Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century
Abstract
:1. Introduction
2. Results
2.1. Current Potential Range
2.2. Climate Change Influence on the Habitat Suitability
3. Discussion
4. Materials and Methods
4.1. Studied Species
4.2. Species Distribution Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuzeneva, O.I. Genus Zygadenus Rich. In Flora of the USSR. IV; Komarov, V.L., Ed.; Publishing House of the Academy of Sciences of the USSR: Leningrad, Russia, 1935; p. 9. [Google Scholar]
- Iwatsuki, K. Endangered vascular plants in Japan—Present status and a proposal for conservation. Proc. Jpn. Acad. Ser. B 2008, 84, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- POWO. Plants of the World Online. Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/ (accessed on 16 December 2020).
- Ermakov, N.B. Analysis of floristic composition of hemiboreal forests of Northern Asia. Turczaninowia 2006, 9, 5–92. [Google Scholar]
- Gorchakovsky, P.L.; Shurova, E.A. Rare and Endangered Plants of the Urals and the Pre-Urals; Nauka: Moscow, Russia, 1982; p. 208. [Google Scholar]
- Urgamal, M.; Oyuntsetseg, B.; Nyambayar, D.; Dulamsuren, C. Conspectus of the Vascular Plants of Mongolia; “Admon” Press: Ulaanbaatar, Mongolia, 2014; p. 334. [Google Scholar]
- Muldashev, A.A. Zigadenus sibiricus. In Red Data Book of the Republic of Bashkortostan: Volume 1: Plants and Fungi; Martynenko, V.B., Ed.; Studio Online: Moscow, Russia, 2021; p. 136. [Google Scholar]
- Knyazev, M.S. Zigadenus sibiricus. In Red Data Book of the Sverdlovsk Region: Animals, Plants, Fungi; Korytin, N.S., Ed.; OOO MIR: Ekaterinburg, Russia, 2018; p. 241. [Google Scholar]
- Lagunov, A.V. (Ed.) Red Data Book of the Chelyabinsk Oblast: Animals, Plants, Fungi; Reart: Moscow, Russia, 2017; p. 504. [Google Scholar]
- Balandin, S.V. Zigadenus sibiricus. In Red Data Book of the Perm Krai; Baklanov, M.A., Ed.; Aldari: Perm, Russia, 2018; p. 83. [Google Scholar]
- Urgamal, M. Species Catalogue of Rare and Threatened Vascular Plants of Mongolia; Bembi San Press: Ulaanbaatar, Mongolia, 2018; p. 95. [Google Scholar]
- Nyambayar, D.; Oyuntsetseg, B.; Tungalag, R. Mongolian red list and conservation action plans of plants. Reg. Red List. Ser. 2011, 9, 1–183. [Google Scholar]
- Gorchakovsky, P.L. Plants of European Broadleaved Forests at the Eastern Limit of Their Range; UFAS USSR: Sverdlovsk, Russia, 1968; p. 207. [Google Scholar]
- Groisman, P.Y.; Blyakharchuk, T.A.; Chernokulsky, A.V.; Arzhanov, M.M.; Marchesini, L.B.; Bogdanova, E.G.; Borzenkova, I.I.; Bulygina, O.N.; Karpenko, A.A.; Karpenko, L.V.; et al. Climate changes in Siberia. In Regional Environmental Changes in Siberia and their Global Consequences; Springer: Dordrecht, The Netherlands, 2013; pp. 57–109. [Google Scholar]
- Romanovsky, V.E.; Sazonova, T.S.; Balobaev, V.T.; Shender, N.I.; Sergueev, D.O. Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob. Planet. Chang. 2007, 56, 399–413. [Google Scholar] [CrossRef]
