Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects
Abstract
:1. Introduction
2. Wheat and Rice as Sources of Phenolic Antioxidants
3. Genetics
4. Phenolics of Rice, Wheat, and Their Processing By-Products
MF | Identity | Ion m/z | Method | SI | Ref. |
---|---|---|---|---|---|
C15H10O | kaempferol | 285.0604 | UPLC-Triple/TOF-MS | (−) | [102] |
C15H14O6 | catechin | 291.0863 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C15H14O6 | epicatechin | 291.0863 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C15H10O7 | quercetin | 303.0499 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C15H14O7 | epigallocatechin | 307.0812 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C17H14O7 | tricin | 331.0812 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C21H20O10 | apigenin 8-C-glucoside (vitexin) | 431.0978 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C21H20O10 | apigenin 6-C-glucoside (Isovitexin) | 431.0978 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C21H20O11 | luteolin 6-C-glucoside (Isoorientin) | 447.0927 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C21H20O11 | luteolin 8-C-glucoside (Orientin) | 447.0927 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C21H22O11 | eriodictyol 7-O-hexoside | 451.1235 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C22H22O11 | chrysoeriol 6-C-glucoside (Isoscoparin) | 461.1084 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C22H22O11 | chrysoeriol 8-C-glucoside (Scoparin) | 461.1084 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C25H26O13 | 6,8-di-C-pentosyl apigenin | 535.1446 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C26H28O14 | apigenin 6-C-hexosyl-8-C-pentoside | 563.1401 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C26H28O14 | apigenin 6-C-pentosyl-8-C-hexoside | 563.1401 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C26H28O14 | 6-C-pentosyl-8-C-hexosyl apigenin | 565.1552 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C26H28O15 | luteolin 6-C-pentosyl-8-C-hexoside (isomer 1) | 579.1350 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C27H30O15 | apigenin 6,8-di-C-hexoside | 593.1506 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C27H30O15 | vitexin 2″-O-glucoside | 593.1506 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C27H30O15 | 6,8-di-C-hexosyl apigenin | 595.1657 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C27H30O16 | isoorientin 2″-O-glucoside | 609.1453 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C27H30O16 | luteolin 6,8-di-C-hexoside | 609.1456 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C27H30O16 | rutin | 611.1607 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C28H32O16 | chrysoeriol 6,8-di-C-hexoside | 623.1611 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C28H32O16 | chrysoeriol 6″-O-hexosyl-6-C-hexoside | 623.1612 | UHPLC-DAD-ESI-Q-TOF-MS | (−) | [116] |
C30H26O12 | A-type procyanidin dimer | 577.1341 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C30H26O12 | Procyanidin B1 | 579.1497 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C30H26O12 | Procyanidin B2 | 579.1497 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C30H26O12 | Procyanidin B3 | 579.1497 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C45H34O18 | A-type procyanidin trimer | 863.1818 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C45H36O18 | A-type procyanidin trimer | 865.1974 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C45H38O18 | Procyanidin C1 | 867.2131 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C60H48O24 | A-type procyanidin tetramer | 1153.2608 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C60H50O24 | B-type procyanidin tetramer | 1155.2765 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
5. Bioefficiency (Bioaccessibility and Bioavailability) of Phenolics from Rice, Wheat, and By-Products Thereof
6. Antioxidant Capacity of Rice, Wheat, and By-Products Thereof
7. Potential Health Effects
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, T.A.; Jones, M.K.; Powell, W.; Allaby, R.G. The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol. Evol. 2009, 24, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzani, A.; Ashraf, M. Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaharieva, M.; Monneveux, P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genet. Resour. Crop Evol. 2014, 61, 677–706. [Google Scholar] [CrossRef]
- Black, M.; Bewley, J.; Halmer, P. The Encyclopedia of Seeds: Science, Technology and Uses; CAB International: Wallingford, UK, 2006; p. 828. [Google Scholar]
- Heun, M.; Abbo, S.; Lev-Yadun, S.; Gopher, A. A critical review of the protracted domestication model for Near-Eastern founder crops: Linear regression, long-distance gene flow, archaeological, and archaeobotanical evidence. J. Exp. Bot. 2012, 63, 4333–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations, Statistics Division. Available online: https://www.fao.org/statistics/en/ (accessed on 25 June 2019).
- FAO. Biannual Report on Global Food Markets. Available online: https://reliefweb.int/report/world/food-outlook-biannual-report-global-food-markets-november-2022 (accessed on 27 October 2022).
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.-X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012, 490, 497. Available online: https://www.nature.com/articles/nature11532#supplementary-information (accessed on 27 October 2022). [CrossRef] [Green Version]
- Konishi, S.; Izawa, T.; Lin, S.Y.; Ebana, K.; Fukuta, Y.; Sasaki, T.; Yano, M. An SNP Caused Loss of Seed Shattering during Rice Domestication. Science 2006, 312, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, B.L.; Zhao, Z. Archaeological and genetic insights into the origins of domesticated rice. Proc. Natl. Acad. Sci. USA 2014, 111, 6190–6197. [Google Scholar] [CrossRef] [Green Version]
- Londo, J.P.; Chiang, Y.-C.; Hung, K.-H.; Chiang, T.-Y.; Schaal, B.A. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 2006, 103, 9578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Civáň, P.; Brown, T.A. Origin of rice (Oryza sativa L.) domestication genes. Genet. Resour. Crop Evol. 2017, 64, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose–response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Montonen, J.; Boeing, H.; Fritsche, A.; Schleicher, E.; Joost, H.G.; Schulze, M.B.; Steffen, A.; Pischon, T. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur. J. Nutr. 2013, 52, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zong, G.; Gao, A.; Hu, F.B.; Sun, Q. Whole Grain Intake and Mortality From All Causes, Cardiovascular Disease, and Cancer. Circulation 2016, 133, 2370–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Schwember, A.R.; Parada, R.; Garcia, S.; Maróstica, M.R.; Franchin, M.; Regitano-d’Arce, M.A.B.; Shahidi, F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int. J. Mol. Sci. 2018, 19, 3498. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shao, Y.; Bao, J.; Beta, T. Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem. 2015, 172, 630–639. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- de Camargo, A.C.; Schewember, A.R. Phenolic-driven sensory changes in functional foods. J. Food Bioact. 2019, 5, 6–7. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate byproducts (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef] [PubMed]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chem. 2017, 221, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Gallo, C.R.; Shahidi, F. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J. Funct. Foods 2015, 12, 129–143. [Google Scholar] [CrossRef]
