.
This study aimed to answer the two following questions: (1) How do the sand burial depth
and clonal fragment size affect the survival, growth and population expansion potential
of rhizomatous species? (2) Doed an interactive effect between the sand burial depth and
clonal fragment size exists?
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2. Results
2.1. Ramet Survival of Various Clonal Fragment Sizes under Different sand Burial Depths

There was an interactive effect between the sand burial depth and clonal fragment
size on ramet survival (p < 0.05, Table 1). Ramet survival increased linearly with the
increasing sand burial depth (p < 0.01), and it increased significantly with the increasing
clonal fragment size (i.e., with different numbers of ramets remaining) (p < 0.01) (Table 1,
Figure 1).

Table 1. Results of general linear model (GLM) on the effects of sand burial depth (SBD), clonal
fragment size (CFS), and their interaction (SBD × CFS) on ramet survival and growth of Phragmites
communis. The p values in bold indicate the significant differences at the 0.05 level.

Variables
SBD CFS SBD × CFS

F p F p F p

Ramet survival 26.43 <0.01 21.12 <0.01 1.50 0.04
Horizontal biomass 9.69 <0.01 2.66 0.01 0.93 0.56

Vertical biomass 11.59 <0.01 2.72 <0.01 1.34 0.10
Increment in ramet number 3.69 <0.01 3.42 <0.01 0.83 0.74
Increment in ramet height 12.63 <0.01 5.28 <0.01 1.91 <0.01

Increment in rhizome number 6.07 <0.01 3.37 <0.01 2.14 <0.01
Increment in rhizome length 5.92 <0.01 4.31 <0.01 1.01 0.46

Note: the degrees of freedom for the effects of sand burial depth are 5288; the degrees of freedom for the effects of
clonal fragment size are 7288; the degrees of freedom for their interaction are 35,288.
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Figure 1. Effects of sand burial depth and clonal fragment size on ramet survival percentage. The
variable y is ramet survival percentage, and the variable x is sand burial depth: y0 = 0, R2 = 1,
p = 0.003; y1 = 0.86x− 9.30, R2 = 0.86, p = 0.008; y2 = 0.70x + 1.65, R2 = 0.92, p = 0.002; y3 = 1.08x + 2.98,
R2 = 0.89, p = 0.005; y4 = 1.70x − 6.82, R2 = 0.93, p = 0.002; y5 = 1.24x + 28.06, R2 = 0.84, p = 0.009;
y6 = 1.24x + 28.06, R2 = 0.84, p = 0.009; yintact = 0.94x + 49.25, R2 = 0.69, p = 0.041.

2.2. Effects of Sand Burial Depth and Clonal Fragment Size on Biomass Pattern

There were no significant interactive effects of the sand burial depth and clonal
fragment size on both the vertical and horizontal biomass (Table 1). Both the vertical- and
horizontal biomass significantly increased with the increasing sand burial depth (p < 0.05),
whereas the clonal fragment size had contrasting influences on the vertical biomass and
horizontal biomass, i.e., the vertical biomass decreased with the clonal fragment size while
there were no significant differences in the horizontal biomass among different clonal
fragment sizes (Figure 2A–D).
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Figure 2. The effects of sand burial depth and clonal fragment size on the horizontal (A,B) and
vertical biomass (C,D) (mean ± SE) of P. communis. Different letters indicate significant differences in
biomass among different sand burial depths and/or clonal fragment sizes at the p < 0.05 level.

2.3. Effects of Sand Burial Depth and Clonal Fragment Size on Clonal Traits

The sand burial depth and clonal fragment size interactively influenced the ramet
height (p < 0.01), but with no interaction in the ramet number (Table 1). There were
no significant differences in the number of newly produced ramets (i.e., the increment
in ramet number) among the different sand burial depths (Figure 3A), whereas the in-
crement in ramet height under heavy sand burial depths (40–60 cm and 60–80 cm) was
significantly higher than that under other burial depths (p < 0.05) (Figure 3C). With the
increasing clonal fragment size, the number of newly produced ramets firstly increased
and then decreased and the clonal fragment with four ramets remining—which is medium
fragmentation—produced more new rhizomes (Figure 3B), but the increments in ramet
height were similar among the different clonal fragment sizes, except for those of no ramets
and only one ramet remaining, which were significantly lower (p < 0.05) (Figure 3D).

