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Abstract: Fulfilling the food demand of a fast-growing population is a global concern, resulting in
increased dependence of the agricultural sector on various chemical formulations for enhancing crop
production. This leads to an overuse of chemicals, which is not only harmful to human and animal
health, but also to the environment and the global economy. Environmental safety and sustainable
production are major responsibilities of the agricultural sector, which is inherently linked to the
conservation of the biodiversity, the economy, and human and animal health. Scientists, therefore,
across the globe are seeking to develop eco-friendly and cost-effective strategies to mitigate these
issues by putting more emphasis on the use of beneficial microorganisms. Here, we review the
literature on Serendipita indica, a beneficial endophytic fungus, to bring to the fore its properties of
cultivation, the ability to enhance plant growth, improve the quality of produced crops, mitigate
various plant stresses, as well as protect the environment. The major points in this review are as fol-
lows: (1) Although various plant growth promoting microorganisms are available, the distinguishing
character of S. indica being axenically cultivable with a wide range of hosts makes it more interesting
for research. (2) S. indica has numerous functions, ranging from promoting plant growth and quality
to alleviating abiotic and biotic stresses, suggesting the use of this fungus as a biofertiliser. It also
improves the soil quality by limiting the movement of heavy metals in the soil, thus, protecting the
environment. (3) S. indica’s modes of action are due to interactions with phytohormones, metabo-
lites, photosynthates, and gene regulation, in addition to enhancing nutrient and water absorption.
(4) Combined application of S. indica and nanoparticles showed synergistic promotion in crop growth,
but the beneficial effects of these interactions require further investigation. This review concluded
that S. indica has a great potential to be used as a plant growth promoter or biofertiliser, ensuring
sustainable crop production and a healthy environment.

Keywords: beneficial microorganism; endophytic fungus; symbiosis; stress tolerance; biofertiliser;
plant growth; quality; gene regulation; phytohormones; nanoparticle

1. Introduction

A diverse range of microorganisms in soil play critical functions, such as nutrient
acquisition, organic matter cycling, soil and plant health maintenance, soil restoration and
ecosystem primary production, and are thus considered as beneficial organisms [1]. By
increasing crop yield, quality, and shielding the plants from various biotic and abiotic
challenges, these microbes have shown several positive effects on the farming system. In
addition, environmental protection, an increasing concern across the globe, is the main ad-
vantage these creatures provide [2]. Moreover, the rising demand and growing awareness
of high-quality food has stimulated the development of sustainable and environmentally
friendly agricultural production practices. These methods could be achieved by reducing
the usage of chemicals and encouraging the application of beneficial microorganisms [3].
Apart from contributing to sustainability, beneficial microorganisms are also economically
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efficient [4]. These microorganisms can be symbiotic or non-symbiotic bacteria, actino-
mycetes, and mycorrhizal and endophytic fungi [5]. Throughout the study of various
microorganisms, an emphasis is placed on studying endophytic fungi, as they can yield
tangible beneficial effects within the host plant, such as improve plant growth, quality, and
enhance host resistance to abiotic and biotic stresses, thereby confirming their significance
in the agricultural sector [6,7].

Serendipita indica, formerly known as Piriformospora indica, belonging to the order
Sebacinales (Basidiomycota), is one of the beneficial endophytic fungi known to possess
numerous advantages and has been studied extensively for decades. S. indica, obtained
by Ajeet Verma from the roots of Prosopis juliflora and Zizyphus nummularia in the Thar
desert in Northwest India, is characterised by the formation of pear-shaped spores known
as chlamydospores [8]. These spores are produced by thin walled, hyaline, and septate
hyphae [9]. S. indica is distinguished by the unique trait that it can be cultivated without
any plant material on a variety of artificial media, such as aspergillus medium, modified
aspergillus medium, potato dextrose agar (PDA) or broth (PDB), malt extract, modified
Melin-Norkrans (MMN) medium [10], and jaggery containing medium [11]. This property
differentiates it from arbuscular mycorrhizal fungi (AMF), with which it shares biological
similarities (Figure 1).
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Figure 1. Morphology of Serendipita indica. (a) Growth of S. indica colony on PDA media; scale bars of
10 mm. (b) Growth of S. indica colony in PDB media; scale bars of 10 mm. (c) Growth of S. indica from
PDB medium; scale bars of 1 mm. (d) Chlamydospores (black arrows) and mycelium (red arrows) of
S. indica observed under a bright field microscope; scale bars of 100 µm. (e,f) Mycelial structure of
S. indica observed under an electron microscope.

This endophytic fungus can colonise a wide range of plant species and develop
symbiotic associations with them [12,13]. Mainly, colonisation takes place in the root zone
and begins with the germination of chlamydospores, followed by the formation of a hyphal
network on and inside the root. Hyphae form branches and continue to grow by penetrating
the subepidermal layers of roots, and eventually, cover the rhizodermal and cortical cells
(Figure 2). Mature root segments show intra- and intercellular colonisation patterns, while
conductive tissues are free from colonisation. This fungus colonises different root zones,
with maximum colonisation in the zone of cell differentiation. In addition, the fungus
penetrates root hair cells, forming hyphae from germinating spores [14,15] (Figure 3). This
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process begins with the biotrophic phase, followed by the cell death phase, to build the
symbiotic relationship with the host rhizosphere [16,17].
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Moreover, a successful symbiosis between S. indica and the host plant depends on
administering the right quantity of inoculum, which can be assessed using a qPCR test [18].
According to Rokni et al. [19], optimising the S. indica inoculum concentration had an
impact on the host plant’s development. Plant growth was enhanced by a 1–3% w/w
concentration; however, higher doses did not show any positive benefits.

The production of calcium and lectin protein kinase induced during symbiotic as-
sociation are suggested to be the early signalling factors in S. indica–host plant colonisa-
tion [20,21]. Additionally, the synthesis of the plant hormone ethylene is considered crucial
for the interaction between plant hosts and fungi [22].