- McCallum, J.A.; Walker, J.R.l. Proanthocyanidins in wheat bran. Cereal Chem. 1990, 67, 282–285. [Google Scholar]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Stevenson, L.; Phillips, F.; O’Sullivan, K.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food. Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moongngarm, A.; Daomukda, N.; Khumpika, S. Chemical Compositions, Phytochemicals, and Antioxidant Capacity of Rice Bran, Rice Bran Layer, and Rice Germ. APCBEE Procedia 2012, 2, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Pinaffi-Langley, A.C.C.; Fuentes, J.; Speisky, H.; de Camargo, A.C. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic. Biol. Med. 2021, 176, 312–321. [Google Scholar] [CrossRef]
- Yuldasheva, N.K.; Ul’chenko, N.T.; Glushenkova, A.I. Wheat germ oil. Chem. Nat. Compd. 2010, 46, 97–98. [Google Scholar] [CrossRef]
- Esa, N.M.; Ling, T.B.; Peng, L.S. By-products of rice processing: An overview of health benefits and applications. J. Rice Res. 2013, 1, 107. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Stampfer, M.J.; Hu, F.B.; Giovannucci, E.; Rimm, E.; Manson, J.E.; Hennekens, C.H.; Willett, W.C. Whole-grain consumption and risk of coronary heart disease: Results from the Nurses’ Health Study. Am. J. Clin. Nutr. 1999, 70, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.D.P.; Liu, S.M.D.S.; Van Horn, L.P.; Tinker, L.F.P.; Shikany, J.M.D.; Eaton, C.B.M.D.; Margolis, K.L.M.D. The association of whole grain consumption with incident type 2 diabetes: The Women’s Health Initiative Observational Study. Ann. Epidemiol. 2013, 23, 321–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Benisi-Kohansal, S.; Saneei, P.; Salehi-Marzijarani, M.; Larijani, B.; Esmaillzadeh, A. Whole-Grain Intake and Mortality from All Causes, Cardiovascular Disease, and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2016, 7, 1052–1065. [Google Scholar] [CrossRef] [Green Version]
- Butsat, S.; Weerapreeyakul, N.; Siriamornpun, S. Changes in Phenolic Acids and Antioxidant Activity in Thai Rice Husk at Five Growth Stages during Grain Development. J. Agric. Food Chem. 2009, 57, 4566–4571. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem. 2014, 143, 90–96. [Google Scholar] [CrossRef]
- Sun, R.; Sun, X.F.; Wang, S.Q.; Zhu, W.; Wang, X.Y. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind. Crops Prod. 2002, 15, 179–188. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Importance of insoluble-bound phenolics to antioxidant properties of wheat. J. Agric. Food Chem. 2006, 54, 1256–1264. [Google Scholar] [CrossRef]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic Content and Antioxidant Properties of Bran in 51 Wheat Cultivars. Cereal Chem. 2008, 85, 544–549. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Edelmann, M.; Kariluoto, S.; Nurmi, T.; Fernandez-Orozco, R.; Ravel, C.; Charmet, G.; Andersson, A.A.M.; et al. The HEALTHGRAIN Wheat Diversity Screen: Effects of Genotype and Environment on Phytochemicals and Dietary Fiber Components. J. Agric. Food Chem. 2010, 58, 9291–9298. [Google Scholar] [CrossRef]
- Ragaee, S.; Guzar, I.; Abdel-Aal, E.S.M.; Seetharaman, K. Bioactive components and antioxidant capacity of Ontario hard and soft wheat varieties. Can. J. Plant Sci. 2012, 92, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Narwal, S.; Thakur, V.; Sheoran, S.; Dahiya, S.; Jaswal, S.; Gupta, R.K. Antioxidant activity and phenolic content of the Indian wheat varieties. J. Plant Biochem. Biotechnol. 2014, 23, 11–17. [Google Scholar] [CrossRef]
- Yilmaz, V.A.; Brandolini, A.; Hidalgo, A. Phenolic acids and antioxidant activity of wild, feral and domesticated diploid wheats. J. Cereal Sci. 2015, 64, 168–175. [Google Scholar] [CrossRef]
- Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality. Front. Plant Sci. 2016, 7, 1870. [Google Scholar] [CrossRef] [Green Version]
- Lachman, J.; Martinek, P.; Kotíková, Z.; Orsák, M.; Šulc, M. Genetics and chemistry of pigments in wheat grain—A review. J. Cereal Sci. 2017, 74, 145–154. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Upadhyaya, H.D.; Chung, I.-M.; De Vita, P.; García-Lara, S.; Guajardo-Flores, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O.; Rajakumar, G.; Sahrawat, K.L.; et al. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. Front Plant Sci. 2016, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Nigro, D.; Laddomada, B.; Mita, G.; Blanco, E.; Colasuonno, P.; Simeone, R.; Gadaleta, A.; Pasqualone, A.; Blanco, A. Genome-wide association mapping of phenolic acids in tetraploid wheats. J. Cereal Sci. 2017, 75, 25–34. [Google Scholar] [CrossRef]
- Laddomada, B.; Durante, M.; Mangini, G.; D’Amico, L.; Lenucci, M.S.; Simeone, R.; Piarulli, L.; Mita, G.; Blanco, A. Genetic variation for phenolic acids concentration and composition in a tetraploid wheat (Triticum turgidum L.) collection. Genet. Resour. Crop Evol. 2017, 64, 587–597. [Google Scholar] [CrossRef]
- Lu, Y.; Memon, A.; Fuerst, P.; Kizonas, A.; Morris, C.; Luthria, D. Changes in the phenolic acids composition during pancake preparation: Whole and refined grain flour and processed food classification by UV and NIR spectral fingerprinting method—Proof of concept. J. Food Compos. Anal. 2017, 60, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Li, Y.; Zhang, J.; Wang, C.; Qin, H.; Ding, H.; Xie, Y.; Guo, T. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat. Front. Plant Sci. 2016, 7, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belluco, B.; de Camargo, A.C.; da Gloria, E.M.; Dias, C.T.D.S.; Button, D.C.; Calori-Domingues, M.A. Deoxynivalenol in wheat milling fractions: A critical evaluation regarding ongoing and new legislation limits. J. Cereal Sci. 2017, 77, 284–290. [Google Scholar] [CrossRef]
- Calori-Domingues, M.A.; Bernardi, C.M.G.; Nardin, M.S.; de Souza, G.V.; dos Santos, F.G.R.; Stein, M.d.A.; Gloria, E.M.d.; Dias, C.T.d.S.; de Camargo, A.C. Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil. Food Addit. Contam Part B 2016, 9, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.-L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. [Google Scholar] [CrossRef]
- Boutigny, A.-L.; Atanasova-Pénichon, V.; Benet, M.; Barreau, C.; Richard-Forget, F. Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur. J. Plant Pathol. 2010, 127, 275–286. [Google Scholar] [CrossRef]