In contrast to the effects on ramet number and height, the sand burial depth and clonal
fragment size interactively influenced the number of newly produced rhizomes (p < 0.01),
while there was no interaction between the sand burial depth and clonal fragment size
in the increment in rhizome length (Table 1). The number of newly produced rhizomes
significantly increased with the increasing sand burial depth (p < 0.05) (Figure 3E), while
it firstly increased and then decreased with the increasing clonal fragment size, and the
clonal fragment with five ramets remaining produced more new rhizomes (Figure 3F). The
increment in rhizome length gradually increased with the increasing sand burial depth
(Figure 3H), but it fluctuated among different clonal fragment sizes and did not show an
obvious trend (Figure 3G).
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in biomass among different sand burial depths and/or clonal fragment sizes at the p < 0.05 level.
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3. Discussion
3.1. Effects of Clonal Fragment Size and Sand Burial Depth on Ramet Survival

Under the harsh conditions in arid sand dunes, the physiological integration via
clonal growth organs (i.e., rhizome) guarantees the resource supply and sharing between
ramets, and endows clonal plants with specific adaptive strategies for sandy environments,
allowing them to dominate in sand dunes [23,27,31]. However, due to serious wind erosion,
some parts of belowground rhizomes are exposed to the soil surface and lose vigor, and
sometimes also being disconnected due to mechanical damage, with subsequent loss of
the resource-sharing function [12]. Under these circumstances, ramet survival and pop-
ulation persistence greatly rely on the resource storage (e.g., water and carbohydrate)
in belowground rhizome systems and the soil water and nutrient uptake abilities they
possess [4,19,20]. In this study, the ramet survival percentage increased with the clonal
fragment size, which is consistent with the finding that the survival rate of rhizome frag-
ments increases with the rhizome diameter [12], indicating that, with an increasing clonal
fragment size, more resources can be stored and the survival of the attached ramets can
be ensured.

The increasing survival percentage of ramets with the sand burial depth is mainly
attributed to the increasing soil moisture content in deep sand profiles. It has been found
that unlike with other ecosystems, the soil moisture content increases with the sand burial
depth in sand dunes [32]. Additionally, the increased soil moisture in deep sand profiles
facilitates ramet survival in this seriously drought stressed environment. Moreover, the
interactive effects of the clonal fragment size and sand burial depth on ramet survival
indicate that the effects of the clonal fragment size on ramet survival greatly depend on
the sand burial depth. It has also been found that sand burial is one of the essential
prerequisites for the clonal fragment survival of clonal shrub species [12]. The clonal
fragment size represents the level of resource storage that ramet survival needs, while the
increased soil moisture content at a heavy sand burial depth provides the external water
availability for ramet survival. Thus, the clonal fragment size and sand burial depth seem
to be the important biotic and abiotic factors determining ramet survival.

3.2. Effects of Sand Burial Depth and Clonal Fragment Size on Biomass Pattern and Ramet
Production and Growth

In this study, the sand burial depth and clonal fragment size had additive influences on
the biomass pattern of P. communis. Both the vertical and horizontal biomass significantly
increased with the sand burial depth, which means that, under favorable water conditions
in deep sand profiles, the clonal fragments grow much better. This result suggests that
the effects of sand burial and wind erosion on the biomass allocation pattern of clonal
species are different. For P. communis, while the total biomass does not differ among wind
erosion depths, the horizontal and vertical biomasses, respectively, decrease and increase
significantly with the increasing wind erosion depth. Therefore, there is a trade-off between
the horizontal biomass and vertical biomass [28,29]. The clonal fragment size affects the
biomass allocation pattern of the target species; specifically, the vertical biomass of clonal
fragments with two ramets remaining is significantly higher, while the horizontal biomass
does not change among different clonal fragment sizes.

