Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Virus Isolates
4.2. Plant Inoculation
4.3. Hyoscyamine Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ally, F.; Mohanlall, V. An overview of tropane alkaloids from Datura stramonium L. J. Pharmacogn. Phytochem. 2020, 9, 5–13. [Google Scholar]
- Shagal, M.H.; Modibbo, U.U.; Liman, A.B. Pharmacological justification for the ethnomedical use of Datura Stramonium stem-bark extract in treatment of diseases caused by some pathogenic bacteria. Int. Res. Pharm. Pharmacol. 2020, 9, 16–19. [Google Scholar]
- Berkov, S.; Zayed, R.; Doncheva, T. Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 2006, 77, 179–182. [Google Scholar] [CrossRef]
- El Bazaoui, A.; Bellimam, M.A.; Soulaymani, A. Nine new tropane alkaloids from Datura stramonium L. identified by GC/MS. Fitoterapia 2011, 82, 193–197. [Google Scholar] [CrossRef]
- Shi, Z.; Zou, W.; Zhu, Z.; Xion, Z.; Li, S.; Dong, P.; Zhua, Z. Tropane alkaloids (hyoscyamine, scopolamine and atropine) from genus Datura: Extractions, contents, syntheses and effects. Ind. Crops Prod. 2022, 186, 115283. [Google Scholar] [CrossRef]
- Miraldi, E.; Masti, A.; Ferr, S.; Barni Comparini, I. Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia 2001, 72, 644–648. [Google Scholar] [CrossRef]
- Iranbakhsh, A.R.; Oshagi, M.A.; Ebadi, M. Growth and production optimization of tropane alkaloids in Datura stramonium cell suspension culture. Pak. J. Biol. Sci. 2007, 10, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Harfi, B.; Khelifi, L. Hairy root technology: Effect of etiolation on Datura sp. transgenic root induction and hyoscyamine production. Pharmacogn. J. 2019, 11, 991–995. [Google Scholar] [CrossRef]
- Srinivasan, P.; Smolke, C.D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 2020, 585, 614–619. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium—A review. IOSR J. Pharm. 2017, 7, 43–58. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Jones, A.D. Alkaloids of the genus Datura: Review of a rich resource for natural product discovery. Molecules 2021, 26, 2629. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pedraza, A.; Gabriel, G.; Treutler, H.; Winkler, R.; Vergara, F. Effects of water availability in the soil on tropane alkaloid production in cultivated Datura stramonium. Metabolites 2019, 9, 131. [Google Scholar] [CrossRef]
- Harfi, B.; Khelifi-Slaoui, M.; Bekhouche, M.; Benyammi, R.; Hefferon, K.; Makhzoum, A.; Khelifi, L. Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium. Vitr. Cell Dev. Biol.-Plant 2016, 52, 92–98. [Google Scholar] [CrossRef]
- Amdoun, R.; Khelifi, L.; Khelifi-Slaoui, M.; Amroune, S.; Asch, M.; Assaf-Ducrocq, C.; Gontier, E. Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the response surface methodology (RSM). Int. J. Mol. Sci. 2010, 11, 4726–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzel, S.; Vydra, J.; Triska, J.; Vrchotova, N.; Hruby, M.; Cigler, P. Elicitation of pharmacologically active substances in an intact medical plant. J. Agric. Food Chem. 2009, 57, 7907–7911. [Google Scholar] [CrossRef]
- Pereira, M.M.A.; Morais, L.C.; Marques, E.A.; Martins, A.D.; Cavalcanti, V.P.; Rodrigues, F.A.; Gonçalves, W.M.; Blank, A.F.; Pasqual, M.; Dória, J. Humic substances and efficient microorganisms: Elicitation of medicinal plants—A review. J. Agric. Sci. 2019, 11, 268–280. [Google Scholar] [CrossRef]
- Kandoudi, W.; Radácsi, P.; Gosztola, B.; Zámboriné Németh, É. Elicitation of medicinal plants in vivo—Is it a realistic tool? The effect of methyl jasmonate and salicylic acid on Lamiaceae species. Horticulturae 2022, 8, 5. [Google Scholar] [CrossRef]
- Kandoudi, W.; Németh-Zámboriné, É. Stimulating secondary compound accumulation by elicitation: Is it a realistic tool in medicinal plants in vivo? Phytochem. Rev. 2022, 21, 2007–2025. [Google Scholar] [CrossRef]