- Gunnaiah, R.; Kushalappa, A.C.; Duggavathi, R.; Fox, S.; Somers, D.J. Integrated Metabolo-Proteomic Approach to Decipher the Mechanisms by Which Wheat QTL (Fhb1) Contributes to Resistance against Fusarium graminearum. PLoS ONE 2012, 7, e40695. [Google Scholar] [CrossRef] [Green Version]
- Cahoon, E.B.; Hall, S.E.; Ripp, K.G.; Ganzke, T.S.; Hitz, W.D.; Coughlan, S.J. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat. Biotechnol. 2003, 21, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Khurana, P. Cloning, functional characterisation and transgenic manipulation of vitamin E biosynthesis genes of wheat. Funct. Plant Biol. 2013, 40, 1129–1136. [Google Scholar] [CrossRef] [Green Version]
- Mène-Saffrané, L.; Pellaud, S. Current strategies for vitamin E biofortification of crops. Curr. Opin. Biotechnol. 2017, 44, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Shammugasamy, B.; Ramakrishnan, Y.; Ghazali, H.M.; Muhammad, K. Tocopherol and tocotrienol contents of different varieties of rice in Malaysia. J. Sci. Food Agric. 2015, 95, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, S.; Wang, X.; Li, J.; Stich, B.; Kopisch-Obuch, F.; Endrigkeit, J.; Leckband, G.; Dreyer, F.; Friedt, W.; Meng, J.; et al. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front. Plant Sci. 2012, 3, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Azaz, J.; de la Torre, F.; Ávila, C.; Cánovas, F.M. Identification of a small protein domain present in all plant lineages that confers high prephenate dehydratase activity. Plant J. 2016, 87, 215–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diepenbrock, C.H.; Kandianis, C.B.; Lipka, A.E.; Magallanes-Lundback, M.; Vaillancourt, B.; Góngora-Castillo, E.; Wallace, J.G.; Cepela, J.; Mesberg, A.; Bradbury, P.J.; et al. Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain. Plant Cell 2017, 29, 2374–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Xu, S.; Fan, Y.; Liu, N.; Zhan, W.; Liu, H.; Xiao, Y.; Li, K.; Pan, Q.; Li, W.; et al. Beyond pathways: Genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol. J. 2018, 16, 1464–1475. [Google Scholar] [CrossRef] [Green Version]
- Strobbe, S.; De Lepeleire, J.; Van Der Straeten, D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. Front. Plant Sci. 2018, 9, 1862. [Google Scholar] [CrossRef] [Green Version]
- Carpita, N.C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 445–476. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Grabber, J.H.; Hatfield, R.D.; Ralph, J.; Zoń, J.; Amrhein, N. Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 1995, 40, 1077–1082. [Google Scholar] [CrossRef]
- Fry, S.C. Cross-Linking of Matrix Polymers in the Growing Cell Walls of Angiosperms. Ann. Rev. Plant Physiol. 1986, 37, 165–186. [Google Scholar] [CrossRef]
- Carpita, N.C.; Gibeaut, D.M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993, 3, 1–30. [Google Scholar] [CrossRef]
- Molinari, H.; Pellny, T.; Freeman, J.; Shewry, P.; Mitchell, R. Grass cell wall feruloylation: Distribution of bound ferulate and candidate gene expression in Brachypodium distachyon. Front. Plant Sci. 2013, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Bartley, L.E.; Peck, M.L.; Kim, S.-R.; Ebert, B.; Manisseri, C.; Chiniquy, D.M.; Sykes, R.; Gao, L.; Rautengarten, C.; Vega-Sánchez, M.E.; et al. Overexpression of a BAHD Acyltransferase, OsAt10, Alters Rice Cell Wall Hydroxycinnamic Acid Content and Saccharification. Plant Physiol. 2013, 161, 1615–1633. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, K.; Soga, K.; Hoson, T. Phenylalanine ammonia-lyase and cell wall peroxidase are cooperatively involved in the extensive formation of ferulate network in cell walls of developing rice shoots. J. Plant Physiol. 2012, 169, 262–267. [Google Scholar] [CrossRef]
- Ma, X.; Xia, H.; Liu, Y.; Wei, H.; Zheng, X.; Song, C.; Chen, L.; Liu, H.; Luo, L. Transcriptomic and Metabolomic Studies Disclose Key Metabolism Pathways Contributing to Well-maintained Photosynthesis under the Drought and the Consequent Drought-Tolerance in Rice. Front. Plant Sci. 2016, 7, 1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-W.; Huang, L.-Y.; Huang, C.-L.; Wang, Y.-C.; Lai, P.-H.; Wang, H.-V.; Chang, W.-C.; Chiang, T.-Y.; Huang, H.-J. Common Stress Transcriptome Analysis Reveals Functional and Genomic Architecture Differences Between Early and Delayed Response Genes. Plant Cell Physiol. 2017, 58, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Bao, J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015, 180, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.T.; Thomson, M.J.; Pfeil, B.E.; McCouch, S. Caught Red-Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in Rice. Plant Cell 2006, 18, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, T.; Maekawa, M.; Oki, T.; Suda, I.; Iida, S.; Shimada, H.; Takamure, I.; Kadowaki, K.-i. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J. 2007, 49, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Kikuchi, S.; Kim, Y.; Park, S.; Yoon, U.; Lee, G.; Choi, J.; Kim, Y.; Park, S. Computational identification of seed-specific transcription factors involved in anthocyanin production in black rice. Bio. Chip J. 2010, 4, 247–255. [Google Scholar] [CrossRef]
- Xu, F.; Bao, J.; Kim, T.-S.; Park, Y.-J. Genome-wide Association Mapping of Polyphenol Contents and Antioxidant Capacity in Whole-Grain Rice. J. Agric. Food Chem. 2016, 64, 4695–4703. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-H.; Lee, S.-W. Phenolic Phytoalexins in Rice: Biological Functions and Biosynthesis. Int. J. Mol. Sci. 2015, 16, 29120–29133. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhong, S.; Li, G.; Li, Q.; Mao, B.; Deng, Y.; Zhang, H.; Zeng, L.; Song, F.; He, Z. Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Res. 2011, 21, 835. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Tian, F.; Li, J.; Hutchins, W.; Chen, H.; Yang, F.; Yuan, X.; Cui, Z.; Yang, C.-H.; He, C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol. Plant Pathol. 2017, 18, 555–568. [Google Scholar] [CrossRef]