The biomass allocation pattern and changes in the vertical biomass, to some extent,
determine the production and growth of new ramets. The increased vertical biomass with
the sand burial depth significantly increases the ramet height while having no influence on
the production of new ramets. The higher increment in ramet height under heavy sand
burial is consistent with previous studies which found that species tend to increase their
vertical growth in response to sand burial [33]. However, the negligible influence of sand
burial on ramet production in this study seems to be in contrast to the previous finding that
a deeper burial markedly reduces the ramet emergence from rhizome fragments [34]. This
further implies that the increased vertical biomass a under deeper sand burial supports
both vertical growth and new ramet production.
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A previous study pointed out that rhizome severing could affect the new shoot pro-
duction of perennial rhizomatous species [9], and the emergence rate of shoots increases
markedly with the rhizome fragment size [12]. In this study, as regards the clonal fragment
size caused by different severing positions, the number of newly produced ramets firstly in-
creased and then decreased with the increasing clonal fragment size, which is similar to the
changes in the vertical biomass with the clonal fragment size. This implies that the vertical
biomass reflects the resource supply level and determines the production of new ramets
on clonal fragments. Meanwhile, the increment in ramet height was consistent among the
different clonal fragment sizes, which means that various clonal fragments tend to produce
new ramets with similar sizes since the carbon costs of maintaining longerrhizomes are
greater and thus might limit the ramet size [35,36]. Notably, clonal fragments with few
(zero or one) remaining ramets exhibited a low number of newly produced ramets and
a small increment in ramet height. This is consistent with the previous findings that the
adverse effects of rhizome severing are greater for clonal fragments with fewer subtend-
ing rhizome segments or ramets [37,38]. In sum, our results suggest that the sand burial
depth determines the vertical growth (i.e., the increment in ramet height) while the vertical
biomass determines the production of new ramets (i.e., the increment in ramet number).

3.3. Effects of Sand Burial Depth and Clonal Fragment Size on the Population Expansion Potential

It has been shown that horizontal rhizomes are responsible for the spread of clones
into new spaces and the recruitment of new ramets [10,39,40]. In this study, we considered
the increment in rhizome number and length as the population expansion potential, since
the rhizomes serve as the key belowground organs for the lateral spread and vegetative
reproduction of P. communis. We found that both the production and length of rhizomes
increased significantly with the sand burial depth. This might be due to the followng:
(1) The soil moisture content increases with the sand burial depth, leading to an increase in
the horizontal biomass under the favorable water conditions in deep sand profiles, promot-
ing the production of new rhizomes, (2) Under a heavy sand burial depth, rhizomatous
species tend to adopt a lateral spread via their rhizomes; under shallow sand burial depths,
however, both the number of newly produced rhizomes and the increment in rhizome
length are significantly lower. This is consistent with our previous study, which showed
that the rhizome number and total length of P. communis decreased significantly under
shallow sand burial depths (i.e., due to wind erosion) [28]. These findings suggest that a
reduction in the burial depth of rhizomes may impede natural population regeneration
and colonization [29].

Even though the clonal fragment size represents the resource supply level of popula-
tion expansion, we did not find an obvious trend in the rhizome production and length
increment with the increasing clonal fragment size. Specifically, the number of newly
produced rhizomes firstly increased and then decreased with the clonal fragment size, but
the increment in rhizome length fluctuated among the different clonal fragment sizes. This
indicates that the effects of the clonal fragment size on the population expansion potential
are complex, and further research is needed on the potential trade-off between the number
and size of newly produced rhizomes [22,41].

It should be noted that, apart from the number of new rhizomes and the increment in
rhizome length, the branching frequency and angle are also important parameters deter-
mining the space expansion of rhizomatous species [42]. Thus, the different aspects such as
the belowground bud bank size and composition (as the basis of vegetative reproduction
and population colonization), as well as the location and production timing of new ramets,
should be systematically discussed in future studies to evaluate the population expansion
potential of rhizomatous species in sand dunes [43–45].
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4. Materials and Methods
4.1. Study Site

This study was conducted in the sand dunes near the Experimental Center of Desert
Forest (106◦43′ E, 40◦24′ N, 1050 m a.s.l.), Chinese Academy of Forestry, Inner Mongolia,
China. This region belongs to the temperate continental monsoon climate. The mean
annual temperature is 7.4 ◦C, and the mean annual precipitation is 114 mm, of which 70%
occurs in June, July, and August. The average annual potential evaporation is 2372 mm,
20.8 times the precipitation.

The area has large and dense reticulate dune chains composed of loose and impover-
ished mobile sand with a typical soil moisture content of 3–4%. The land forms are mainly
active sand dunes, semi-fixed sand dunes, and flat sandy land. The soil types are mainly
aeolian sandy soil and gray-brown desert soil. The vegetation coverage of the active sand
dunes is less than 5%. Additionally, the vegetation comprises only pioneering species
such as Phragmites communis, Psammochloa villosa, Nitraria tangutorum, and Calligonum
mongolicum. Through long-term adaptation and evolution to a sandy environment, differ-
ent psammophytes occupy their specific positions on sand dunes in response to aeolian
disturbance and environmental stress.

