Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed
Abstract
:1. Introduction
2. Results
2.1. Physical Properties of Berries of the Different SB Cultivars
2.2. The Soluble Solid Content and Total Titratable Acid Content of the Berries of SB Cultivars
2.3. Color Characteristics of the Berries of SB Cultivars
2.4. Fatty Acid Composition of SB Seeds
3. Materials and Methods
3.1. Plant Material
3.2. Physical and Physicochemical Parameters
3.3. Determination of Color Coordinates
3.4. Determination of Fatty Acid Profile by GC-FID Method
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Boca, A.N.; Ilies, R.F.; Saccomanno, J.; Pop, R.; Vesa, S.; Tataru, A.D.; Buzoianu, A.D. Sea Buckthorn Extract in the Treatment of Psoriasis. Exp. Ther. Med. 2019, 17, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- García, V.L. The omega 7 as a health strategy for the skin and mucous membranes. EC Nutr. 2019, 14, 484–489. [Google Scholar]
- Zakynthinos, G.; Varzakas, T.; Petsios, D. Sea buckthorn (Hippophae rhamnoides) lipids and their functionality on health aspects. Curr. Res. Nutr. Food Sci. 2016, 4, 182–194. [Google Scholar] [CrossRef]
- Solà Marsiñach, M.; Cuenca, A.P. The impact of sea buckthorn oil fatty acids on human health. Lipids Health Dis. 2019, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaby, K.; Martinsen, B.K.; Borge, G.I.; Røen, D. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. Int. J. Food Prop. 2020, 23, 651–664. [Google Scholar] [CrossRef] [Green Version]
- Geertsen, J.L.; Allesen-Holm, B.H.; Giacalone, D. Consumer-led Development of Novel Sea-buckthorn Based Beverages. J. Sens. Stud. 2016, 31, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Pallavee, K.; Ashwani, M. Sea buckthorn juice: Nutritional therapeutic properties and economic considerations. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Kälviäinen, N.; Tuorila, H. Sensory and hedonic characteristics of juice of sea buckthorn (Hippophae rhamnoides L.) origins and hybrids. LWT—Food Sci. Technol. 2001, 34, 102–110. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H.P. Fatty acid composition of lipids in SB (Hippophae rhamnoides L.) berries of different origins. J. Agric. Food Chem. 2001, 49, 1939–1947. [Google Scholar] [CrossRef]
- Li, T.S.; Beveridge, T.H. Sea Buckthorn (Hippophae rhamnoides L.): Production and Utilization; NRC No. 45317; NRC Research Press: Ottawa, ON, Canada, 2003; p. 133. [Google Scholar]
- Singh, V. Free radicals, diseases, anti-oxidants and anti-oxidant properties of seabuckthorn (Hippophae rhamnoides L.). In Sea Buckthorn (Hippophae L.): A Multipurpose Wonder Plant; Daya Publishing House: New Delhi, India, 2005; Volume 2, pp. 3–69. [Google Scholar]
- Dulf, F.V. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chem. Cent. J. 2012, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Crăciun, I. Comparative study of liposoluble vitamins and fatty acids from sea buckthorn oil, wheat germ oil and fish oil. Acta Univ. Cibiniensis Ser. E Food Technol. 2018, 22, 85–90. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of lipophilic and hydrophilic bioactive compounds content in SB (Hippophae rhamnoides L.) berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Saryakumar, G.; Gupta, A. Medicinal and therapeutic potential of sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6761–6782. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Jastrząb, A.; Jarocka-Karpowicz, I.; Muszyńska, M.; Skrzydlewska, E. The effect of sea buckthorn (Hippophae rhamnoides L.) seed oil on UV-induced changes in lipid metabolism of human skin cells. Antioxidants 2018, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Poljšak, N.; Kreft, S.; Kočevar Glavač, N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytother Res. 2020, 34, 254–269. [Google Scholar] [CrossRef]