S. indica has been reported to provide numerous advantages to host plants upon
colonisation of roots. These advantages include enhanced plant growth, nutrient uptake,
and antioxidant activities; increased photosynthetic pigments, crop quality and yields;
as well as the ability to mitigate various biotic and abiotic stresses [3,23–28]. Although
mycelia and spores from fungi are typically considered the beneficial form of inoculum,
some studies have demonstrated that cell wall extracts and culture filtrates from S. indica
have a positive effect on plant growth [29,30].

Furthermore, to commercialise S. indica, biofertiliser formulation, known as ‘rootonic’,
has been developed by culturing this fungus in a bioreactor [12,31,32] and mixing with
carrier magnesium sulphite [33]. This endophytic fungus is proving to be an efficient
source of bio-inoculant for the agricultural sector, with the least environmental hazards
and improved agricultural sustainability.

In this review, we have summarised the effect of S. indica on the host plant and the
underlying mechanisms. This review also includes the management of various plant
stresses by S. indica and a brief description of its interactions with nanoparticles.

2. S. indica as a Growth Promoter

S. indica has been found to be a prime beneficial microorganism that improved the growth
and development of various plant species under normal and stress conditions [3,28] (Figure 4).
This endophytic fungus improved the germination rate in various plant species, such as chilli,
cabbage, cucumber, eggplant, maize, okra, spinach, rice, and tobacco [11,34–36]. Improved seed
germination under intense cold conditions in beetroot, carrot, cauliflower, onion, and radish
has also been reported [17]. The application of S. indica has been reported to promote seedling
growth and development by enhancing root and shoot growth, biomass, photosynthetic pigment
production, and seedling vigour. [36–38]. Sheramati et al. [39] reported that S. indica improved
the growth of Arabidopsis and tobacco seedlings by enhancing the nitrogen accumulation and
expression of genes governing nitrogen reductase and the starch degrading enzyme glucan-
water dikinase in their roots. These enzymes are responsible for nitrogen and starch metabolism
in seedlings, which is essential for their growth and development.

This fungus is reported to promote the plant vegetative development in terms of height,
leaf number, shoot and root growth, fresh weight, dry weight, as well as photosynthetic
pigment and phytohormone synthesis [3,22,25,34,40,41]. Stimulation of nutrient uptake
and their efficiency is also reported due to S. indica colonisation leading to improved plant
growth, quality, and yield [25,42]. Improvement in other plant physiological attributes, such
as inflorescence development, duration of flowering, flower size and number of flowers,
have been reported with the application of the endophytic fungus S. indica [25,30,34,43].
Therefore, S. indica promotes plant growth and development by inducing earliness of
host plant reproduction [44]. Furthermore, S. indica improved crop yields by elevating
chlorophyll content, flower setting, grain yield, and pod number and size in crops, such as
black pepper [43], fennel [45], rice [44,46], rapeseed [25], sweet potato [47], sunflower [48],
and tomato [49,50].
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In addition to improving the growth and production of crops, S. indica has improved
the quality of the products. This impact may be attributable to increased root growth and
root hair formation in plants treated with S. indica, which results in improved mineral
nutrition acquisition and water uptake [9,45,51]. Singhal et al. [24] further proposed that
nutrient uptake promoted by this endophytic fungus could be attributable to fungal hyphae
penetrating deeper into the soil than root hair and thus absorbing more nutrients from the
soil. Assimilation of macronutrients, such as nitrogen, phosphorus, potassium, sulphur, and
magnesium is improved in crops, such as Poncirus trifoliata, Triticum aestivum, Brassica napus,
Oryza sativa, Panicum miliaceum, Arabidopsis thaliana, etc. [7,25,46,52–54].

S. indica improves the availability of nitrogen by transforming the unavailable form
into nitrate, which is taken up by plants [9]. Moreover, it stimulates the expression of
the gene governing NADH-dependent nitrate reductase, which is responsible for nitrate
assimilation in crops [9,55,56]. S. indica is able to convert organic phosphorus into plant-
available form, thus improving the phosphorus uptake by plants under normal as well as
under phosphorus-deficient conditions [17,57,58]. It also improves the acid phosphatase
and alkaline phosphatase activities, leading to an improvement in phosphorus uptake in
rice and rapeseed [58,59]. In addition to promoting soil phosphatase activities, S. indica
upregulated the expression of the phosphate transporter genes (PT3, PT5, and PT6) in
Poncirus trifoliata and thereby enhanced the phosphorus absorption by the plant [7]. S. indica
colonisation improved the potassium concentration in tomatoes, resulting in higher levels
of lycopene and ascorbic acid and therefore improving the quality of tomatoes [60]. Several
studies have reported a significant increase in absorption of other macronutrients, such as
calcium, magnesium, and sulphur [7,25,61–63]. An increase in the absorption of magnesium
and sulphur is suggested due to the enhanced expression of transporters PiMgT1 and
PiSulT, respectively, in plants treated with S. indica [62,63]. Moreover, the application of
S. indica improved the acquisition of iron and zinc in rapeseed [25] and zinc in lettuce and
Brassica napus [64,65]. Furthermore, inoculation with S. indica increased iron content in
sugarcane plants by enhancing iron transportation [33,66]. Therefore, the application of
S. indica has proven to enhance nutrient uptake in plants, and thus is considered as an
emerging plant growth promoter. Table 1 summarises the effects of S. indica on the growth
and quality of different host plants.
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Table 1. Effects of S. indica on growth and quality of host plants.