- Wang, H.; Hao, J.; Chen, X.; Hao, Z.; Wang, X.; Lou, Y.; Peng, Y.; Guo, Z. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol. Biol. 2007, 65, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Park, H.L.; Lee, S.-W.; Jung, K.-H.; Hahn, T.-R.; Cho, M.-H. Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 2013, 96, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Lakshmanan, M.; Lim, S.-H.; Kim, J.K.; Ha, S.-H.; Lee, D.-Y. Light-specific transcriptional regulation of the accumulation of carotenoids and phenolic compounds in rice leaves. Plant Signal. Behav. 2016, 11, e1184808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amb, M.K.; Ahluwalia, A.S. Allelopathy: Potential Role to Achieve New Milestones in Rice Cultivation. Rice Sci. 2016, 23, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, L.; Li, J.; Wang, H.; Fang, C.; Yang, X.; He, H. Increasing Rice Allelopathy by Induction of Barnyard Grass (Echinochloa crus-galli) Root Exudates. J. Plant Growth Regul. 2018, 37, 745–754. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, X.-Y.; Lin, S.-X.; Gu, C.-Z.; Li, L.; Li, J.-Y.; Fang, C.-X.; He, H.-B. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Rice 2019, 12, 30. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods Enzymol; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Yu, L.L.; Beta, T. Identification and Antioxidant Properties of Phenolic Compounds during Production of Bread from Purple Wheat Grains. Molecules 2015, 20, 15525–15549. [Google Scholar] [CrossRef] [Green Version]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; Shahidi, F. Phenolic profile of peanut by-products: Antioxidant potential and inhibition of alpha-glucosidase and lipase activities. J. Am. Oil Chem. Soc. 2017, 94, 959–971. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Silva, A.P.D.; Soares, J.C.; de Alencar, S.M.; Handa, C.L.; Cordeiro, K.S.; Figueira, M.S.; Sampaio, G.R.; Torres, E.; Shahidi, F.; et al. Do Flavonoids from Durum Wheat Contribute to Its Bioactive Properties? A Prospective Study. Molecules 2021, 26, 463. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, K.; Komatsu, S.; Takahashi, I.; Otsuka, K. Phenolic Compounds in the Fermented Products. Agric. Biol. Chem. 1970, 34, 170–180. [Google Scholar] [CrossRef]
- Jayachandran-Nair, K.; Sridhar, R. Phenolic compounds present in rice husk. Biol. Plant 1975, 17, 318–319. [Google Scholar] [CrossRef]
- Whitmore, F.W. Phenolic acids in wheat coleoptile cell walls. Plant Physiol. 1974, 53, 728–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Liu, Q.; Li, P.; Pei, Y.S.; Tao, T.T.; Wang, Y.; Yan, W.; Yang, G.F.; Shao, X.L. Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chem. 2019, 274, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.J.; Liu, X.M.; Yan, N.; Wang, F.Z.; Du, Y.M.; Zhang, Z.F. Partial Purification, Identification, and Quantitation of Antioxidants from Wild Rice (Zizania latifolia). Molecules 2018, 23, 2782. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.; Kavitha, S.; Varadaraj, M.C.; Muralikrishna, G. Degradation of cereal bran polysaccharide-phenolic acid complexes by Aspergillus niger CFR 1105. Food Chem. 2006, 96, 14–19. [Google Scholar] [CrossRef]
- Ring, S.G.; Selvendran, R.R. Isolation and analysis of cell wall material from beeswing wheat bran (Triticum aestivum). Phytochemistry 1980, 19, 1723–1730. [Google Scholar] [CrossRef]
- Maningat, C.C.; Juliano, B.O. Composition of cell wall preparations of rice bran and germ. Phytochemistry 1982, 21, 2509–2516. [Google Scholar] [CrossRef]
- Sosulski, F.; Krygier, K.; Hogge, L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J. Agric. Food Chem. 1982, 30, 337–340. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 1989, 31, 159–164. [Google Scholar] [CrossRef]
- Klepacka, J.; Fornal, L. Ferulic acid and its position among the phenolic compounds of wheat. Crit. Rev. Food Sci. Nutr. 2006, 46, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. The distribution of phenolic acids in rice. Food Chem. 2004, 87, 401–406. [Google Scholar] [CrossRef]
- Vichapong, J.; Sookserm, M.; Srijesdaruk, V.; Swatsitang, P.; Srijaranai, S. High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT Food Sci. Technol. 2010, 43, 1325–1330. [Google Scholar] [CrossRef]
- Chima, J.U.; Fasuan, T.O. Symbiotic and adverse interplay of hypogeal germination periods on brown rice (Oryza sativa): Nutrient and non-nutrient characteristics. Food Prod. Process. Nutr. 2021, 3, 34. [Google Scholar] [CrossRef]
- Xia, X.; Ling, W.; Ma, J.; Xia, M.; Hou, M.; Wang, Q.; Zhu, H.; Tang, Z. An Anthocyanin-Rich Extract from Black Rice Enhances Atherosclerotic Plaque Stabilization in Apolipoprotein E–Deficient Mice. J. Nutr. 2006, 136, 2220–2225. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Kou, W.; Du, B.; Wu, Y.; Zhao, S.; Brusco, O.A.; Morgan, J.M.; Capuzzi, D.M. Effect of Xuezhikang, an Extract From Red Yeast Chinese Rice, on Coronary Events in a Chinese Population With Previous Myocardial Infarction. Am. J. Cardiol. 2008, 101, 1689–1693. [Google Scholar] [CrossRef]
- Muntana, N.; Prasong, S. Study on total phenolic contents and their antioxidant activities of Thai white, red and black rice bran extracts. Pak. J. Biol. Sci. 2010, 13, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Woo, S.; Kim, M.J.; Kwon, S.W.; Lee, J.; Sung, S.H.; Koh, H.J. Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chem. 2018, 241, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.F.; Xu, F.F.; Sun, X.; Bao, J.S.; Beta, T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59, 211–218. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Laokuldilok, T.; Shoemaker, C.F.; Jongkaewwattana, S.; Tulyathan, V. Antioxidants and Antioxidant Activity of Several Pigmented Rice Brans. J. Agric. Food Chem. 2011, 59, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 2010, 121, 140–147. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant Activity of Commercial Wild Rice and Identification of Flavonoid Compounds in Active Fractions. J. Agric. Food Chem. 2009, 57, 7543–7551. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotásková, E.; Orsavová, J.; Valášek, P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Lima, R.S. A perspective on phenolic compounds, their potential health benefits, and international regulations: The revised Brazilian normative on food supplements. J. Food Bioact. 2019, 7, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Goufo, P.; Trindade, H. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci. Nutr. 2014, 2, 75–104. [Google Scholar] [CrossRef]
- Wanyo, P.; Meeso, N.; Siriamornpun, S. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014, 157, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Das, A.J.; Deka, S.C. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk. J. Food Sci. Technol. 2017, 54, 3847–3858. [Google Scholar] [CrossRef] [PubMed]
- Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S. Chemical studies on novel rice hull antioxidants. 2. Identification of isovitexin, a C-glycosyl flavonoid. J. Agric. Food Chem. 1989, 37, 316–319. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. The antioxidant potential of milling fractions from breadwheat and durum. J. Cereal Sci. 2007, 45, 238–247. [Google Scholar] [CrossRef]
- Podio, N.S.; Baroni, M.V.; Wunderlin, D.A. Relation between polyphenol profile and antioxidant capacity of different Argentinean wheat varieties. A Boosted Regression Trees study. Food Chem. 2017, 232, 79–88. [Google Scholar] [CrossRef]
- Boukid, F.; Dall’Asta, M.; Bresciani, L.; Mena, P.; Del Rio, D.; Calani, L.; Sayar, R.; Seo, Y.W.; Yacoubi, I.; Mejri, M. Phenolic profile and antioxidant capacity of landraces, old and modern Tunisian durum wheat. Eur. Food Res.Technol. 2019, 245, 73–82. [Google Scholar] [CrossRef]
- Dinelli, G.; Segura Carretero, A.; Di Silvestro, R.; Marotti, I.; Fu, S.; Benedettelli, S.; Ghiselli, L.; Fernández Gutiérrez, A. Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2009, 1216, 7229–7240. [Google Scholar] [CrossRef]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef]