- Chand, N.; Naz, S.; Irfan, M.; Khan, R.U.; ur Rehman, Z. Effect of sea buckthorn (Hippophae rhamnoides L.) seed supplementation on egg quality and cholesterol of Rhode Island Red× Fayoumi laying hens. Korean J. Food Sci. Anim. Resour. 2018, 38, 468–475. [Google Scholar]
- Tiitinen, K.M.; Hakala, M.A.; Kallio, H.P. Quality components of sea buckthorn (Hippophae rhamnoides) varieties. J. Agric. Food Chem. 2005, 53, 1692–1699. [Google Scholar] [CrossRef]
- Green, R.C.; Low, N.H. Physicochemical composition of buffaloberry (Shepherdia argentea), chokecherry (Prunus virginiana) and sea buckthorn (Hippophae rhamnoides) fruit harvested in Saskatchewan, Canada. Can. J. Plant Sci. 2013, 93, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Kuhkheil, A.; Naghdi Badi, H.; Mehrafarin, A.; Abdossi, V. Chemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of central Alborz Mountains in Iran. Res. J. Pharmacogn. 2017, 4, 1–12. [Google Scholar]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometric methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- Ma, X.; Yang, W.; Marsol-Vall, A.; Laaksonen, O.; Yang, B. Analysis of flavour compounds and prediction of sensory properties in sea buckthorn (Hippophaë rhamnoides L.) berries. Int. J. Food Sci. Technol. 2020, 55, 1705–1715. [Google Scholar] [CrossRef]
- Mezey, J.; Hegedűs, O.; Mezeyová, I.; Szarka, K.; Hegedűsová, A. Thermal Treatment Influence on Selected Nutritional Values of Common Sea Buckthorn (Hyppophae rhamnoides) Juice. Agronomy 2022, 12, 1834. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Linderborg, K.; Yang, B. Sugars, sugar alcohols, fruit acids, and ascorbic acid in wild Chinese sea buckthorn (Hippophaë rhamnoides ssp. sinensis) with special reference to influence of latitude and altitude. Food Res. Int. 2011, 44, 2018–2026. [Google Scholar] [CrossRef]
- Gâtlan, A.M.; Gutt, G. Sea Buckthorn in plant based diets. An analytical approach of sea buckthorn fruits composition: Nutritional value, applications, and health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic affects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hortic. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Tang, X.; Tigerstedt, P.M. Variation of physical and chemical characters within an elite sea buckthorn (Hippophae rhamnoides L.) breeding population. Sci. Hortic. 2001, 88, 203–214. [Google Scholar] [CrossRef]
- Dóka, O.; Máté, M.; Székely, D.; Jócsák, I.; Ficzek, G.; Simon, G.; Végvári, G. HPLC and direct photothermal techniques for quantification of ß-carotene in sea buckthorn juices. Eur. J. Hortic. Sci. 2021, 86, 493–498. [Google Scholar] [CrossRef]
- Cakir, A. Essential oil and fatty acid composition of the fruits of Hippophae rhamnoides L. (Sea Buckthorn) and Myrtus communis L. from Turkey. Biochem. Syst. Ecol. 2004, 32, 809–816. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Zielińska, A.; Nowak, I. Fatty acids in vegetable oils and their importance in cosmetic industry. CHEMIK Nauka-Tech.-Rynek 2014, 68, 103–110. [Google Scholar]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Kawamura, Y.; Yamazaki, Y.; Kijima, T.; Morikawa, T.; Nonomura, Y. Palmitoleic Acid calcium salt: A lubricant and bactericidal powder from natural lipids. J. Oleo Sci. 2015, 64, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Basu, M.; Prasad, R.; Jayamurthy, P.; Pal, K.; Arumughan, C.; Sawhney, R.C. Anti-atherogenic effects of seabuckthorn (Hippophaea rhamnoides) seed oil. Phytomedicine 2007, 14, 770–777. [Google Scholar] [CrossRef]
- Manning, P.J.; de Jong, S.A.; Ryalls, A.R.; Sutherland, W.H. Paraoxonase 1 activity in chylomicrons and VLDL: The effect of type 2 diabetes and meals rich in saturated fat and oleic acid. Lipids 2012, 47, 259–267. [Google Scholar] [CrossRef] [PubMed]
- No. 3-1-558/93; Codex Alimentarius. Determination of Water-Soluble Dry Matter in Food. Food and Agriculture Organization of the United Nations: Rome, Italy, 1995.
