Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis
Abstract
:1. Introduction
2. Methods
2.1. Plant Material
2.2. Mycorrhizal Inoculum and Inoculation
2.3. Root Staining and Assessment of AMF Colonization by Microscopy
2.4. RNA Extraction from Roots
2.5. Reverse Transcriptase-Quantitative Real-Time PCR
2.6. Statistical Analysis
3. Results
3.1. Root Colonization by R. irregularis
3.2. Correlation between Mycorrhization Intensity and Expression of AMF Constitutive Genes
3.3. Correlation between Arbuscular Rate and Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trouvelot, S.; Bonneau, L.; Redecker, D.; Van Tuinen, D.; Adrian, M.; Wipf, D. Arbuscular mycorrhiza symbiosis in viticulture: A review. Agron. Sustain. Dev. 2015, 35, 1449–1467. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, P.; Messmer, M.M. Breeding for mycorrhizal symbiosis: Focus on disease resistance. Euphytica 2017, 213, 113. [Google Scholar] [CrossRef]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Valat, L.; Deglène-Benbrahim, L.; Kendel, M.; Hussenet, R.; Le Jeune, C.; Schellenbaum, P.; Maillot, P. Transcriptional induction of two phosphate transporter 1 genes and enhanced root branching in grape plants inoculated with Funneliformis mosseae. Mycorrhiza 2018, 28, 179–185. [Google Scholar] [CrossRef]
- Vierheilig, H.; Schweiger, P.; Brundret, M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol. Plant. 2005, 125, 393–404. [Google Scholar] [CrossRef]
- Ho-Plágaro, T.; Tamayo-Navarrete, M.I.; García-Garrido, J. Histochemical Staining and Quantification of Arbuscular Mycorrhizal Fungal Colonization. In Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology; Ferrol, N., Lanfranco, L., Eds.; Humana: New York, NY, USA, 2020; Volume 2146, pp. 43–52. [Google Scholar] [CrossRef]
- Thonar, C.; Erb, A.; Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities-marker design, verification, calibration and field validation. Mol. Ecol. Resour. 2012, 12, 219–232. [Google Scholar] [CrossRef]
- Wilkes, T.I.; Warner, D.J.; Edmonds-Brown, V.; Davies, K.G.; Denholm, I. A comparison of methodologies for the staining and quantification of intracellular components of arbuscular mycorrhizal fungi in the root cortex of two varieties of winter wheat. Access Microbiol. 2020, 2, e000083. [Google Scholar] [CrossRef] [PubMed]
- Bodenhausen, N.; Deslandes-Hérold, G.; Waelchli, J.; Held, A.; van der Heijden, M.G.; Schlaeppi, K. Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhiza 2021, 31, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Labonova, K.; Sineux, M.; Zekri, O. Correlation between the microscopy and qPCR methods (SYBR Green) to detect and quantify Rhizophagus irregularis in grapevine roots. Vitis 2018, 57, 111–117. [Google Scholar]
- Isayenkov, S.; Fester, T.; Hause, B. Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J. Plant Physiol. 2004, 161, 1379–1383. [Google Scholar] [CrossRef] [PubMed]
- Jansa, J.; Smith, F.A.; Smith, S.E. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 2008, 177, 779–789. [Google Scholar] [CrossRef]
- Gamper, H.A.; Young, J.P.W.; Jones, D.L.; Hodge, A. Real-time PCR and microscopy: Are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Genet. Biol. 2008, 45, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Manck-Götzenberger, J.; Requena, N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front. Plant Sci. 2016, 7, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voß, S.; Betz, R.; Heidt, S.; Corradi, N.; Requena, N. RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Front. Microbiol. 2018, 9, 2068. [Google Scholar] [CrossRef]