- Geng, P.; Sun, J.; Zhang, M.; Li, X.; Harnly, J.M.; Chen, P. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMSn and mass defect filtering. J. Mass Spectrom. 2016, 51, 914–930. [Google Scholar] [CrossRef] [Green Version]
- Di Silvestro, R.; Di Loreto, A.; Bosi, S.; Bregola, V.; Marotti, I.; Benedettelli, S.; Segura-Carretero, A.; Dinelli, G. Environment and genotype effects on antioxidant properties of organically grown wheat varieties: A 3-year study. J. Sci. Food Agric. 2017, 97, 641–649. [Google Scholar] [CrossRef]
- Yu, L.; Nanguet, A.-L.; Beta, T. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants 2013, 2, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sferrazza, R.E.; Dinelli, G.; Herrero, M.; Cifuentes, A. Determination of phenolic compounds in ancient and modern durum wheat genotypes. Electrophoresis 2018, 39, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.B.; Lima, L.R.D.S.; Nascimento, F.R.; Nascimento, T.P.D.; Cameron, L.C.; Ferreira, M.S.L. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Res. Int. 2018, 124, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical Profile and Nutraceutical Value of Old and Modern Common Wheat Cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.L.; Harbaum-Piayda, B.; Schwarz, K. Phenolic compounds from hydrolyzed and extracted fiber-rich by-products. LWT Food Sci. Technol. 2012, 47, 246–254. [Google Scholar] [CrossRef]
- Gotti, R.; Amadesi, E.; Fiori, J.; Bosi, S.; Bregola, V.; Marotti, I.; Dinelli, G. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids. J. Chromatogr. A 2018, 1532, 208–215. [Google Scholar] [CrossRef]
- Hu, C.; Cai, Y.-Z.; Li, W.; Corke, H.; Kitts, D.D. Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract. Food Chem. 2007, 104, 955–961. [Google Scholar] [CrossRef]
- Montevecchi, G.; Setti, L.; Olmi, L.; Buti, M.; Laviano, L.; Antonelli, A.; Sgarbi, E. Determination of Free Soluble Phenolic Compounds in Grains of Ancient Wheat Varieties (Triticum sp. pl.) by Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 201–212. [Google Scholar] [CrossRef]
- Irakli, M.N.; Samanidou, V.F.; Biliaderis, C.G.; Papadoyannis, I.N. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chem 2021, 134, 1624–1632. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Li, W.; Beta, T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008, 109, 916–924. [Google Scholar] [CrossRef]
- Mattila, P.; Pihlava, J.M.; Hellstrom, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, X.; Zhang, M.; Blanchard, C. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage. J. Stored Prod. Res. 2014, 59, 120–125. [Google Scholar] [CrossRef]
- Lang, G.H.; Lindemann, I.d.S.; Ferreira, C.D.; Hoffmann, J.F.; Vanier, N.L.; de Oliveira, M. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chem. 2019, 287, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ramakrishnan, V.V.; Oh, W.Y. Bioavailability and metabolism of food bioactives and their health effects: A review. J. Food Bioact. 2019, 8, 6–41. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Zhao, K.; Whiteman, M. The gastrointestinal tract: A major site of antioxidant action? Free Radic. Res. 2000, 33, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, I. In vitro prooxidant effect of caffeine. J. Enzyme Inhib. Med. Chem. 2008, 23, 149–152. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Speisky, H.; Brunser, O.; Pastene, E.; Gotteland, M. Apple Peel Polyphenols Protect against Gastrointestinal Mucosa Alterations Induced by Indomethacin in Rats. J. Agric. Food Chem. 2011, 59, 6459–6466. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Liu, J.; Li, F.D.; Li, S.L.; Wang, J.Q. Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food. Chem. Toxicol. 2015, 83, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Santili, A.B.N.; de Camargo, A.C.; Nunes, R.d.S.R.; Gloria, E.M.d.; Machado, P.F.; Cassoli, L.D.; Dias, C.T.d.S.; Calori-Domingues, M.A. Aflatoxin M1 in raw milk from different regions of São Paulo state—Brazil. Food Addit. Contam. Part B Surveill. 2015, 8, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Vieira, S.; Zhang, G.D.; Decker, E.A. Biological Implications of Lipid Oxidation Products. J. Am. Oil. Chem. Soc. 2017, 94, 339–351. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Regitano-d’Arce, M.A.B.; de Alencar, S.M.; Canniatti-Brazaca, S.G.; de Souza Vieira, T.M.F.; Shahidi, F. Chemical changes and oxidative stability of peanuts as affected by the dry-blanching. J. Am. Oil. Chem. Soc. 2016, 93, 1101–1109. [Google Scholar] [CrossRef]
- Kanner, J.; Lapidot, T. The stomach as a bioreactor: Dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic. Biol. Med. 2001, 31, 1388–1395. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- de Camargo, C.A.; Favero, T.B.; Morzelle, C.M.; Franchin, M.; Alvarez-Parrilla, E.; de la Rosa, A.L.; Geraldi, V.M.; Maróstica Júnior, R.M.; Shahidi, F.; Schwember, R.A. Is chickpea a potential substitute for soybean? Phenolic bioactives and potential Health benefits. Int. J. Mol. Sci. 2019, 20, 2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Tsao, R. UF-LC-DAD-MSn for discovering enzyme inhibitors for nutraceuticals and functional foods. J. Food Bioact. 2019, 7, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Pinaffi, A.C.D.; Sampaio, G.R.; Soares, M.J.; Shahidi, F.; de Camargo, A.C.; Torres, E. Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of Alpha-Glucosidase and Proanthocyanidin Profile. Molecules 2020, 25, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Egashira, Y.; Sanada, H. Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J. Agric. Food Chem. 2003, 51, 5534–5539. [Google Scholar] [CrossRef]
- Kern, S.M.; Bennett, R.N.; Mellon, F.A.; Kroon, P.A.; Garcia-Conesa, M.-T. Absorption of Hydroxycinnamates in Humans after High-Bran Cereal Consumption. J. Agric. Food Chem. 2003, 51, 6050–6055. [Google Scholar] [CrossRef]
- Konishi, Y.; Hagiwara, K.; Shimizu, M. Transepithelial transport of fluorescein in Caco-2 cell monolayers and use of such transport in in vitro evaluation of phenolic acid availability. Biosci. Biotechnol. Biochem. 2002, 66, 2449–2457. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Iftikhar, A.; Zhang, H.; Gong, L.; Wang, J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res. Int. 2020, 136, 109240. [Google Scholar] [CrossRef]