- MSZ EN 12147; Hungarian Standard. Gyümölcs-és Zöldséglevek. A Titrálható Savasság Meghatározása. Hungarian Standards Institute (MSZT): Budapest, Hungary, 1998.
- Voss, D.H. Relating colorimeter measurement of plant color to the Royal Horticultural Society Colour. HortScience 1992, 27, 1256–1260. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- MSZ EN ISO 12966-2; Állati és Növényi Zsírok és Olajok. Hungarian Standards Institute (MSZT): Budapest, Hungary, 2018.
- Tormási, J.; Abrankó, L. Assessment of Fatty Acid-Specific Lipolysis by In Vitro Digestion and GC-FID. Nutrients 2021, 13, 3889. [Google Scholar] [CrossRef]
Cultivars | Height (mm) | Thickness (mm) | Width (mm) | Berry Weight (g) | Seed Weight (g) | Seed/Berry Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ascola | 9.14 ± 0.42 | a | 6.96 ± 0.33 | a | 6.76 ± 0.37 | a | 0.27 ± 0.05 | a | 0.027 ± 0.007 | b | 7.59 ± 1.48 | a |
Clara | 11.15 ± 0.49 | b | 6.89 ± 0.29 | a | 6.94 ± 0.28 | ab | 0.35 ± 0.05 | a | 0.019 ± 0.001 | a | 5.52 ± 1.04 | a |
Habego | 10.11 ± 0.45 | ab | 6.66 ± 0.29 | a | 6.49 ± 0.29 | a | 0.25 ± 0.06 | a | 0.036 ± 0.005 | c | 6.85 ± 1.13 | a |
Leikora | 12.67 ± 0.47 | c | 9.17 ± 0.49 | b | 8.99 ± 0.45 | c | 0.64 ± 0.07 | b | 0.029 ± 0.006 | b | 5.63 ± 1.02 | a |
Mara | 9.88 ± 0.49 | a | 7.00 ± 0.42 | a | 6.81 ± 0.35 | ab | 0.28 ± 0.04 | a | 0.020 ± 0.002 | a | 6.61 ± 1.14 | a |
R-01 | 9.48 ± 0.39 | a | 7.72 ± 0.29 | a | 7.64 ± 0.28 | b | 0.37 ± 0.04 | a | 0.032 ± 0.004 | b | 7.76 ± 1.21 | a |
SSC (°Brix) | TTA (g 100 g−1) | Sugar/Acid Ratio | ||||
---|---|---|---|---|---|---|
Ascola | 9.1 ± 0.1 | ab | 2.7 ± 0.1 | b | 3.4 ± 0.31 | a |
Clara | 7.3 ± 0.2 | a | 1.9 ± 0.13 | ab | 3.8 ± 0.39 | a |
Habego | 6.7 ± 0.1 | a | 2.3 ± 0.29 | b | 2.9 ± 0.42 | a |
Leikora | 6.3 ± 0.5 | a | 2.0 ± 0.52 | ab | 3.1 ± 0.75 | a |
Mara | 10.9 ± 0.6 | b | 1.4 ± 0.04 | a | 7.8 ± 0.35 | b |
R-01 | 10.2 ± 0.8 | b | 3.7 ± 0.09 | c | 2.7 ± 0.27 | a |
Lightness Value L* | Red-Green Value (a*) | Yellow-Blue Value (b*) | Color Saturation (Chroma) | Hue Angle (Hue) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ascola | 45.59 ± 0.19 | c | 0.51 ± 0.02 | a | 0.58 ± 0.01 | a | 1.04 ± 0.01 | a | 48.47 ± 1.56 | a |
Clara | 56.01 ± 0.04 | f | 14.67 ± 1.46 | c | 53.26 ± 1.65 | d | 8.24 ± 0.18 | e | 74.62 ± 0.99 | c |
Habego | 51.72 ± 0.5 | e | 14.12 ± 0.2 | c | 49.68 ± 1.0 | d | 7.99 ± 0.08 | d | 74.13 ± 0.11 | c |
Leikora | 50.01 ± 0.8 | d | 16.89 ± 0.3 | c | 46.32 ± 1.5 | d | 7.9 ± 0.11 | d | 69.96 ± 0.34 | bc |