- Lugina, K.M.; Groisman, P.Y.; Vinnikov, K.Y.; Koknaeva, V.V.; Speranskaya, N.A. Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe. In Trends: A Compendium of Data on Global Change; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy: Oak Ridge, TN, USA, 2006; pp. 1881–2005. [Google Scholar]
- Balzter, H.; Gerard, F.; George, C.; Weedon, G.; Grey, W.; Combal, B.; Bartolome, E.; Bartalev, S.; Los, S. Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and east Siberia. J. Clim. 2007, 20, 3713–3729. [Google Scholar] [CrossRef] [Green Version]
- Tchebakova, N.M.; Rehfeldt, G.E.; Parfenova, E.I. From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems. In Permafrost Ecosystems; Springer: Dordrecht, The Netherlands, 2010; pp. 427–446. [Google Scholar]
- Rosbakh, S.; Hartig, F.; Sandanov, D.V.; Bukharova, E.V.; Miller, T.K.; Primack, R.B. Siberian plants shift their phenology in response to climate change. Glob. Change Biol. 2021, 27, 4435–4448. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Reisinger, A. IPCC Fourth Assessment Report; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Tian, B.; Fu, Y.; Milne, R.I.; Mao, K.S.; Sun, Y.S.; Ma, X.G.; Sun, H. A complex pattern of post-divergence expansion, contraction, introgression, and asynchronous responses to Pleistocene climate changes in two Dipelta sister species from western China. J. Syst. Evol. 2020, 58, 247–262. [Google Scholar] [CrossRef]
- Vásquez, D.L.; Hansen, M.M.; Balslev, H.; Schmickl, R. Intraspecific genetic consequences of Pleistocene climate change on Lupinus microphyllus (Fabaceae) in the Andes. Alp. Bot. 2022, 132, 1–12. [Google Scholar] [CrossRef]
- Moiseev, P.A.; Shiyatov, S.G.; Grigoryev, A.A. Climatogenic Dynamics of Woody Vegetation at the Upper Limit of Its Distribution on the Bolshoi Taganai Ridge for the Last Century; UB RAS: Yekaterinburg, Russia, 2016; p. 136. [Google Scholar]
- Akyol, A.; Örücü, Ö.K.; Arslan, E.S. Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate change. Biologia 2020, 75, 2175–2187. [Google Scholar] [CrossRef]
- Trant, A.; Higgs, E.; Starzomski, B.M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 2020, 10, 9698. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 41. [Google Scholar]
- Alekseev, G.V.; Asarin, A.E.; Balonishnikova, J.A.; Bitkov, L.M.; Bulygina, O.N.; Bugrov, L.Y.; Vinogradova, V.V.; Gavrilova, S.Y.; Ganyushkin, D.A.; Ginzburg, A.I.; et al. Second Assessment Report of Roshydromet on Climate Change and Its Impact on the Territory of the Russian Federation; Roshydromet: Moscow, Russia, 2014; p. 1004. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozhevnikov, A.E.; Kozhevnikova, Z.V.; Kwak, M.; Yoon Lee, B. Illustrated Flora of the Primorsky Territory (Russian Far East); National Institute of Biological Resources: Incheon, Korea, 2019; p. 1124.