- Gómez-Gallego, T.; Benabdellah, K.; Merlos, M.A.; Jiménez-Jiménez, A.M.; Alcon, C.; Berthomieu, P.; Ferrol, N. The Rhizophagus irregularis genome encodes two CTR copper transporters that mediate Cu import into the cytosol and a CTR-like protein likely involved in copper tolerance. Front. Plant Sci. 2019, 10, 604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestri, A.; Pérez-Tienda, J.; López-Ráez, J.A. Arbuscular mycorrhizal fungal gene expression analysis by real-time PCR. In Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology; Ferrol, N., Lanfranco, L., Eds.; Humana: New York, NY, USA, 2020; Volume 2146, pp. 157–170. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Tyerman, S.D.; Cavagnaro, T.R. The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: Linking plant physiology and gene expression. Plant Soil 2017, 420, 375–388. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Cavagnaro, T.R. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci. 2018, 274, 163–170. [Google Scholar] [CrossRef]
- Watts-Williams, S.; Emmett, B.D.; Levesque-Tremblay, V.; MacLean, A.M.; Sun, X.; Satterlee, J.W.; Fei, Z.; Harrison, M.J. Diverse Sorghum bicolor accessions show marked variation in growth and transcriptional responses to arbuscular mycorrhizal fungi. Plant Cell Environ. 2019, 42, 1758–1774. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.J.; Dewbre, G.R.; Liu, J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 2002, 14, 2413–2429. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.; Karandashov, V.; Chague, V.; Kalinkevich, K.; Tamasloukht, M.B.; Xu, G.; Jokobsen, I.; Levy, A.A.; Amrhein, N.; Bucher, M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 2005, 42, 236–250. [Google Scholar] [CrossRef]
- Paszkowski, U.; Kroken, S.; Roux, C.; Briggs, S.P. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 2002, 99, 13324–13329. [Google Scholar] [CrossRef] [Green Version]
- Yurkov, A.; Kryukov, A.; Gorbunova, A.; Sherbakov, A.; Dobryakova, K.; Mikhaylova, Y.; Afonin, A.; Shishova, M. AM-induced alteration in the expression of genes, encoding phosphorus transporters and enzymes of carbohydrate metabolism in Medicago lupulina. Plants 2020, 9, 486. [Google Scholar] [CrossRef]
- Tisserant, E.; Kohler, A.; Dozolme-Seddas, P.; Balestrini, R.; Benabdellah, K.; Colard, A.; Croll, D.; Da Silva, C.; Gomez, S.K.; Koul, R.; et al. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 2012, 193, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Fiorilli, V.; Lanfranco, L.; Bonfante, P. The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta 2013, 237, 1267–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Tienda, J.; Testillano, P.S.; Balestrini, R.; Fiorilli, V.; Azcón-Aguilar, C.; Ferrol, N. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet. Biol. 2011, 48, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- González-Guerrero, M.; Oger, E.; Benabdellah, K.; Azcón-Aguilar, C.; Lanfranco, L.; Ferrol, N. Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr. Genet. 2010, 56, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.G.; Tang, M. Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany 2012, 90, 1073–1083. [Google Scholar] [CrossRef]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 48. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Summers, W.; Paszkowski, U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 2018, 56, 135–160. [Google Scholar] [CrossRef]
- Vierheilig, H.; Coughlan, A.P.; Wyss, U.R.S.; Piché, Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 1998, 64, 5004–5007. [Google Scholar] [CrossRef] [Green Version]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In Physiological and Genetic Aspects of Mycorrhizae; In Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; INRA: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Scagel, C.F. Arbuscule frequency in grapevine roots is more responsive to reduction in photosynthetic capacity than to increased levels of shoot phosphorus. J. Am. Soc. Hortic. Sci. 2016, 141, 151–161. [Google Scholar] [CrossRef]