- Thakur, M.; Bhattachary, S.; Khosla, P.K.; Puri, S. Improving production of plant secondary metabolites through biotic and abiotic elicitation. J. App. Res. Med. Aromat. Plants 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Patel, H.; Krishnamurthy, R. Elicitors in plant tissue culture. J. Pharmacogn. Phytochem. 2013, 2, 2278–4136. [Google Scholar]
- Mishra, J.; Srivastava, R.; Trivedi, P.K.; Verma, P.C. Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Chamkhi, I.; Benali, T.; Aanniz, T.; El Menyiy, N.; Guaouguaou, F.-E.; El Omari, N.; El-Shazly, M.; Zengin, G.; Bouyahya, A. Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants. Plant Physiol. Biochem. 2021, 167, 269–295. [Google Scholar] [CrossRef] [PubMed]
- Whitham, S.A.; Yang, C.; Goodin, M.M. Global impact: Elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 2006, 19, 1207–1215. [Google Scholar] [CrossRef]
- Pellati, F.; Epifano, F.; Contaldo, N.; Orlandini, G.; Cavicchi, L.; Genovese, S.; Bertelli, D.; Benvenuti, S.; Curini, M.; Bertaccini, A.; et al. Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea. J. Agric. Food Chem. 2011, 59, 10425–10434. [Google Scholar] [CrossRef]
- Parizad, S.; Dizadji, A.; Habibi, M.K.; Winter, S.; Kalantari, S.; Movi, S.; Lorenzo, C.T.; Alonso, G.L.; Moratalla-Lopez, N. The effects of geographical origin and virus infection on the saffron (Crocus sativus L.) quality. Food Chem. 2019, 295, 387–394. [Google Scholar] [CrossRef]
- Pethybridge, S.J.; Wilson, C.R.; Hay, F.S.; Leggett, G.W.; Sherriff, L.J. Effect of viruses on agronomic and brewing characteristics of four hop (Humulus lupulus) cultivars in Australia. Ann. Appl. Biol. 2002, 140, 97–105. [Google Scholar] [CrossRef]
- Duarte, L.M.L.; Salatino, M.L.F.; Salatino, A.; Negri, G.; Barradas, M.M. Effect of Potato virus X on total phenol and alkaloid contents in Datura stramonium leaves. Summa Phytopathol. 2008, 34, 65–67. [Google Scholar] [CrossRef] [Green Version]
- El-Dougdoug, K.A.; Mohamed, H.; Abo-Senna, A. Effect of PVY viral infection on alkaloid contents of cultivated medicinal plants. J. Appl. Sci. Res. 2007, 3, 558–563. [Google Scholar]
- Lan, H.; Lai, B.; Zhao, P.; Dong, X.; Wei, W.; Ye, Y.; Wu, Z. Cucumber mosaic virus infection modulated the phytochemical contents of Passiflora edulis. Microb. Pathog. 2019, 138, 103828. [Google Scholar] [CrossRef]
- Montero, R.; Pérez-Bueno, M.L.; Barón, M.; Florez-Sarasa, I.; Tohge, T.; Fernie, A.R.; Ouad Hel, A.; Flexas, J.; Bota, J. Alterations in primary and secondary metabolism in Vitis vinifera “Malvasía de Banyalbufar” upon infection with Grapevine leaf roll associated virus 3. Physiol. Plant. 2016, 157, 442–452. [Google Scholar] [CrossRef]
- Zaim, M.; Verma, R.K.; Pandey, R.; Lal, R.K. Genotype-dependent response of an RNA virus infection on selected pharmaceutically important alkaloids in Papaver somniferum. J. Herbs. Spices Med. Plants 2014, 20, 124–131. [Google Scholar] [CrossRef]
- Adkins, S.; Rosskopf, E.N. Key West nightshade, a new experimental host for plant viruses. Plant Dis. 2002, 86, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, R.F.; Owaid, Z.M.; Omer, O.A.; Kafi, F.N.; Luhemus, N.H. Biological control on Tomato Mosaic Virus (ToMV) by using some plant extracts. Syst. Rev. Pharm. 2020, 11, 1078–1082. [Google Scholar]
- Payne, J.; Hamill, J.D.; Robins, R.J.; Rhodes, M.J.C. Production of hyoscyamine by ‘hairy root’ cultures of Datura stramonium. Planta Med. 1987, 53, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Hilton, M.G.; Rhodes, M.J.C. Growth and hyoscyamine production of ‘hairy root’ cultures of Datura stramonium in a modified stirred tank reactor. Appl. Microbiol. Biotechnol. 1990, 33, 132–138. [Google Scholar] [CrossRef]