- Kharkevich, C.S. (Ed.) Vascular Plants of the Soviet Far East; Nauka: Leningrad, Russia, 1987; Volume 2, p. 446. [Google Scholar]
- Starchenko, V.M. The survey of vascular plants of the Amur region. V.L. Komar. Meml. Lect. 2001, 48, 5–54. [Google Scholar]
- Dudov, S.V.; Dudova, K.V. Alpine flora of Eastern Tukuringra range. Rastit. Mir Aziat. Ross. 2017, 26, 50–62. [Google Scholar]
- Krasnoborov, I.M.; Artemov, I.A.; Achimova, A.A.; Agafonov, A.V.; Ailchieva, A.O.; Baykov, K.S.; Basargina, D.K. Guide to the Plants of the Altai Republic; Publishing house of the Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2012; p. 701. [Google Scholar]
- Fedorov, N.I.; Martynenko, V.B.; Zhigunova, S.N.; Mikhailenko, O.I.; Shendel, G.V.; Naumova, L.G. Changes in the Distribution of Broadleaf Tree Species in the Central Part of the Southern Urals since the 1970s. Russ. J. Ecol. 2021, 52, 118–125. [Google Scholar] [CrossRef]
- Shiyatov, S.G. Dynamics of Tree and Shrub Vegetation in the Polar Ural Mountains under the Effect of Current Climate Change; Ural. Otd. Ross. Akad. Nauk: Yekaterinburg, Russia, 2009; p. 215. [Google Scholar]
- Brecka, A.F.; Shahi, C.; Chen, H.Y. Climate change impacts on boreal forest timber supply. For. Policy Econ. 2018, 92, 11–21. [Google Scholar] [CrossRef]
- Alexander, J.M.; Chalmandrier, L.; Lenoir, J.; Burgess, T.I.; Essl, E.; Haider, S.; Kueffer, C.; McDougall, K.; Milbau, A.; Nuñez, M.A.; et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 2018, 24, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Berkutenko, A.N. Protected areas in Magadan region: Modern condition and perspectives. In Conservation of Biodiversity of Kamchatka and Coastal Waters: Materials of XIII International Scientific Conference, Dedicated to the 75th Anniversary of S.A. Dyrenkov’s Birthday; Kamchatpress: Petropavlovsk-Kamchatsky, Russia, 2012; pp. 21–28. [Google Scholar]
- Mochalova, O.A. Vegetation cover and protected plant species from the planned flood zone of the Ust-Srednekan hydroelectric power plant (Magadan Oblast). Bull. North-East Sci. Cent. 2014, 1, 120–122. [Google Scholar]
- Dudov, S.V. The vascular plants checklist of the rivers Uchur, Dzhana and Maimakan upstreams, south-west Dzhugdzhur (Khabarovsk krai, Russia). Turczaninowia 2011, 14, 59–71. [Google Scholar]
- Zaitseva, N.V. The Plant Communities of Evota Mountain (Based on the Materials of Researches Made in 2010–2013 years). Vestn. North-East. Fed. Univ. 2014, 11, 13–20. [Google Scholar]
- Poiseeva, S.I. A new association of Vaccinio—Laricetum gmelinii in the basin of the river Viluy. Fundam. Stud. 2005, 2, 81–83. [Google Scholar]
- Ermakov, N.B.; Nikolin, E.G.; Troyeva, E.I.; Cherosov, M.M. Classification of the light-coniferous forests of the Verkhoyanie (Yakutia). Bull. NSU Ser. Biol. Clin. Med. 2009, 7, 7–15. [Google Scholar]
- Ermakov, N.B. Classification of boreal larch forests of the continental sector of Northern Eurasia (conspectus of syntaxa). Plant Biol. Hortic. Theory Innov. 2019, 149, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Telyatnikov, M.Y.; Troeva, E.I.; Chinenko, S.V.; Prystyazhnyuk, S.A.; Cherosov, M.M. Mountain tundras vegetation and floodplain meadows in the northern part of Anabar Plateau (Central Siberia). Rastit. Mir Aziat. Ross. 2017, 25, 63–85. [Google Scholar]
- Sosina, N.K. Flora of vascular plants of cryophilic steppes of river Muna valley (river Lena lower course). Vestn. NEFU 2010, 7, 35–40. [Google Scholar]
- Sobolevskaya, K.A.; Polozhii, A.V.; Gudoshnikov, S.V. Family Liliaceae Hall. In Flora of the Krasnoyarsk Region; Reverdatto, V.V., Ed.; Nauka Publishing House: Novosibirsk, Russia, 1967; pp. 5–11. [Google Scholar]