- Voříšková, A.; Jansa, J.; Püschel, D.; Krüger, M.; Cajthaml, T.; Vosátka, M.; Janoušková, M. Real-time PCR quantification of arbuscular mycorrhizal fungi: Does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza 2017, 27, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Luginbuehl, L.H.; Oldroyd, G.E. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr. Biol. 2017, 27, R952–R963. [Google Scholar] [CrossRef] [Green Version]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the arbuscular mycorrhiza market: From arbuscules to common mycorrhizal networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobae, Y.; Hata, S. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol. 2010, 51, 341–353. [Google Scholar] [CrossRef]
Genes | Accession Number | Forward Primer/Reverse Primer Sequences | Amplicon Size (bp) | Amplification Efficiency | Reference | ||
---|---|---|---|---|---|---|---|
Grapevine | Reference genes | VvAct | XM_002282480.2 (1) | TGCTATCCTTCGTCTTGACCTTG/ GGACTTCTGGACAACGGAATCTC | 263 | 85.8 | Reid et al. 2006 |
Vv60SRP | XM_002270599.1 (1) | TCCATTATTCCCACCTCTCG/ TTGAACTTGCTTCCGGTTCT | 213 | 94.17 | Gamm et al. 2011 | ||
VvEF1α | CB977561 (1) | AATGGCTATGCCCCTGTTCTG/ CGCCTGTCAATCTTGGTCAGTAT | 83 | 102.04 | Reid et al. 2006 | ||
AMF-induced genes expression | Vvpht1.1 | GSVIVT01028732001 (2) | CAACTTTGTGATTGGGGTTG/ AGAGCAGATGGCACAAATG | 136 | 98.11 | Valat et al. 2018 | |
Vvpht1.2 | GSVIVT01028733001 (2) | CGTGAGGCGGATTTTCTGT/ ATCAAAGAACTCTCTCGACCAT | 246 | 102.56 | Valat et al. 2018 | ||
R. irregularis | Reference genes | RiTEF | XM_025321412.1 (1) | TGTTGCTTTCGTCCCAATATC/ GGTTTATCGGTAGGTCGAG | 127 | 92.71 | Manck-Götzenberg et Requena, 2016 |
Riα-tubulin | XM_025319263.1 (1) | TGTCCAACCGGTTTTAAAGT/ AAAGCACGTTTGGCGTACAT | 173 | 99.13 | Watts-William et al. 2017 | ||
Ri18S | HE817882.1 (1) | TGTTAATAAAAATCGGTGCGTTGC/ AAAACGC AAATGATCAACCGGAC | 451 | 92.78 | Gonzalez-Guerrero et al. 2005 | ||
AMF-induced genes expression | Ri14.3.3 | AM049264.1 (1) | GCAAGCCGAACGTTATGATG/ GGCAAGGATATCCGAGCATAC | 262 | 93.36 | Sun et al. 2018 | |
GintPT | AY037894 (1) | AACACGATGTCAACAAAGCAAC/ AAGACCGATTCCATAAAAAGCA | 218 | 96.76 | Fiorilli et al. 2013 | ||
RiCRN1 | MH542411.1 (1) | GATATAGATAAGGACCAGCTTG/ TGCCAACAGCTCGTCACT | 262 | 96.68 | Voβ et al. 2018 |
M% | Ri18S | RiTEF1α | RiαTub | |
---|---|---|---|---|
M% | 0.6951 **** | 0.6779 **** | 0.6688 **** | |
Ri18S | 0.9689 **** | 0.9702 **** | ||
RiTEF1α | 0.9706 **** | |||
RiαTub |
A% | GintPT | Ri14-3-3 | RiCRN1 | VvPht1.1 | VvPht1.2 | |
---|---|---|---|---|---|---|
A% | 0.5705 ** | 0.5395 ** | 0.5366 ** | 0.4746 * | 0.4843 * | |
GintPT | 0.9737 **** | 0.966 **** | 0.9515 **** | 0.9159 **** | ||
Ri14-3-3 | 0.9899 **** | 0.972 **** | 0.9475 **** | |||
RiCRN1 | 0.9609 **** | 0.9458 **** | ||||
VvPht1.1 | 0.951 **** | |||||
VvPht1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duret, M.; Zhan, X.; Belval, L.; Le Jeune, C.; Hussenet, R.; Laloue, H.; Bertsch, C.; Chong, J.; Deglène-Benbrahim, L.; Valat, L. Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis. Plants 2022, 11, 3237. https://doi.org/10.3390/plants11233237
Duret M, Zhan X, Belval L, Le Jeune C, Hussenet R, Laloue H, Bertsch C, Chong J, Deglène-Benbrahim L, Valat L. Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis. Plants. 2022; 11(23):3237. https://doi.org/10.3390/plants11233237
Chicago/Turabian StyleDuret, Morgane, Xi Zhan, Lorène Belval, Christine Le Jeune, Réjane Hussenet, Hélène Laloue, Christophe Bertsch, Julie Chong, Laurence Deglène-Benbrahim, and Laure Valat. 2022. "Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis" Plants 11, no. 23: 3237. https://doi.org/10.3390/plants11233237
APA StyleDuret, M., Zhan, X., Belval, L., Le Jeune, C., Hussenet, R., Laloue, H., Bertsch, C., Chong, J., Deglène-Benbrahim, L., & Valat, L. (2022). Use of a RT-qPCR Method to Estimate Mycorrhization Intensity and Symbiosis Vitality in Grapevine Plants Inoculated with Rhizophagus irregularis. Plants, 11(23), 3237. https://doi.org/10.3390/plants11233237