- Pavlov, A.; Berkov, S.; Weber, J.; Bley, T.H. Hyoscyamine biosynthesis in Datura stramonium hairy root in vitro systems with different ploidy levels. Appl. Biochem. Biotechnol. 2009, 157, 210–225. [Google Scholar] [CrossRef]
- Amdoun, R.; Benyoussef, E.H.; Benamghar, A.; Khelifid, L. Prediction of hyoscyamine content in Datura stramonium L. hairy roots using different modeling approaches: Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Kriging. Biochem. Eng. J. 2019, 144, 8–17. [Google Scholar] [CrossRef]
- Jakabová, S.; Vincze, L.; Farkas, Á.; Kilár, F.; Boros, B.; Felinger, A. Determination of tropane alkaloids atropine and scopolamine by liquid chromatography–mass spectrometry in plant organs of Datura species. J. Chromatogr. A 2012, 1232, 295–301. [Google Scholar] [CrossRef]
- Castillo, G.; Cruz, L.L.; Hernández-Cumplido, J.; Oyama, K.; Flores-Ortiz, C.M.; Fornoni, J.; Valverde, P.L.; Núñez-Farfán, J. Geographic association and temporal variation of chemical and physical defense and leaf damage in Datura stramonium. Ecol. Res. 2013, 28, 663–672. [Google Scholar] [CrossRef]
- Castillo, G.; Calahorra-Oliart, A.; Núñez-Farfán, J.; Valverde, P.L.; Arroyo, J.; Cruz, L.L.; Tapia-López, R. Selection on tropane alkaloids in native and non-native populations of Datura stramonium. Ecol. Evol. 2019, 9, 10176–10184. [Google Scholar] [CrossRef] [Green Version]
- Mrkvová, M.; Hančinský, R.; Grešíková, S.; Kaňuková, Š.; Barilla, J.; Glasa, M.; Hauptvogel, P.; Kraic, J.; Mihálik, D. Evaluation of new polyclonal antibody developed for serological diagnostics of Tomato mosaic mirus. Viruses 2022, 14, 1331. [Google Scholar] [CrossRef] [PubMed]
- Sihelská, N.; Vozárová, Z.; Predajňa, L.; Šoltys, K.; Hudcovicová, M.; Mihálik, D.; Kraic, J.; Mrkvová, M.; Kúdela, O.; Glasa, M. Experimental infection of different tomato genotypes with Tomato mosaic virus led to a low viral population heterogeneity in the capsid protein encoding region. Plant Pathol. J. 2017, 33, 508–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harfi, B.; Khelifi, L.; Khelifi-Slaoui, M.; Assaf-Ducrocq, C.; Gontier, E. Tropane alkaloids GC/MS analysis and low dose elicitors’ effects on hyoscyamine biosynthetic pathway in hairy roots of Algerian Datura species. Sci. Rep. 2018, 8, 17951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.K.O.; Jamali, A.; Lanoue, A.; Gontier, E.; Dauwe, R. Unravelling the architecture and dynamics of tropane alkaloid biosynthesis pathways using metabolite correlation networks. Phytochemistry 2015, 116, 94–103. [Google Scholar] [CrossRef] [PubMed]
Virus | Isolate | Reference | Experimental Hosts |
---|---|---|---|
PMMoV | SK2 | GenBank: ON493797 (Submitted, waiting for publishing) | Capsicum annum L. |
TMV | PV-0107 | DSMZ no. PV-0107 | Solanum lycopersicum L. |
ToMV | SL-1 | [42], GenBank: KY912162.1 | Solanum lycopersicum L. cv. Monalbo |
PV-0141 | DSMZ no. PV-0141 | Solanum lycopersicum L. cv. Monalbo | |
PV-0143 | DSMZ no. PV-0143 | Solanum lycopersicum L. cv. Monalbo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihálik, D.; Hančinský, R.; Kaňuková, Š.; Mrkvová, M.; Kraic, J. Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses. Plants 2022, 11, 3319. https://doi.org/10.3390/plants11233319
Mihálik D, Hančinský R, Kaňuková Š, Mrkvová M, Kraic J. Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses. Plants. 2022; 11(23):3319. https://doi.org/10.3390/plants11233319
Chicago/Turabian StyleMihálik, Daniel, Richard Hančinský, Šarlota Kaňuková, Michaela Mrkvová, and Ján Kraic. 2022. "Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses" Plants 11, no. 23: 3319. https://doi.org/10.3390/plants11233319
APA StyleMihálik, D., Hančinský, R., Kaňuková, Š., Mrkvová, M., & Kraic, J. (2022). Elicitation of Hyoscyamine Production in Datura stramonium L. Plants Using Tobamoviruses. Plants, 11(23), 3319. https://doi.org/10.3390/plants11233319