- Konishi, Y.; Zhao, Z.H.; Shimizu, M. Phenolic acids are absorbed from the rat stomach with different absorption rates. J. Agric. Food Chem. 2006, 54, 7539–7543. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Shimizu, M. Transepithelial transport of ferulic acid by monocarboxylic acid transporter in Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 2003, 67, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, Y.; Kobayashi, S.; Shimizu, M. Transepithelial transport of p-coumaric acid and gallic acid in caco-2 cell monolayers. Biosc. Biotechnol. Biochem. 2003, 67, 2317–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, Y.; Kobayashi, S. Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 52, 2518–2526. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.H.; Egashira, Y.; Sanada, H. Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J. Nutr. 2004, 134, 3083–3088. [Google Scholar] [CrossRef] [Green Version]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food. Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Nordlund, E.; Aura, A.-M.; Mattila, I.; Kössö, T.; Rouau, X.; Poutanen, K. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J. Agric. Food Chem 2012, 60, 8134–8145. [Google Scholar] [CrossRef] [PubMed]
- Rondini, L.; Peyrat-Maillard, M.N.; Marsset-Baglieri, A.; Fromentin, G.; Durand, P.; Tome, D.; Prost, M.; Berset, C. Bound ferulic acid from bran is more bioavailable than the free compound in rat. J. Agric. Food Chem. 2004, 52, 4338–4343. [Google Scholar] [CrossRef]
- Adam, A.; Crespy, V.; Levrat-Verny, M.-A.; Leenhardt, F.; Leuillet, M.; Demigné, C.; Ré;mésy, C. The Bioavailability of Ferulic Acid Is Governed Primarily by the Food Matrix Rather than Its Metabolism in Intestine and Liver in Rats. J. Nutr. 2002, 132, 1962–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janarny, G.; Gunathilake, K.D.P.P. Changes in rice bran bioactives, their bioactivity, bioaccessibility and bioavailability with solid-state fermentation by Rhizopus oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101510. [Google Scholar] [CrossRef]
- Norkaew, O.; Thitisut, P.; Mahatheeranont, S.; Pawin, B.; Sookwong, P.; Yodpitak, S.; Lungkaphin, A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem. 2019, 294, 493–502. [Google Scholar] [CrossRef]
- Wijaya, G.Y.; Mares, D.J. Apigenin di-C-glycosides (ACG) content and composition in grains of bread wheat (Triticum aestivum) and related species. J. Cereal Sci. 2012, 56, 260–267. [Google Scholar] [CrossRef]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Angelino, D.; Berhow, M.; Ninfali, P.; Jeffery, E.H. Caecal absorption of vitexin-2-O-xyloside and its aglycone apigenin, in the rat. Food Funct. 2013, 4, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Macià, A.; de Sotomayor, M.A.; Parrado, J.; Motilva, M.-J.; Herrera, M.-D. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct. 2017, 8, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- de Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef]
- Falcão, H.G.; Silva, M.B.R.; de Camargo, A.C.; Shahidi, F.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Kurozawa, L.E.; Ida, E.I. Optimizing the potential bioactivity of isoflavones from soybeans via ultrasound pretreatment: Antioxidant potential and NF-κB activation. J. Food Biochem. 2019, 43, e13018. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Should the in vitro colorimetric assays in antioxidant and lipid oxidation evaluation be abandoned?: A critical review focusing on bioactive molecule screening assays in in vitro and in vivo models. J. Food Bioact. 2020, 9, 23–35. [Google Scholar] [CrossRef]
- Yeo, J.; Shahidi, F. Revisiting DPPH (2,2-diphenyl-1-picrylhydrazyl) assay as a useful tool in antioxidant evaluation: A new IC100 concept to address its limitations. J. Food Bioact. 2019, 7, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18 Pt B, 757–781. [Google Scholar] [CrossRef]
- Călinoiu, F.L.; Cătoi, A.-F.; Vodnar, C.D. Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Su, L.; Moore, J.; Zhou, K.; Luther, M.; Yin, J.-J.; Yu, L. Effects of Postharvest Treatment and Heat Stress on Availability of Wheat Antioxidants. J. Agric. Food Chem. 2006, 54, 5623–5629. [Google Scholar] [CrossRef] [PubMed]
- Sevgi, K.; Tepe, B.; Sarikurkcu, C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015, 77, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Ha, S.H.; Lim, S.H.; Jung, J.Y.; Lee, S.M.; Yeo, Y.; Kim, J.K. Determination of phenolic acids in Korean rice (Oryza sativa L.) cultivars using gas chromatography-time-of-flight mass spectrometry. Food Sci. Biotechnol. 2012, 21, 1141–1148. [Google Scholar] [CrossRef]
- Guo, W.; Beta, T. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole-grain cereals. Food Res. Int. 2013, 51, 518–525. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 2006, 48, 263–274. [Google Scholar] [CrossRef]
- Graf, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992, 13, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids (vol 20, pg 933, 1996). Free Radic. Biol. Med. 1996, 21, 417. [Google Scholar]
- Muthukumaran, S.; Tranchant, C.; Shi, J.; Ye, X.; Xue, S.J. Ellagic acid in strawberry (Fragaria spp.): Biological, technological, stability, and human health aspects. Food Qual. Saf. 2017, 1, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.K.; Siddiqui, I.A.; El-Abd, S.; Mukhtar, H.; Ahmad, N. Combination chemoprevention with grape antioxidants. Mol. Nutr. Food Res. 2016, 60, 1406–1415. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Braughler, J.M.; Duncan, L.A.; Chase, R.L. The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiation. J. Biol. Chem. 1986, 261, 10282–10289. [Google Scholar] [CrossRef] [PubMed]
- Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Zhou, K.; Yin, J.-J.; Yu, L. ESR determination of the reactions between selected phenolic acids and free radicals or transition metals. Food Chem. 2006, 95, 446–457. [Google Scholar] [CrossRef]
- Tarantino, G.; Porcu, C.; Arciello, M.; Andreozzi, P.; Balsano, C. Prediction of carotid intima-media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J. Gastroenterol. Hepatol. 2018, 33, 1511–1517. [Google Scholar] [CrossRef]
- Liyanapathirana, C.; Shahidi, F. Antioxidant activity of wheat extracts as affected by in vitro digestion. Biofactors 2004, 21, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivum L.) as Affected by Gastric pH Conditions. J. Agric. Food Chem. 2005, 53, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zawistowski, J.; Ling, W.H.; Kitts, D.D. Black rice (Oryza sativa L. indica) pigmented fraction suppresses both reactive oxygen species and nitric oxide in chemical and biological model systems. J. Agric. Food Chem. 2003, 51, 5271–5277. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekara, A.; Shahidi, F. Antioxidant phenolics of millet control lipid peroxidation in human LDL cholesterol and food systems. J. Am. Oil Chem. Soc. 2012, 89, 275–285. [Google Scholar] [CrossRef]
- Abdel-Moemin, A.R. Switching to Black Rice Diets Modulates Low-Density Lipoprotein Oxidation and Lipid Measurements in Rabbits. Am. J. Med. Sci. 2011, 341, 318–324. [Google Scholar] [CrossRef]
- Urbaniak, A.; Szelag, M.; Molski, M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Comput. Theor. Chem. 2013, 1012, 33–40. [Google Scholar] [CrossRef]
- Valdez, J.C.; Bolling, B.W. Anthocyanins and intestinal barrier function: A review. J. Food Bioact. 2019, 5, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.A.; Bierwirth, J.E.; Greenspan, P.; Pegg, R.B. Blackberry polyphenols: Review of composition, quantity, and health impacts from in vitro and in vivo studies. J. Food Bioact. 2020, 9, 40–51. [Google Scholar] [CrossRef] [Green Version]