Mara | 42.84 ± 0.2 | b | 15.11 ± 0.15 | c | 25.90 ± 0.4 | c | 6.4 ± 0.04 | c | 59.75 ± 0.15 | ab |
R-01 | 41.05 ± 0.3 | a | 7.42 ± 0.5 | b | 15.89 ± 0.6 | b | 4.81 ± 0.11 | b | 65.15 ± 0.81 | bc |
Ascola | Clara | Habego | Leikora | Mara | R-01 | |
---|---|---|---|---|---|---|
Fatty Acid | mg 100 g−1 | mg 100 g−1 | mg 100 g−1 | mg 100 g−1 | mg 100 g−1 | mg 100 g−1 |
Saturated fatty acids | ||||||
Myristic acid | 133.8 ± 36.6 | 13,055.9 ± 986.5 | 69.6 ± 5.8 | 130.2 ± 4.2 | 88.9 ± 6.0 | 75.8 ± 0.0 |
Pentadecanoic acid | 69.6 ± 19.7 | 40.32± 2.9 | 45.9 ± 3.7 | 47.05 ± 3.1 | 53.2 ± 1.6 | 34.9 ± 0.3 |
Palmitic acid | 11,121.9 ± 2272.9 | 13,055.9 ± 986.5 | 13,098.9 ± 144.2 | 13,246.4 ± 281.8 | 8472.8 ± 317.7 | 11,833.7 ± 463.8 |
Stearic acid | 1635.9 ± 348.1 | 1125.6 ± 87.3 | 1487.2 ± 16.4 | 1497.8 ± 28.0 | 1353.6 ± 45.3 | 750.5 ± 23.7 |
Arachidic acid | 249.3 ± 55.6 | 219.2 ± 35.7 | 276.8 ± 21.8 | 305.1 ± 8.2 | 237.5 ± 4.8 | 137.2 ± 4.3 |
Behenic acid | 75.1 ± 21.6 | 73.1 ± 14.3 | 56.5 ± 19.9 | 93.2 ± 27.2 | 65.3 ± 2.2 | 45.4 ± 12.6 |
Monounsaturated fatty acids | ||||||
Palmitoleic acid | 8617.0 ± 1736.7 | 9552.1 ± 684.8 | 9294.5 ± 110.2 | 10,661.7 ± 226.4 | 5543.5 ± 215.5 | 12,272.7 ± 500.2 |
Oleic acid | 11,611.5 ± 2291.8 | 11,757.4 ± 808.2 | 13,567.2 ± 85.6 | 11,325.6 ± 212.4 | 10,102.1 ± 432.6 | 9891.8 ± 366.6 |
Gondoic acid | 20.7 ± 6.3 | 29.1 ± 0.7 | 14.9 ± 3.1 | 18.9 ± 4.2 | 128.8 ± 2.7 | 18.7 ± 1.0 |
Cis-15-tetracosenoic acid | 10.5 ± 1.4 | 6.4 ± 3.2 | 5.6 ± 7.9 | 3.1 ± 1.4 | 7.0 ± 4.5 | |
Polyunsaturated fatty acids | ||||||
Linoleic acid | 22,571.6 ± 4121.3 | 13,623.0 ± 261.7 | 14,756.2 ± 254.7 | 13,740.7 ± 244.2 | 20,764.2 ± 1215.2 | 9332.4 ± 386.6 |
α-linolenic acid | 16,764.2 ± 3338.6 | 11,963.6 ± 844.8 | 15,269.2 ± 162.8 | 13,037.4 ± 270.9 | 15,570.0 ± 620.6 | 8436.0 ± 320.2 |
Dihomo-γ-linolenic acid | 16.3 ± 4.0 | 19.4 ± 0.8 | 11.4 ± 2.9 | 12.7 ± 1.6 | 9.9 ± 1.7 | 12.7 ± 1.4 |
ɷ-6/ɷ-3 (linoleic acid/linolenic acid) | 1.3 | 1.13 | 0.96 | 1.05 | 1.33 | 1.10 |
Ascola | Clara | Habego | Leikora | Mara | R-01 | |
---|---|---|---|---|---|---|
Fatty Acid | m/m% | m/m% | m/m% | m/m% | m/m% | m/m% |
Saturated fatty acids | ||||||
Myristic acid | 0.2 ± 0.0 | 20.8 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Pentadecanoic acid | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Palmitic acid | 15.1 ± 0.3 | 20.8 ± 0.0 | 19 ± 0.3 | 20.2 ± 0.0 | 13.6 ± 0.1 | 21.5 ± 0.0 |
Stearic acid | 2.2 ± 0.1 | 1.8 ± 0.0 | 2.2 ± 0.0 | 2.3 ± 0.0 | 2.2 ± 0.0 | 1.4 ± 0.0 |