Host Plant Method of Application Effect of S. indica on Growth Effect of S. indica on Quality Reference

Tomato
(Lycopersicon esculentum) Seedling root application Increase in plant growth, yield,

early flowering
Improved firmness in fruits, total

soluble solids, and acidity [49]

Lettuce (Lactuca sativa)

Seedling application
Increase in plant height, fresh

and dry weight, yield

Increase in chlorophyll, nitrogen,
phosphorus, and potassium content [67]

Seedling root application Increase in zinc and
manganese content [64]

Chinese cabbage
(Brassica oleracea) Seedling root application

Increase in root and shoot
growth, biomass, and lateral

root formation
_ [68]

Cabbage
(Brassica oleracea)

Substrate application and
Seed application

Increase in plant height,
number of leaves, NDVI,

fluorescence level (Ft)

Increase in chlorophyll and carotenoids
content, antioxidant capacity [3]

Bell pepper
(Capsicum annuum) Seed treatment Increase in plant growth

and yield _ [19]

Spinach
(Spinacia oleracea) Seed application Increase in plant height, dry

and fresh weight _ [11]

Taro
(Colocasia esculenta) Sterile soil application Increase in plant height,

number and area of leaves
Increase in total phenol content and

defence-related enzymes [69]

Sweet potato
(Ipomea batatas) Seedling irrigation

Increase in plant biomass,
number of leaves, and

lateral roots

Increase in photosynthetic pigments,
catalase, JA-mediated activity [47]

Wheat
(Triticum aestivum) Seedling roots Increase in shoot dry biomass Increase in nitrogen, phosphorus, and

iron uptake [52]

Rice (Oryza sativa)

Seed and Seedling roots Increase in plant growth,
biomass, yield NPK, chlorophyll, and sugar content [59]

Seed treatment and
Soil treatment Increase in dry weight of plant Increase in phosphorus and

potassium uptake [46]

Barley
(Hordeum vulgare) Seed application Increase in crop yield _ [70]

Finger Millets
(Eleusine coracana) Seed application

Increase in plant height,
number of tillers, plant
biomass, ear heads, test
weight, grain, and dry

straw yield

Increase in NPK content [71]

Groundnut
(Arachis hypogaea) Seedling application

Increase in growth and
number of pods, seeds per
plant, shelling percentage,

100-seed weight, and pod yield

_ [72]

Green gram
(Vigna radiata) Seed application Increase in number of nodules

per plant, leaf area, and yield
Increase in minerals uptake,

chlorophyll content [73]

Chickpeas
(Cicer arietinum) Seed application Increase in growth and yield Increase in phosphorus (P) uptake [74]

Sugarcane
(Saccharum sp.) Plantlets Increase in growth and yield,

cane height, tillering
Increase in iron and copper content,

sugar content [66]

Rapeseed
(Brassica napus) Seedling application Increase in plant yield,

biomass, early flowering
Increase in oil content, nutrient uptake,

decrease in anti-nutrient content [25]

Black pepper
(Piper nigrum) Root cuttings

Increase in fresh and dry
weight, number and area of

leaves, early flowering
Increase in chlorophyll content [43]

Sunflower (Helianthus) Seedling application

Increase in growth of plant
and seed yield.Increase in root
and stem growth, number and

area of leaves. Increase in
flower diameter, dry weight,

and total biomass

Increase in seed oil content [40]
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Table 1. Cont.

Host Plant Method of Application Effect of S. indica on Growth Effect of S. indica on Quality Reference

Turmeric
(Curcuma sp.) Bud application Increase in productivity Increase in secondary metabolite

curcumin and oil content [75]

Fennel
(Foeniculum vulgare) Seedling

Increase in plant height, dry
weight of plant, fruit

dry weight

Increase in essential oil
content (anethole) [45]

Thyme
(Thymus vulgaris) Shoot application

Increase in plant height, fresh
and dry weight of shoot.

Increase in root length, fresh
and dry weight of roots

Increase in essential oil content thymol) [76]

Bacopa
(Bacopa monnieri) Micro propagated plants Increase in plant growth Increase in bacoside and

antioxidant content [77]

Aloe vera
(Aloe barbadensis) Root application

Increase in biomass, shoot and
root length, shoot and

root number

Increase in chlorophyll, gel, aloin, and
phenol content in leaves [78]

Artemisia
(Artemisia annua)

Seedling root application Increase in plant height, dry
weight, leaf yield

Increase in chlorophyll, phosphorus,
nitrogen, flavonoids, and

artemisinin content

[79]

Root application [80]

Centella asiatica Root application Increase in shoot and
root biomass Increase in asiaticoside content [81]

Coleus forskohlii Root application Increase in aerial biomass,
flower development

Increase in chlorophyll content,
phosphorus acquisition [82]

Lantana camara Suspension culture of
plant _

Increase in triterpenoids (ursolic acid,
oleanolic acid, and betulinic

acid) production
[83]

Pine vines (Aristolochia
elegans Mart.) Substrate application

Increase in plant height,
number and length of leaves,

total biomass
Increase in aristolochic acid in leaves [30]

Alfalafa
(Medicago sativa) Seedling application Increase in biomass, shoot

dry weight
Increase in nutrient uptake,
antioxidant enzyme activity [84]

Sweet basil
(Ocimum basilicum) _ Increase in plant growth, leaf

area, leaf dry weight, yield
Increase in oil content (Geranial, Neral,

and Estragole) [85]

Gerbera
(Gerbera jamesonii) Root seedling application Increase in above and

underground plant biomass Increase in photochemical efficiency [86]

Anthurium sp. Seedling roots Increase in plant and
root growth

Increase in phosphorus uptake and
chlorophyll content [87]

Lolium multiflorum Seed application
Increase in plant height, basal

diameter, biomass relative
growth rate

Increase in leaf relative water content
and chlorophyll content [38]

Banana
(Musa acuminata) Plantlet roots

Increase in plant height,
number and area of leaves,
stem diameter, number of

suckers, number of fingers per
bunch, and yield per plant

Increase in chlorophyll, nitrogen, and
phosphorus content [88]

Passion fruit
(Passiflora edulis) Soil application Plant growth in later stages,

fruit size
Increase in fruit quality and

secondary metabolites [89]

Trifolium orange
(Poncirus trifoliata) Substrate application

Increase in plant height,
number of leaves, leaf, stem,

and root biomass

Increase in nitrogen, phosphorus, and
magnesium content [7]

Melon (Cucumis melo) Substrate application Increase in fresh and dry
weight of plants Increase in chlorophyll content [90]

Pineapple
(Ananas comosus)

Substrate inoculation in
root zone

Increase in plant height,
number of leaves, and shoot

dry weight

Increase in photosynthetic efficiency,
nitrogen, phosphorus, potassium,
calcium, and magnesium content

[61]

Furthermore, S. indica not only improves the nutritional status of plants, but also
develops resilience in host plants against many stresses. Additionally, it reduces the
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concentration and effect of various harmful substances and heavy metals, thus enhancing
soil health [91], which is further discussed in the review.