- King, E.S.; Noll, A.; Glenn, S.; Bolling, B.W. Refrigerated and frozen storage impact aronia berry quality. Food Prod. Process. Nutr. 2022, 4, 3. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Shahidi, F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1580–1604. [Google Scholar] [CrossRef]
- Hu, C.; Kwok, B.H.L.; Kitts, D.D. Saskatoon berries (Amelanchier alnifolia Nutt.) scavenge free radicals and inhibit intracellular oxidation. Food Res. Int. 2005, 38, 1079–1085. [Google Scholar] [CrossRef]
- Elisia, I.; Hu, C.; Popovich, D.G.; Kitts, D.D. Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem. 2007, 101, 1052–1058. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, Y.; Diao, T.; Zeng, W.; Zuo, Y. Experimental and Theoretical Study on Antioxidant Activity of the Four Anthocyanins. J. Mol. Struct. 2020, 1204, 127509. [Google Scholar] [CrossRef]
- Psotová, J.; Lasovský, J.; Vicar, J. Metal-chelating properties, electrochemical behavior, scavenging and cytoprotective activities of six natural phenolics. Biomed. Pap. Med. Fac. Univ. Palacký Czech Repub. 2003, 147, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Hundemer, J.K.; Nabar, S.P.; Shriver, B.J.; Forman, L.P. Dietary fiber sources lower blood cholesterol in C57BL/6 mice. J. Nutr. 1991, 121, 1360–1365. [Google Scholar] [CrossRef]
- Topping, D.L.; Illman, R.J.; Roach, P.D.; Trimble, R.P.; Kambouris, A.; Nestel, P.J. Modulation of the hypolipidemic effect of fish oils by dietary fiber in rats: Studies with rice and wheat bran. J. Nutr. 1990, 120, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, S.Y.; Huang, G.L. Preparation, activity, and antioxidant mechanism of rice bran polysaccharide. Food Funct. 2021, 12, 834–839. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, Y.; Sun, A.M.; Wang, F.J.; Yu, G.P. Hypolipidemic and Antioxidative Effects of Aqueous Enzymatic Extract from Rice Bran in Rats Fed a High-Fat and -Cholesterol Diet. Nutrients 2014, 6, 3696–3710. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.L.; Zhang, R.F.; Zhang, M.W.; Su, D.X.; Wei, Z.C.; Deng, Y.Y.; Zhang, Y.; Chi, J.W.; Tang, X.J. Hepatoprotective and antioxidant activity of anthocyanins in black rice bran on carbon tetrachloride-induced liver injury in mice. J. Funct. Foods 2013, 5, 1705–1713. [Google Scholar] [CrossRef]
- Edrisi, F.; Salehi, M.; Ahmadi, A.; Fararoei, M.; Rusta, F.; Mahmoodianfard, S. Effects of supplementation with rice husk powder and rice bran on inflammatory factors in overweight and obese adults following an energy-restricted diet: A randomized controlled trial. Eur. J. Nutr. 2018, 57, 833–843. [Google Scholar] [CrossRef]
- Malunga, L.N.; Thandapilly, S.J.; Ames, N. Cereal-derived phenolic acids and intestinal alpha glucosidase activity inhibition: Structural activity relationship. J. Food Biochem. 2018, 42, e12635. [Google Scholar] [CrossRef]
- Al Shukor, N.; Van Camp, J.; Gonzales, G.B.; Staljanssens, D.; Struijs, K.; Zotti, M.J.; Raes, K.; Smagghe, G. Angiotensin-Converting Enzyme Inhibitory Effects by Plant Phenolic Compounds: A Study of Structure Activity Relationships. J. Agric. Food Chem. 2013, 61, 11832–11839. [Google Scholar] [CrossRef] [PubMed]
- Alu’Datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Mahasneh, M.A.; Ereifej, K.; Al-Karaki, G.; Al-Duais, M.; Andrade, J.E.; Tranchant, C.C.; Kubow, S.; et al. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food Funct. 2017, 8, 3187–3197. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.; Wang, Y.; Duan, Y.X.; Meng, Z.Q.; An, X.P.; Qi, J.W. Regulation of wheat bran feruloyl oligosaccharides in the intestinal antioxidative capacity of rats associated with the p38/JNK-Nrf2 signaling pathway and gut microbiota. J. Sci. Food Agric. 2022, 102, 6992–7002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Meng, Z.Q.; Guo, J.Q.; Wang, W.W.; Duan, Y.X.; Hao, X.R.; Wang, R.F.; An, X.P.; Qi, J.W. Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs. Small Rumin. Res. 2019, 175, 65–71. [Google Scholar] [CrossRef]
- Junejo, S.A.; Geng, H.H.; Li, S.N.; Kaka, A.K.; Rashid, A.; Zhou, Y.B. Superfine wheat bran improves the hyperglycemic and hyperlipidemic properties in a high-fat rat model. Food Sci. Biotechnol. 2020, 29, 559–567. [Google Scholar] [CrossRef]
- Cheng, J.-C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.-L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chem. 2007, 104, 132–139. [Google Scholar] [CrossRef]
- Li, W.; Li, N.; Tang, Y.; Li, B.; Liu, L.; Zhang, X.; Fu, H.; Duan, J.-A. Biological activity evaluation and structure–activity relationships analysis of ferulic acid and caffeic acid derivatives for anticancer. Bioorg. Med. Chem. Lett. 2012, 22, 6085–6088. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Wang, Y.; Yin, N.; Wang, R.F.; Zheng, Y.; Yang, Y.P.; An, X.P.; Qi, J.W. Polysaccharides from fermented wheat bran enhanced the growth performance of zebrafish (Danio rerio) through improving gut microflora and antioxidant status. Aquacult. Rep. 2022, 25, 101188. [Google Scholar] [CrossRef]
- Price, R.K.; Welch, R.W.; Lee-Manion, A.M.; Bradbury, I.; Strain, J.J. Total phenolics and antioxidant potential in plasma and urine of humans after consumption of wheat bran. Cereal Chem. 2008, 85, 152–157. [Google Scholar] [CrossRef]
- Aberg, S.; Mann, J.; Neumann, S.; Ross, A.B.; Reynolds, A.N. Whole-Grain Processing and Glycemic Control in Type 2 Diabetes: A Randomized Crossover Trial. Diabetes Care 2020, 43, 1717–1723. [Google Scholar] [CrossRef]
- Higuchi, M. Antioxidant Propertiesof Wheat Branagainst Oxidative Stress. In Wheat and Rice in Disease Prevention and Health; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Deroover, L.; Tie, Y.X.; Verspreet, J.; Courtin, C.M.; Verbeke, K. Modifying wheat bran to improve its health benefits. Crit. Rev. Food Sci. Nutr. 2020, 60, 1104–1122. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Herrera, M.; Pérez-Magariño, S. Validation of an extraction method for the quantification of soluble free and insoluble bound phenolic compounds in wheat by HPLC-DAD. J. Cereal Sci. 2020, 93, 102984. [Google Scholar] [CrossRef]
MF | Identity | Ion m/z | Method | SI | Ref. |
---|---|---|---|---|---|
C7H6O3 | p-hydroxybenzoic acid | 137.0252 | UPLC-Triple/TOF-MS | (−) | [102] |
C9H8O2 | cinnamic acid | 147.0438 | UPLC-Triple/TOF-MS | (−) | [102] |
C8H8O3 | p-hydroxyphenylacetic acid | 151.0402 | UPLC-Triple/TOF-MS | (−) | [102] |
C7H6O4 | protocatechuic acid | 153.0195 | UPLC-Triple/TOF-MS | (−) | [102] |
C7H6O4 | protocatechuic acid | 153.0193 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C9H8O3 | p-coumaric acid | 163.0401 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C9H8O3 | o-coumaric acid | 163.0401 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C8H8O4 | vanillic acid | 167.0350 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C8H8O4 | vanillic acid | 167.0344 | UPLC-Triple/TOF-MS | (−) | [102] |