Arachinic acid | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.5 ± 0.0 | 0.4 ± 0.0 | 0.2 ± 0.0 |
Behenic acid | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Monounsaturated fatty acids | ||||||
Palmitoleic acid | 11.7 ± 0.2 | 15.2 ± 0.1 | 13.5 ± 0.2 | 16.3 ± 0 | 8.9 ± 0.1 | 22.3 ± 0 |
Oleic acid | 15.8 ± 0.2 | 18.8 ± 0.2 | 19.7 ± 0.2 | 17.3 ± 0 | 16.2 ± 0.0 | 18.0 ± 0.0 |
Gondoic acid | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0.2 ± 0.0 | 0 ± 0.0 |
Cis-15-tetracosenoic acid | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Polyunsaturated fatty acids | ||||||
Linoleic acid | 30.7 ± 0.1 | 21.8 ± 1.3 | 21.4 ± 0.4 | 21.0 ± 0 | 33.2 ± 0.4 | 17.0 ± 0 |
α-linolenic acid | 22.8 ± 0.3 | 19.1 ± 0.1 | 22.2 ± 0.3 | 19.9 ± 0 | 24.9 ± 0.1 | 15.3 ± 0 |
Dihomo-γ-linolenic acid | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Ratio of unsaturated fatty acids | ||||||
Saturated fatty acids (%) | 19.0 | 25.1 | 23.2 | 25.5 | 16.6 | 27.4 |
Unsaturated fatty acids (%) | 81.0 | 74.9 | 76.8 | 74.5 | 83.4 | 72.6 |
Polyunsaturated fatty acids (%) | 53.5 | 40.9 | 43.6 | 40.9 | 58.1 | 32.3 |
Fatty Acids | PCA1 | PCA2 |
---|---|---|
Myristic acid | 0.362 | 0.569 |
Pentadecanoic acid | 0.864 | −0.020 |
Palmitic acid | −0.185 | 0.943 |
Stearic acid | −0.627 | 0.667 |
Arachinic acid | 0.940 | 0.199 |
Behenic acid | 0.423 | 0.627 |
Palmitoleic acid | 0.902 | −0.299 |
Oleic acid | 0.965 | −0.075 |
Gondoic acid | 0.766 | 0.337 |
Cis-15-tetracosenoic acid | 0.313 | −0.823 |
Linoleic acid | 0.065 | 0.637 |
α-linolenic acid | 0.569 | 0.445 |
Dihomo-γ-linolenic acid | −0.009 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Máté, M.; Selimaj, G.; Simon, G.; Szalóki-Dorkó, L.; Ficzek, G. Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed. Plants 2022, 11, 3412. https://doi.org/10.3390/plants11243412
Máté M, Selimaj G, Simon G, Szalóki-Dorkó L, Ficzek G. Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed. Plants. 2022; 11(24):3412. https://doi.org/10.3390/plants11243412
Chicago/Turabian StyleMáté, Mónika, Granit Selimaj, Gergely Simon, Lilla Szalóki-Dorkó, and Gitta Ficzek. 2022. "Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed" Plants 11, no. 24: 3412. https://doi.org/10.3390/plants11243412
APA StyleMáté, M., Selimaj, G., Simon, G., Szalóki-Dorkó, L., & Ficzek, G. (2022). Assessment of Berries of Some Sea Buckthorn Genotypes by Physicochemical Properties and Fatty Acid Content of the Seed. Plants, 11(24), 3412. https://doi.org/10.3390/plants11243412