3. The Mechanism behind the Improvement in Growth, Yield, and Quality of Crops by
S. indica

Since endophytic fungi are known to enter and survive inside a host plant, these
fungi need to pass through the host’s defence system, which comprises specific receptors,
such as pattern recognition receptors and intracellular receptors. These receptors capture
the microbe or pathogen by recognizing the microbe- or pathogen-associated molecular
patterns (MAMPs or PAMPs) located on the cell surface, thus resulting in MAMP- or PAMP-
triggered immunity in the hosts. Other defence-related receptors are intracellular receptors,
which recognise effector proteins secreted by the microbes, leading to effector-triggered
immunity (ETI) [92,93]. Endophytic fungi produce some molecular patterns, such as β-
glucan and chitin, which are recognised by the pattern recognition receptors present on host
cell walls [94]. Then, chitin is converted into chitin oligomers by chitinase produced by the
host plant, resulting in defensive reactions [95,96]. However, fungal endophytes produce
chitin deacetylases that convert chitin oligomers to deacetylated chitosan oligomers, which
are thus not recognised by the host plant’s receptors and prevent triggering the plant
immune system [93]. In the case of S. indica, β-glucan-stimulated immunity is suppressed
due to the presence of the fungal glucan-binding 1 protein gene, which encodes β-glucan-
binding lectin that modifies the fungal cell wall, thus suppressing the recognition process in
plant hosts [97]. Therefore, endophytic fungi have the capacity to survive in the plant root
and offer various benefits, such as improving plant immunity and enhancing the response
of plants toward various biotic and abiotic stresses [98] in exchange for carbohydrates
as food.

Once the fungus successfully enters the host plant, it begins to develop a symbiotic
association with the plant. It exhibits an impact on the plant by inducing an array of
physiological and molecular changes, such as enhancing transportation and uptake of
nutrients, promoting nutrient solubilisation, reducing heavy metal toxicity, and main-
taining optimum pH. These modifications constitute the direct mechanism of S. indica
mediated plant growth [56,91]. In contrast, indirect mechanisms are affiliated with changes
in hosts, such as enhanced antioxidants and secondary metabolites production [99,100],
decreased anti-nutrient contents, as well as modulation of gene expression and phytohor-
mone production [91]. Moreover, S. indica enhances chlorophyll content, thus improving
the rate of photosynthesis, and consequently, the growth of the plant [3]. Hua et al. [100]
performed a global metabolic analysis in Chinese cabbage inoculated with S. indica and
reported improvements in metabolite production, fatty acid content, and activity of the
TCA cycle, leading to increased carbohydrate production in plants to support the growth
and development of the root system.

Furthermore, S. indica-mediated growth involves interactions with phytohormones,
such as auxin, gibberellin, cytokinin, and ethylene [101]. This fungus interferes with
the synthesis and signalling of phytohormones to stimulate plant growth, development,
and defence responses. Plants respond to S. indica by adjusting their hormone levels in
the roots to ensure the growth and colonisation of this fungus [101]. Auxin, the major
growth phytohormone, is reported to promote the growth and development of host plants
under S. indica colonisation by regulating auxin-related genes and proteins, which are
involved in transport and signal transduction of auxin, such as auxin influx carriers (AUX1),
auxin efflux carriers (PINs), and auxin receptor (TIR1) [102]. Moreover, Dong et al. [103]
reported the upregulation of auxin-responsive genes, which resulted in improving plant
growth. In Chinese cabbage, auxin and its intermediates were enhanced under S. indica
colonisation [100]. Other phytohormone levels, including gibberellin and ethylene, are
also enhanced in S. indica-colonised plants, resulting in earlier blooming and better root
colonisation [91,104,105]. Enhanced expressions of gibberellin biosynthetic genes, such as
gibberellin 20-oxidase 2, gibberellin 3-oxidase 1, and gibberellin requiring 1 was reported
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in response to S. indica application [101]. Additionally, the cytokinin levels were elevated in
plants upon S. indica colonisation by upregulating cytokinin receptor genes (CRE1, AHK2,
and AHK3), cytokinin-responsive gene (ARR), and trans-zeatin cytokinin biosynthesis
genes, thus enhancing plant growth [106,107].

Gene regulation is suggested as an important part of plant growth promotion mediated
by S. indica colonisation. As mentioned, several gene expressions are regulated by S. indica
colonisation to ameliorate the phytohormonal balance in the host plant. According to Ghor-
bani et al. [108] and Yang et al. [7], the use of S. indica enhanced the expression of host genes
responsible for the uptake of nutrients, such as iron (IRO2, YSL1, and FRDL1) and phos-
phorus (PtPT3, PtPT5, and PtPT6) in rice and Poncirus trifoliata. Moreover, it has affected
the expression of various other genes in host plants, such as sucrose synthase (SUS) and
invertase (INV) genes, to improve the phosphorus concentration in Arabidopsis thaliana by
altering the sugar metabolism and obtaining fructose and glucose from the host plant [109].
Furthermore, S. indica resulted in the upregulation of phytochelatin biosynthesis genes,
such as PCS1 and PCS2 in rice plants, enhancing the phytochelatin that removes the toxic
metals from the host plants [108]. In Brassica napus, expressions of genes, such as trans-2,
3-enoyl-CoA reductase (BnECR) and 3-ketoacyl-CoA synthase (BnFAE1) were downregu-
lated by applying S. indica. These genes are responsible for encoding some enzymes that
cause the biosynthesis of erucic acids, considered as an unhealthy substance [25]. Moreover,
rapeseed fatty acid content was enhanced by upregulating the expression of fatty acid reg-
ulation genes, such as 3-ketoacyl-CoA reductase 1 (Bnkcr1) and 3-ketoacyl-CoA reductase 2
(Bnkcr2) [25]. Furthermore, the application of S. indica to tobacco seedlings increased the ex-
pression of many genes involved in plant metabolism, including nitropropane dioxygenase
(2NpdO), glucan-water dikinase (GWD), and nitrate reductase (Nia2) [39] (Figure 5).