- Pospelova, E.B. On the heterogeneity of flora of Taimyr subprovince of Arctic floristic region. Bot. Z. 2007, 92, 1836–1856. [Google Scholar]
- Telyatnikov, M.Y. Syntaxonomy of dryas tundra and kobresia cryophytic meadows of the East Sayan. Rastit. Mir Aziat. Ross. 2014, 13, 48–63. [Google Scholar]
- Anenkhonov, O.A.; Pykhalova, T.D.; Osipov, K.I.; Sekulich, I.R.; Badmaeva, N.K.; Namzalov, B.B.; Krivobokov, L.V. Key for Plants of the Buryatiya; OAO Respublikanskaya Tipografiya: Ulan-Ude, Russia, 2001; p. 672. [Google Scholar]
- Nepomnyashchy, V.V.; Anufrieva, T.N.; Arkhipov, A.L.; Arkhipova, N.V. Natural Complex and Biodiversity of the “Lake Shira” Area of the Khakassia Nature Reserve; Khakass Book Publishers: Abakan, Russia, 2011; p. 420. [Google Scholar]
- Hanminchun, V.N.; Krasnikov, A.A. Genius Zigadenus Michx. In Key for Plants of the Tyva Republic; Shaulo, D.N., Ed.; Publishing House of the Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2007; p. 548. [Google Scholar]
- Makunina, N.I. The forests of Tyva: Classification and geobotanical review. Rastit. Mir Aziat. Ross. 2020, 37, 40–78. [Google Scholar]
- Buko, T.E.; Egorov, A.G. Zigadenus sibiricus. In Red Data Book of the Kemerovo Region: Vol. 1. Rare and Endangered Species of Plants and Fungi, 2nd ed.; Kupriyanov, A.N., Ed.; Asia Print: Kemerovo, Russia, 2012; p. 68. [Google Scholar]
- Krasnoborov, I.M. (Ed.) Manual of Plants in Altaiskiy Krai; Publishing House of the Siberian Branch of the Russian Academy of Sciences: Novosibirsk, Russia, 2003; p. 635. [Google Scholar]
- Phillips, J.; Dudík, M.; Schapire, E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.1). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 12 May 2021).
- Hijmans, R.; Elith, J. Species Distribution Modeling with R. Encycl. Biodivers. 2013, 6, 3–77. [Google Scholar]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.jp4cth (accessed on 22 March 2021).
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); US Department of the Interior, US Geological Survey: Washington, DC, USA, 2011; p. 26.
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Lidetu, D. A survey on the occurrence of anthelmintic resistance in nematodes of sheep and goats found in different agro-ecologies in Ethiopia. Ethiop. J. Anim. Prod. 2009, 9, 159–175. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Richard, B.N.; Philip, J.R.; Mariana, V.; et al. The community climate system model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef] [Green Version]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkevåg, A.; Seland, Ø.; Drange, H.; Seierstad, I.A.; Hoose, C.; Kristjansson, J.E. The Norwegian Earth System Model, NorESM1-M–Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. Discuss. 2011, 4, 1063–10128. [Google Scholar]
- Volodin, E.M.; Dianskii, N.A.; Gusev, A.V. Simulating present-day climate with the INMCM4. 0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 2010, 46, 414–431. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef] [Green Version]
- Hof, A.R.; Allen, A.M. An uncertain future for the endemic Galliformes of the Caucasus. Sci. Total Environ. 2019, 651, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 2015, 28, 5171–5194. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Puchałka, R.; Dyderski, M.K.; Vítková, M.; Sádlo, J.; Klisz, M.; Netsvetov, M.; Prokopuk, Y.; Matisons, R.; Mionskowski, M. Black locust (Robinia pseudoacacia L.) range contraction and expansion in Europe under changing climate. Glob. Chang. Biol. 2021, 27, 1587–1600. [Google Scholar] [CrossRef]