4.2. Target Species

P. communis is a perennial rhizomatous herb species inhabiting various habitats. It
is one of the pioneering species on active sand dunes in northeastern Inner Mongolia,
China, and plays an important role in sand fixation and vegetation restoration [29]. This
species can reproduce through sexual propagation via seeds and vegetative propagation by
belowground rhizomes, but its population maintenance and colonization greatly rely on
vegetative reproduction, and seedlings are rarely found in the field [29]. Per its bud types
(axillary buds at shoot bases, axillary buds on rhizome nodes, and apical rhizome buds),
the vegetative offspring (clonal ramets) of P. communis can be categorized into three types
with different functions: the ramets originating from the axillary buds on rhizome nodes
and apical rhizome buds are responsible for population expansion/colonization, and those
sprouting from the axillary buds at shoot bases contribute more to population maintenance
in situ (Figure 4) [13].
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4.3. Experimental Design

In May (the beginning of the growing season and rhizome extension) of 2018, six active
sand dune systems (including the interdune lowlands and sand dunes) were selected for
the rhizome severing experiment. Clonal fragments with a similar size and no dead ramets
were selected for this experiment. For each clonal fragment, we dug a trench along the
extension direction of rhizomes, exposed it carefully from the sand, and then recorded the
original rhizome number, ramet number, rhizome length, and ramet height. According to
the vertical distribution of rhizomes, we classified the sand burial depth into three groups
(six layers), i.e., light (0–10 cm, 10–20 cm), medium (20–30 cm, 30–40 cm), heavy (40–60 cm,
60–80 cm). After the original measurement, the rhizome connections between ramets were
severed at different positions to produce clonal fragments of different sizes. Specifically,
the rhizomes were severed to have either 0, 1, 2, 3, 4, 5, or 6 ramets remaining for the
clonal fragments, and an intact rhizome system without severing was used as the control.
There were 6 replicates for each treatment, and therefore 288 clonal fragments (6 burial
depths × 8 clonal fragment sizes × 6 replicates) in total in this study. After the severing
treatment, the removed sand was refilled carefully, and then we utilized straw checkerboard
barriers to ensure that the burial depth was unchanged during the whole experiment.

4.4. Investigation and Sampling

Throughout the experimental period, the number of surviving ramets was monitored
and recorded to calculate the survival percentage of ramets. The field sampling was con-
ducted in October 2018, five months after the severing treatment. To keep the connections
between ramets intact, all plants were carefully excavated from the sand, washed with
tap water, and brought to the laboratory for measurements. The increments in rhizome
number, ramet number, rhizome length, and ramet height were recorded. All these plant
parts were dried at 80 ◦C for 48 h and weighed, and the vertical and horizontal biomasses
were recorded separately. In this study, we define the ramet survival percentage as the
survival index; the vertical biomass, horizontal biomass, ramet number and ramet height
as the growth index; and the rhizome number and rhizome length as the population
expansion index.

4.5. Statistical Analysis

A General linear model (GLM) was applied to test the effects of sand burial depth,
clonal fragment size, and their interaction on the survival, growth, and regenerative
potential of P. communis. One-way analysis of variance (ANOVA) was used to analyze the
effects of sand burial and ramet number on ramet survival, increment in rhizome number,
increment in ramet number, increment in rhizome length, increment in ramet height, vertical
biomass and horizontal biomass. In all cases, significant levels of differences between means
were determined using least-significant difference (LSD) tests at the 0.05 significance level.
All analyses were conducted using SPSS ver. 16.0 (SPSS Inc., Chicago, IL, USA).

5. Conclusions

The ramet survival of rhizomatous species increases with the sand burial depth and
clonal fragment size, as well as their interaction. Sand burial facilitates the growth of clonal
species (both for the vertical biomass and horizontal biomass) in arid sand dunes, which
might be attributed to the increased soil moisture in the deep sand profile, whereas the
clonal fragment size affects the vertical biomass rather than the horizontal biomass. The
sand burial depth determines the vertical growth of ramets, while the production of new
ramets is greatly influenced by the resource supply level, i.e., the vertical biomass. The
population expansion potential, represented by the production of new rhizomes and the
increment in rhizome length, is enhanced under heavy a sand burial depth, and reaches the
maximum in the combination of a heavy sand burial depth and medium fragmentation.
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