Plants 2022, 11, 3417 10 of 28 
 

 

and FRDL1) and phosphorus (PtPT3, PtPT5, and PtPT6) in rice and Poncirus trifoliata. 
Moreover, it has affected the expression of various other genes in host plants, such as 
sucrose synthase (SUS) and invertase (INV) genes, to improve the phosphorus 
concentration in Arabidopsis thaliana by altering the sugar metabolism and obtaining 
fructose and glucose from the host plant [109]. Furthermore, S. indica resulted in the 
upregulation of phytochelatin biosynthesis genes, such as PCS1 and PCS2 in rice plants, 
enhancing the phytochelatin that removes the toxic metals from the host plants [108]. In 
Brassica napus, expressions of genes, such as trans-2, 3-enoyl-CoA reductase (BnECR) and 
3-ketoacyl-CoA synthase (BnFAE1) were downregulated by applying S. indica. These 
genes are responsible for encoding some enzymes that cause the biosynthesis of erucic 
acids, considered as an unhealthy substance [25]. Moreover, rapeseed fatty acid content 
was enhanced by upregulating the expression of fatty acid regulation genes, such as 3-
ketoacyl-CoA reductase 1 (Bnkcr1) and 3-ketoacyl-CoA reductase 2 (Bnkcr2) [25]. 
Furthermore, the application of S. indica to tobacco seedlings increased the expression of 
many genes involved in plant metabolism, including nitropropane dioxygenase (2NpdO), 
glucan-water dikinase (GWD), and nitrate reductase (Nia2) [39] (Figure 5). 

Therefore, S. indica has an impact on a variety of plant physiological and biochemical 
processes, which are modulated at the molecular level through genes regulation. The 
integrated changes in plant physiological, biochemical, and molecular processes that are 
affected by the endophytic fungus is responsible for enhancing plant growth and 
development. 

 
Figure 5. Mutual interaction of S. indica with host plant resulting in enhanced plant metabolism by 
regulating the plant growth mechanism at molecular level. Genes which exhibit a fundamental role 
in this process are AUX1, PINS, TIR—auxin biosynthesis genes, AHK2, AHK3, CRE1—cytokinin 
receptor genes, ARR—cytokinin-responsive gene, ECR—trans-2, 3-enoyl-CoA reductase, ETR, EIN2, 
EIN3, EIN3/EIL1—ethylene biosynthesis genes, FAE1—3-ketoacyl-CoA synthase, FRDL1, IRO2, 
YSL1—iron transporter genes, GA3OIX1, GA2OIX2—gibberellic acid biosynthesis genes, GWD—
glucan-water dikinase, INV—invertase, kcr13-ketoacyl-CoA reductase 1, kcr2—3-ketoacyl-CoA 
reductase 2, 2NpdO—nitropropane dioxygenase, Nia2—nitrate reductase, PT3, PT5, and PT6—
phosphorus transporter genes. Upward and downward arrows represent upregulation and 
downregulation of genes or processes, respectively. 

4. Influence of S. indica on Biotic and Abiotic Stress 
Plants are exposed to various forms of stressful conditions that limit their growth, 

development, and production, due to the formation of reactive oxygen species (ROS), e.g., 
hydroxyl (OH·−), superoxide (O2·−), and hydrogen peroxide (H2O2). These stresses are 
classified as biotic and abiotic stresses. Biotic stresses include pathogen infection, whereas 
abiotic stresses include drought, salinity, heat, and cold stress [110]. Nevertheless, plants 
are bestowed with various protective barriers against these stresses, such as the 
production of secondary metabolites, phytohormones, toxic substances that halt the 

Figure 5. Mutual interaction of S. indica with host plant resulting in enhanced plant metabolism by
regulating the plant growth mechanism at molecular level. Genes which exhibit a fundamental role in
this process are AUX1, PINS, TIR—auxin biosynthesis genes, AHK2, AHK3, CRE1—cytokinin receptor
genes, ARR—cytokinin-responsive gene, ECR—trans-2, 3-enoyl-CoA reductase, ETR, EIN2, EIN3,
EIN3/EIL1—ethylene biosynthesis genes, FAE1—3-ketoacyl-CoA synthase, FRDL1, IRO2, YSL1—
iron transporter genes, GA3OIX1, GA2OIX2—gibberellic acid biosynthesis genes, GWD—glucan-
water dikinase, INV—invertase, kcr1—3-ketoacyl-CoA reductase 1, kcr2—3-ketoacyl-CoA reductase
2, 2NpdO—nitropropane dioxygenase, Nia2—nitrate reductase, PT3, PT5, and PT6—phosphorus
transporter genes. Upward and downward arrows represent upregulation and downregulation of
genes or processes, respectively.

Therefore, S. indica has an impact on a variety of plant physiological and biochemical
processes, which are modulated at the molecular level through genes regulation. The inte-
grated changes in plant physiological, biochemical, and molecular processes that are affected
by the endophytic fungus is responsible for enhancing plant growth and development.
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4. Influence of S. indica on Biotic and Abiotic Stress

Plants are exposed to various forms of stressful conditions that limit their growth,
development, and production, due to the formation of reactive oxygen species (ROS), e.g.,
hydroxyl (OH·−), superoxide (O2·−), and hydrogen peroxide (H2O2). These stresses are
classified as biotic and abiotic stresses. Biotic stresses include pathogen infection, whereas
abiotic stresses include drought, salinity, heat, and cold stress [110]. Nevertheless, plants
are bestowed with various protective barriers against these stresses, such as the production
of secondary metabolites, phytohormones, toxic substances that halt the enzymatic activity
of pathogens, and some physical barriers, such as cell walls and cuticles, to limit pathogen
entry [9]. Moreover, plants produce various solutes, such as proline, sucrose, polyols,
glycine, and betaine, as well as antioxidative enzymes, such as catalase, ascorbate peroxi-
dase, and superoxide dismutase as a protection against various stresses. However, ROS
production can be higher under various stresses than the plant’s defence system, leading
to oxidative stresses [111]. Therefore, controlling these stresses is essential to preventing
further crop losses.