- Puchałka, R.; Klisz, M.; Koniakin, S.; Czortek, P.; Dylewski, Ł.; Paź-Dyderska, S.; Vítková, M.; Sádlo, J.; Rašomavičius, V. Citizen science helps predictions of climate change impact on flowering phenology: A study on Anemone nemorosa. Agric. For. Meteorol. 2022, 325, 109133. [Google Scholar] [CrossRef]
Code | Environmental Variable | Percent Contribution | Permutation Importance |
---|---|---|---|
Bio4 | Temperature seasonality | 27.8 | 23.4 |
hmax–min | Difference between maximum and minimum elevation, m | 24.4 | 16.1 |
Bio9 | Mean daily air temperatures of the driest quarter, °C | 16.0 | 7.5 |
Bio18 | Mean monthly precipitation of the wettest quarter, mm | 13.6 | 1.4 |
Bio2 | Mean diurnal air temperature range, °C | 11.1 | 38.5 |
Bio15 | Precipitation seasonality | 3.6 | 3.7 |
Bio10 | Mean daily air temperatures of the warmest quarter, °C | 3.5 | 9.4 |
Regions | Changes in Areas with Different Habitat Suitability under Climate Change, % | |||||||
---|---|---|---|---|---|---|---|---|
All Suitability * | Low Suitability | Medium Suitability | High Suitability | |||||
2050 | 2070 | 2050 | 2070 | 2050 | 2070 | 2050 | 2070 | |
Regions where the area of suitable habitats is projected to increase or slightly decrease, % | ||||||||
Magadan Region | 95 | 281 | 79 | 200 | 379 | 1678 | 457 | 13,134 |
Khabarovsk Krai | −14 | −16 | −30 | −37 | −7 | −16 | 211 | 355 |
Primorsky Krai | −13 | −10 | −10 | −1 | −42 | −35 | 11 | 7 |
Regions where suitable habitats are projected to decrease by 20–50 percent, % | ||||||||
Republic of Khakassia | −21 | −26 | 89 | 93 | 43 | 44 | −53 | −61 |
Kemerovo Region | −19 | −35 | 28 | 10 | −53 | −64 | −43 | −66 |
Irkutsk Region | −22 | −19 | 12 | 7 | −13 | −7 | −49 | −43 |
Tyva Republic | −50 | −44 | 4 | 17 | −31 | −18 | −66 | −64 |
Republic of Sakha | −19 | −44 | −9 | −29 | −28 | −70 | −93 | −90 |
Republic of Buryatia | −35 | −36 | −10 | −22 | −29 | −38 | −52 | −43 |
Krasnoyarsk Krai | −30 | −30 | −27 | −30 | −23 | −26 | −39 | −32 |
Regions where suitable habitats are projected to decrease by 50 percent or more, % | ||||||||
Perm Krai | −57 | −65 | −62 | −71 | −44 | −50 | 377 | 313 |
Amur Region | −37 | −53 | −32 | −53 | −52 | −51 | −64 | −17 |
Sverdlovsk Region | −68 | −72 | −69 | −73 | −71 | −73 | −37 | −46 |
Republic of Bashkortostan | −44 | −54 | −13 | −19 | −53 | −66 | −77 | −89 |
Zabaykalsky Krai | −59 | −59 | −34 | −32 | −50 | −54 | −92 | −91 |
Chelyabinsk Region | −66 | −79 | −50 | −65 | −79 | −92 | −95 | −98 |
Altai Krai | −88 | −88 | −70 | −70 | −96 | −94 | −100 | −100 |
Altai Republic | −97 | −96 | −94 | −93 | −99 | −98 | −100 | −99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorov, N.; Kutueva, A.; Muldashev, A.; Verkhozina, A.; Lashchinskiy, N.; Martynenko, V. Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century. Plants 2022, 11, 3270. https://doi.org/10.3390/plants11233270
Fedorov N, Kutueva A, Muldashev A, Verkhozina A, Lashchinskiy N, Martynenko V. Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century. Plants. 2022; 11(23):3270. https://doi.org/10.3390/plants11233270
Chicago/Turabian StyleFedorov, Nikolai, Aliya Kutueva, Albert Muldashev, Alla Verkhozina, Nikolay Lashchinskiy, and Vasiliy Martynenko. 2022. "Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century" Plants 11, no. 23: 3270. https://doi.org/10.3390/plants11233270
APA StyleFedorov, N., Kutueva, A., Muldashev, A., Verkhozina, A., Lashchinskiy, N., & Martynenko, V. (2022). Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century. Plants, 11(23), 3270. https://doi.org/10.3390/plants11233270