C7H6O5 | gallic acid | 171.0 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C7H6O5 | gallic acid | 169.0870 | UPLC-Triple/TOF-MS | (−) | [102] |
C9H8O4 | caffeic acid | 178.9769 | UPLC-Triple/TOF-MS | (−) | [102] |
C8H8O4 | protocatechuic acid ethyl ester | 181.0506 | HPLC-LTQ-Orbitrap-MSn | [103] | |
C10H10O4 | ferulic acid | 193.0506 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C10H10O4 | ferulic acid | 193.0507 | UPLC-Triple/TOF-MS | (−) | [102] |
C9H10O5 | syringic acid | 197.0455 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C9H10O5 | syringic acid | 197.8086 | UPLC-Triple/TOF-MS | (−) | [102] |
C11H12O5 | sinapic acid | 223.0612 | HPLC-LTQ-Orbitrap-MSn | (−) | [103] |
C12H14O5 | 3,4,5-trimethoxycinnamic acid | 239.0914 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
C16H20O10 | Dihydroferulic acid 4-O-glucuronide | 373.1129 | HPLC-LTQ-Orbitrap-MSn | (+) | [103] |
MF | Identity | Ion m/z | Method | SI | Ref. |
---|---|---|---|---|---|
C7H6O2 | 4-hydroxybenzaldehyde | 121.0290 | HPLC-ESI-TOF-MS | (−) | [131,132] |
C7H6O3 | 4-hydroxybenzoic acid | 137.0232 | UPLC-QTOF-MS | (−) | [137] |
C9H8O2 | cinnamic acid | 147.0438 | UPLC-QTOF-MS | (−) | [137] |
C7H6O4 | gentisic acid | 153.0179, 153.0180 | UPLC-QTOF-MS | (−) | [137] |
C9H8O3 | p-coumaric acid | 163.0400 | HPLC-ESI-MS, HPLC-ESI-TOF-MS | (−) | [138,139] |
C8H8O4 | vanillic acid | 167.0349, 167.0350 | HPLC-ESI-TOF-MS | (−) | [132,134,138] |
C7H6O5 | gallic acid | 169.0129 | UPLC-QTOF-MS | (−) | [137] |
C9H8O4 | caffeic acid | 179.0337 | UPLC-QTOF-MS | (−) | [137] |
C10H10O4 | ferulic acid | 193.0506 | HPLC-ESI-TOF-MS | (−) | [132,134,138] |
C11H14O3 | zingerone | 193.0857 | UPLC-QTOF-MS | (−) | [137] |
C9H10O5 | syringic acid | 197.0455 | HPLC-ESI-TOF-MS | (−) | [132,134,138] |
C11H12O5 | sinapic acid | 223.0598, 223.0612 | UPLC-QTOF-MS, HPLC-ESI-TOF-MS | (−) | [131,137] |
C16H18O9 | chlorogenic acid | 353.0886 | UPLC-QTOF-MS | (−) | [137] |
C16H20O9 | 1-O-feruloyl-beta-D-glucose | 355.1029 | UPLC-QTOF-MS | (−) | [137] |
C17H20O9 | 3-feruloylquinic acid | 367.1044 | UPLC-QTOF-MS | (−) | [137] |
C17H22O10 | 1-O-Sinapoyl-beta-D-glucose | 385.1146 | UPLC-QTOF-MS | (−) | [137] |
C20H18O8 | diferulic acid | 385.0917 | UPLC-QTOF-MS | (−) | [137] |
MF | Identity | Ion m/z | Method | SI | Ref. |
---|---|---|---|---|---|
C8H8O3 | vanillin | 151.0400 | UHPLC-MS, HPLC-ESI-TOF-MS | (−) | [131] |
C15H10O4 | daidzein | 255.1 | HPLC-ESI-MS | (+) | [142] |
C15H10O6 | kaempferol | 285.0392 | UPLC-QTOF-MS | (−) | [137] |
C15H10O5 | apigenin | 269.0455 | HPLC-ESI-TOF-MS | (−) | [131,132] |
C18H16O4 | dasytrichone | 295.1002 | UPLC-QTOF-MS | (−) | [137] |
C15H10O8 | myricetin | 317.0306 | UPLC-QTOF-MS | (−) | [137] |
C17H14O7 | 5,7,4′-trihydroxy-3′,5′-dimethoxy-flavone (tricin) | 329.0666 | HPLC-ESI-TOF-MS | (−) | [131,132] |
C19H18O6 | tetramethylscutellarein | 341.1019 | UPLC-QTOF-MS | (−) | [137] |
C20H18O6 | hinokinin | 353.1030 | HPLC-ESI-TOF-MS | (−) | [132,134,138] |
C20H22O6 | pinoresinol | 357.1343 | HPLC-ESI-TOF-MS | (−) | [132,138] |
C21H16O7 | diphyllin | 379.0823 | UPLC-QTOF-MS | (−) | [137] |
C21H22O8 | glycosylated pinosylvin | 401.1241, 401.1242 | HPLC-ESI-TOF-MS | (−) | [132,134,138] |
C22H26O8 | syringaresinol | 417.4390 | HPLC-ESI-TOF-MS | (−) | [132] |
C21H20O10 | isovitexin/vitexin | 431.0983, 431.0985 | HPLC-ESI-TOF-MS, UPLC-PDA-ESI/HRMS | (−) | [131,132,133] |
C21H21O10+ | pelargonidin-3-glucoside | 433.2710 | HPLC-ESI-TOF-MS | (−) | [131] |
C21H20O11 | orientin/isoorientin | 447.3800 | HPLC-ESI-TOF-MS | (−) | [132] |
C23H24O12 | glycosylated 3′,4′,5′-trihydroxy-3,7-dimethylflavone | 491.1195 | HPLC-ESI-TOF-MS | (−) | [132,138] |
C25H26O13 | glycosylated and acetylated 3′,4′,5′- trihydroxy-3,7-dimethylflavone | 533.1300 | HPLC-ESI-TOF-MS | (−) | [131,132,138] |
C26H30O12 | dalpanin | 533.1714 | UPLC-QTOF-MS | [137] | |
C26H32O12 | pinosylvin (double glycosylation) | 535.1821 | HPLC-ESI-TOF-MS | (−) | [132,138] |
C26H28O14 | apigenin-6-C-arabinoside-8-C-hexoside | 563.1395, 563.1406 | HPLC-ESI-TOF-MS | (−) | [131,132,134,138] |
C30H26O12 | Procyanidin B | 577.1351 | HPLC-ESI-TOF-MS | (−) | [131,132,138] |
C27H30O14 | isovitexin-2″-O-rhamnoside | 577.1562 | HPLC-ESI-TOF-MS | (−) | [132,134] |
C26H28O15 | lucenin-1/3(luteolin-6/8-C-xyloside-8/6-C-glucoside) | 579.1355 | HPLC-ESI-TOF-MS | (−) | [131,138] |
C27H30O15 | vicenin-2 (apigenin-6,8-di-C-glucoside) | 593.1511 | HPLC-ESI-TOF-MS | (−) | [132,138] |
C28H32O15 | methylisoorientin-2″-O-rhamnoside | 607.1668 | HPLC-ESI-TOF-MS | (−) | [132,138] |
C28H34O15 | neohesperidin | 609.1876 | UPLC-QTOF-MS | (−) | [137] |
C33H38O21 | apigenin-6-C-beta-galactosyl-8-C-beta-glucosyl-O-glucuronopyranoside | 769.1821 | HPLC-ESI-TOF-MS | (−) | [131,132] |
Concentration (mg/mL) | |||||
---|---|---|---|---|---|
Phenolic acid | 0.002 | 0.004 | 0.008 | 0.016 | 0.032 |
Caffeic acid | − | + | + | + | + |
Chlorogenic acid | + | + | − | − | − |
Cinnamic acid | − | + | + | + | + |
Ferulic acid | + | + | + | + | + |
Gallic acid | − | − | − | − | − |
p-Hydroxybenzoic acid | − | − | + | + | + |
Protocatechuic acid | − | − | − | − | − |
Rosmarinic acid | + | + | + | + | + |
Syringic acid | − | − | − | − | − |
Vanillic acid | − | + | + | + | + |
Phenolic Acid | Reducing Power ** | Metal Chelation *** | β-Carotene–Linoleic Acid *** |
---|---|---|---|
Caffeic acid | 0.619 ± 0.012 | 62.14 ± 0.52 | 96.20 ± 0.22 |
Chlorogenic acid | 0.579 ± 0.090 | 41.70 ± 0.38 | 85.73 ± 0.34 |
Cinnamic acid | 0.598 ± 0.020 | 59.44 ± 0.12 | 93.14 ± 0.06 |
Ferulic acid | 0.602 ± 0.014 | 60.71 ± 0.82 | 94.06 ± 0.44 |
Gallic acid | 0.547 ± 0.022 | 38.70 ± 0.72 | 82.30 ± 0.54 |
p-Hydroxybenzoic acid | 0.611 ± 0.010 | 39.73 ± 1.27 | 95.26 ± 0.40 |
Protocatechuic acid | 0.555 ± 0.020 | 26.17 ± 0.86 | 78.12 ± 0.07 |
Rosmarinic acid | 0.632 ± 0.077 | 65.05 ± 0.71 | 98.92 ± 0.68 |
Syringic acid | 0.600 ± 0.115 | 50.71 ± 0.65 | 91.94 ± 0.24 |
Vanillic acid | 0.602 ± 0.102 | 61.46 ± 0.92 | 95.81 ± 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahidi, F.; Danielski, R.; Rhein, S.O.; Meisel, L.A.; Fuentes, J.; Speisky, H.; Schwember, A.R.; de Camargo, A.C. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. Plants 2022, 11, 3283. https://doi.org/10.3390/plants11233283
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. Plants. 2022; 11(23):3283. https://doi.org/10.3390/plants11233283
Chicago/Turabian StyleShahidi, Fereidoon, Renan Danielski, Samantha Ottani Rhein, Lee A. Meisel, Jocelyn Fuentes, Hernan Speisky, Andrés R. Schwember, and Adriano Costa de Camargo. 2022. "Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects" Plants 11, no. 23: 3283. https://doi.org/10.3390/plants11233283
APA StyleShahidi, F., Danielski, R., Rhein, S. O., Meisel, L. A., Fuentes, J., Speisky, H., Schwember, A. R., & de Camargo, A. C. (2022). Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. Plants, 11(23), 3283. https://doi.org/10.3390/plants11233283