S. indica has been reported to alleviate both biotic and abiotic stresses upon colonisa-
tion, protecting the host plants from the adverse effects of stressors [14].

4.1. Biotic Stress Management by S. indica

S. indica, as one of the most promising microorganisms, can protect plants against
various stresses by regulating multiple processes, such as the synthesis of antioxidants,
secondary metabolites, osmolytes, defence-related phytohormones, etc. [9]. Resistance
to biotic stresses, such as bacterial, viral, and fungal diseases in plant hosts have been
reported following S. indica colonisation [9,12,112]. Extensive evidence is available to
support S. indica as a biocontrol agent, such as resistance against the black spot of cabbage
caused by Alternaria brassicicola [3], Stemphylium leaf blight of onion [28], Rhizoctonia solani
in tomato [113], Verticillium wilt caused by Verticillium dahliae [112], and root rot caused
by Fusarium graminearum [114]. The effect of S. indica on biotic stress in various crops is
summarised in Table 2.

Table 2. Effects of S. indica on host plants under biotic stress conditions.

Host Plant Biotic Stress Effect of S. indica under Biotic Stress Reference

Tomato
(Lycopersicon esculentum)

Verticillium wilt Increase in plant growth, dry and fresh weight
content, disease resistance - [112]

Early blight

- Decrease in
disease severity [115]

Increase in plant growth, systemic
defence response - [116]

Tomato
(Lycopersicon esculentum) Leaf curl virus Increase in root and plant growth, quality, and

yield of fruit
Decrease in

disease incidence [49]

Chinese cabbage
(Brassica oleracea) Club root Increase in biomass, flavonoids Decrease in

gall formation [117]

Cabbage
(Brassica oleracea) Black spot Increase in plant growth, chlorophyll content,

antioxidant capacity, nitrogen content
Decrease in

disease severity [3]

Onion (Allium cepa) Stemphylium Leaf Blight Increase in leaf growth and root biomass,
enzymatic activity, defence-related genes

Decrease in
disease severity [28]

Taro
(Colocasia esculenta) Leaf blight

Increase in plant growth, chitinase, β-1, 3
glucanase and total phenol, defence-related

genes, disease resistance
- [69]

Soyabean
(Glycine max) Cyst nematode Increase in plant growth and development

Decrease in
nematode

egg density
[118]

Chickpea
(Cicer arietinum) Grey mold

Increase in biomass, root growth, antioxidant
enzyme defence system, protection

from pathogen
- [63]
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Table 2. Cont.

Host Plant Biotic Stress Effect of S. indica under Biotic Stress Reference

Anthurium
(Anthurium) Bacterial wilt

Increase in biomass, plant and root growth,
photosynthetic rate, phosphorus uptake,

disease resistance
- [87]

Rhododendron
(Rhododendron

catawbiense)
Dieback Delayed disease - [119]

Blueberry
(Vaccinium corymbosum) Dieback Increase in plant growth

Decrease in
disease severity

and mortality rate
[120]

To develop resistance against various pathogens, S. indica builds molecular relations
with the host plants in addition to following physiological and biochemical pathways [121].
Many hypotheses have been proposed to explain the use of S. indica as a biocontrol agent.
As suggested by Li et al. [122], S. indica follows indirect and complex mechanisms to trigger
pathogen resistance in plants, such as intervention in MAMPs, which include oxidative
burst and upregulation of defence-related genes. Moreover, Li et al. [122] reported the
involvement of S. indica in mitogen-activated protein (MAP) kinase and phenylpropanoid
biosynthesis pathways, which are responsible for plant immunity. Therefore, S. indica
triggers an immune response in the host plant by modifying the transcriptomic changes
induced by pathogens. In the case of leaf pathogens, systemic resistance was triggered
in tomato, maize, wheat, barley, and Arabidopsis. It has been associated with jasmonic
acid (JA)-dependent signalling [123], synthesis of antioxidants [77,124], reducing H2O2
content [99], elevating relative water content, increasing the membrane stability index [122],
and upregulating the gene expression in defence-related pathways [115,125]. However, the
fungus, induces direct antioxidant action against root pathogens [28]. Moreover, it was
established that under stress conditions, S. indica activated antioxidant capacity in the host
plant by increasing the concentration of antioxidant enzymes, such as ascorbate peroxidase
(APX), superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT).
These enzymes, associated with induced systemic resistance, are of key importance in
defence mechanisms. They cause the detoxification of reactive oxygen species generated
by pathogens and thus act as a barrier against pathogen attacks [28,69]. Furthermore,
Roylawar et al. [28] reported a decrease in malondialdehyde accumulation, resulting in
protection against ROS damage. Peroxidase, on the other hand, can also stimulate lignin
and phenol biosynthesis, which hinders the growth of the pathogen [126]. In addition,
S. indica alters the synthesis of defence hormones, such as ethylene, thus protecting the host
plant against different pathogens [9].

S. indica also mediates the upregulation of defence-related genes, such as the lipoxyge-
nase (LOX) gene, leading to increased expression of AcLOX1 and AcLOX2 lipoxygenases
and AcCHI chitinase, which are considered essential for salicylic acid (SA) and jasmonic
acid (JA) pathways, thereby regulating induced systemic resistance (ISR) [28,127,128].
It was suggested that the application of S. indica upregulated the expression of WRKY
genes involved in defence pathways, resulting in resistance against early blight disease
in tomatoes and sharp eyespot and Fusarium head blight in wheat through modulating
the expression of pathogenesis-related (PR) genes [115,122]. Moreover, a recent discovery
by Ntana et al. [13] reported an upregulation of the expression of the terpenoid synthase
gene (SiTPS) upon the colonisation of S. indica in tomato roots. It resulted in the production
of viridiflorol, which inhibits the growth of the phytopathogenic fungus Colletotrichum
truncatum. In S. indica-colonised taro crop, Lakshmipriya et al. [69] found activation of
defence-related genes, such as senescence-associated genes, as well as genes encoding
cytochrome P450, Delta (12) oleic acid desaturase FAD2, and calcium-dependent protein
kinases (CDPKs), resulting in the reduction in taro leaf blight. Figure 6 depicts the effect of
S. indica on host plants under biotic stress.
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maintains the plant growth and development throughout the growing stages by regulating various
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Based on these findings, it is reasonable to conclude that S. indica has a favourable
impact on disease tolerance in a range of plants and might be exploited to be developed
into an effective biocontrol agent.

4.2. Abiotic Stress Management by S. indica

Crop plants are also exposed to various types of abiotic stresses, such as drought,
floods, salinity, heavy metal toxicity, and low-high temperatures, which affect crop devel-
opment and productivity [129]. S. indica has proven to minimise the abiotic stress levels
in several crops, as presented in Table 3. The mechanism involves the establishment of a
ROS scavenging system [27,51,68,121,130], the activation of genes, such as those encoding
dehydration responsive element binding proteins 2A (DREB2A) and calcineurin B-like
protein (CBL1), responsive-to-dehydration 29A (RD29A) gene, and other defence-related
genes (PR, LOX2, and ERF1 genes), as well as the promotion of the production of organic
osmolytes, such as proline [14,26] and glycine betaine [14]. However, Abdelaziz et al. [131]
reported a decrease in proline content in S. indica-treated plants, which might be attributed
to an improvement in plant response toward drought stress following the application of
S. indica. It was further proposed that S. indica colonisation not only increased the plant’s
hormonal and metabolic activity, but also controlled the ionic homeostasis of sodium (Na+)
and potassium (K+) ions. Therefore, protecting the plants against stress [132]. Figure 7
summarises the impact of S. indica on plants under abiotic stress.

4.2.1. Drought Stress

One of the most devastative abiotic stresses, causing significant crop loss is a drought
stress which needs to be mitigated. In this context, several studies have demonstrated the
positive effects of S. indica on various crops under drought stress conditions, including higher
water use efficiency (WUE), nutrient uptake, and rise in chlorophyll content by upregulating
chlorophyll biosynthesis genes [44,51,131,133]. Additionally, it increased the activities of an-
tioxidant enzymes, such as catalase (CAT) and peroxidase (POD) [101,131,134]. Upregulation
of the ROS scavenging system, accumulation of soluble proteins, increases in sugars and
amino acids, such as proline [26,27,101,135], as well as changes in hormones, such as an
increase in indole-3-acetic acid (IAA) content, a decrease in ABA and ethylene [131], and a
reduction in malondialdehyde (MDA) levels [44,131] were also reported.

Furthermore, S. indica improves morphological parameters under drought conditions,
such as root length, shoot length, grain yield and biomass, thus confirming resistance
against drought in several crops, including globe artichoke [136], maize [137], Chinese
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cabbage [68], walnut [27], rice [44] and sesame [138]. Various drought-related genes,
such as responsive-to-dehydration 29A gene (RD29A), (ANAC072), phospholipase D delta
(PLDδ), and those encoding early response to dehydration 1 (ERD1), dehydration-response
element binding protein 2A (DREB2A), salt and drought-induced ring finger 1 (SDIR1),
calcineurin B-like protein (CBL1), CBL-interacting protein kinase 3 (CIPK3), and histone
acetyltransferase (HAT) were upregulated following the application of S. indica, resulting
in drought stress tolerance in the Arabidopsis plant [39]. Moreover, Azizi et al. [50] reported
enhancement in the expression of late embryogenesis abundant 14 (LEA14), a dehydrin
(TAS14) and pyrroline-5-carboxylate synthase (P5CS) gene under drought stress after the
application of S. indica in tomato. Upregulation of these genes is known to ameliorate
drought tolerance in plants. In addition to gene regulation, it has been observed that
S. indica increased the calcium sensing regulator (CAS) protein, which regulates the stomatal
movements in Chinese cabbage leaves, thus inducing drought tolerance [68].
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under various abiotic stress. Cold tolerance genes: BZR1—brassinazole-resistant, CBFs—C-repeat-binding
factor, CORs—cold-regulated genes, PYL6—pyrabactin resistance 1-like, SAG1s—senescence-associated
gene; Drought tolerance genes: ANAC07—transcription factor gene, CBL1—calcineurin B-like protein,
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downward arrows represent upregulation and downregulation of genes or process, respectively.

4.2.2. Cold Stress

Tolerance to cold stress has been reported in certain studies following the application
of S. indica to host plants. According to Li et al. [139], banana crops responded positively to
S. indica colonisation under cold stress due to accumulating osmolytes, activating antioxi-
dant capacity, and increasing the expression of the cold stress-related genes in banana leaves.
S. indica colonisation has also resulted in cold stress tolerance in Arabidopsis by increasing
ascorbic acid content, proline content, phytohormone levels, such as brassinolide (BR), ab-
scisic acid (ABA), and regulating cold stress-related genes, such as C-repeat-binding factor
(CBFs), cold-regulated genes (CORs), brassinazole-resistant (BZR1), senescence-associated
gene (SAG1), and pyrabactin resistance 1-like (PYL6). Moreover, lower H2O2 and mal-
ondialdehyde (MDA) levels were recorded in Arabidopsis seedlings following S. indica
colonisation [140]. Furthermore, S. indica increased the yield of barley crops under low
temperatures by enhancing nutrient uptake [42].
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4.2.3. Salinity Stress

Salinity stress is detrimental to agricultural production and results in massive crop
losses. However, the application of S. indica has been reported to promote plant growth
under salt stress by enhancing chlorophyll content, biomass, root growth, and antioxidant
activity in Arabidopsis thaliana, Cucumis melo, and Medicago truncatula [90,141,142]. Singh
et al. [143] reported that S. indica increased antioxidant enzymes, carotenoid, α-tocopherol,
and proline levels while decreasing relative membrane permeability, lipid peroxidation, and
lipoxygenase enzyme activity in wheat under salinity stress. S. indica has shown to mitigate
the salt stress in other crops by increasing proline content [37]. Furthermore, salt tolerance
induced by S. indica is mediated by the high osmolarity glycerol (HOG) mitogen-activated
protein (MAP) kinase signalling pathway, in which the upregulation of genes, such as
SiHOG1 plays an important role in root colonisation and improves the condition of the host
plant under salt stress [144]. In barley crops, S. indica governs the ethylene biosynthesis
pathway and carbohydrate and nitrogen metabolism, thus resulting in salt tolerance [145].
Moreover, salinity stress was ameliorated in Chinese cabbage by modulation of phytohor-
mones, such as salicylic acid and gibberellic acid, as well as by enhancing the activities of
antioxidant enzymes [146]. Furthermore, this endophytic fungus conferred resistance to
salt stress in tomato seedlings owing to its ability to boost the uptake of nutrients, such as
nitrogen, phosphorus, and calcium, and to enhance K+/Na+ homoeostasis by regulating
the expression of various genes, such as sodium/hydrogen exchanger 2 (NHX2), Na+/H+

antiporter (SOS1), and cyclic nucleotide-gated channel (CNGC15). These genes regulate
the function of aquaporins, thus maintaining water status in plants [147]. Additionally,
Boorboori et al. [148] recently highlighted the relevance of S. indica in resisting drought and
salt stress in plants, consequently increasing agricultural output.

4.2.4. Heavy Metal Stress

Alleviation of heavy metal stress by application of S. indicia has been reported in
several host plants by reducing the concentration and absorption of heavy metals, such
as lead, arsenic, and cadmium in various plants, such as sunflower, wheat, barley, and
alfalfa [41,52,149–151]. Moreover, the concentration of lead was alleviated in the shoots
of the sweet basil plant with the application of S. indica [152]. This effect of reducing the
concentration of heavy metals by S. indica colonisation can be attributed to the binding
of these heavy metals to the cell wall of fungal hyphae, thereby reducing their uptake
into the aerial plant parts [60]. Mohd et al. [153] suggested that the compartmentalisation,
adsorption, and precipitation of these metals are thought to limit their mobility, resulting
in decreased translocation into the shoot.

Additionally, a significant improvement in growth parameters has been recorded in
host plants treated with S. indica under metal toxicity conditions, such as an increase in
photosynthetic rate and pigments, biomass, antioxidant enzymes, flavonoids, and proline
content, and a reduction in H2O2 and MDA content in the host plant, including rice [108],
wheat [150], sunflower [149], and tobacco [154]. Moreover, an increase in the expression
of stress-related genes, such as phytochelatin synthase-related genes (TaPCS1, oas1, Gsh2),
GPX, and heat shock proteins (Hsp70) was reported in tobacco under cadmium stress in
S. indica colonised plants [154]. Furthermore, S. indica can act as a detoxifying agent in
heavy metal-contaminated soils by immobilising these metals in the root zone, limiting
their release, and improving soil quality [80].

Table 3. Effects of S. indica on host plants under abiotic stress conditions.

Host Plant Abiotic Stresses Effect of S. indica on Host Plant under Abiotic Stress Conditions Reference

Eggplant
(Solanum melongena) Drought

Increase in root and shoot length,
biomass, proline, chlorophyll, and

water content, catalase activity, and
guaiacol peroxidase activity

- [155]
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Table 3. Cont.

Host Plant Abiotic Stresses Effect of S. indica on Host Plant under Abiotic Stress Conditions Reference

Chinese cabbage
(Brassica oleracea) Drought

Increase in chlorophyll content,
antioxidant enzyme activity,

drought-related genes expression, and
CAS protein

- [68]

Globe artichoke
(Cynara scolymus) Drought

Increase in plant biomass,
photosynthetic pigment, carotenoid,

proline, and potassium levels in leaves

Decrease in
sodium content [136]

Tomato
(Lycopersicon esculentum) Drought Increase in shoot fresh and dry weight,

proline and relative water content - [50]

Rice (Oryza sativa) Drought

Increase in grain yield, stomatal
closure, leaf surface temperature,

antioxidant enzyme activity
- [44]

Increase in seedling growth, seedling
biomass, uptake of phosphorus and

zinc, chlorophyll fluorescence, proline,
and total antioxidant capacity in leaves

- [156]

Maize (Zea mays) Drought and
mechanical stress

Increase in plant adaptability, root
length and volume, relative water
content, leaf water potential, and

chlorophyll content

- [26]

Maize (Zea mays) Drought

Increase in leaf size, root length, and
number of tap roots - [101]

Increase in oxidative potential of the
roots, and expression of genes

responsible for hormonal functions
- [107]

Barley (Hor deumvulgare) Drought

Increase in fresh and dry weight of
plant, root growth, number of tillers,
proteins involved in photosynthesis,

and antioxidant enzyme activity

- [157]

Increase in activity of photosystem and
electron transport chain and

accumulation of drought
responsive proteins

- [135]

Finger millets
(Eleusine coracana) Drought

Increase in plant growth, biomass, total
chlorophyll, proline, total and soluble

sugar content

Decrease in MDA and
hydrogen

peroxide content
[158]

Walnut (Juglans regia) Drought

Increase in plant height, total fresh
biomass, root/shoot ratio, relative
growth rate, leaf relative water and
chlorophyll content, gas exchange

parameters, photochemical efficiency,
photochemical quenching, and

photosystem II quantum yield, osmotic
adjustment and antioxidant activity

- [27]

Quinoa
(Chenopodium quinoa) Drought Increase in total biomass, water

balance, and leaf gas exchange - [51]

Aloe vera
(Aloe barbadensis) Salinity

Increase in plant biomass, shoot and
root length, number of shoots and

roots, chlorophyll, gel, phenols,
flavonoid, and aloin content, and

radical scavenging activity

- [78]

Gerbera (Gerbera jamesonii) Salinity Increase in plant biomass,
photosynthesis, and salt tolerance

Decrease in MDA and
hydrogen

peroxide content
[86]

Melon (Cucumis melo) Salinity Increase in antioxidant content,
dry weight Decrease in salinity stress [90]

Sweet basil
(Ocimum basilicum) Salinity Increase in plant dry weight area,

essential oil content, and yield - [85]
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Table 3. Cont.

Host Plant Abiotic Stresses Effect of S. indica on Host Plant under Abiotic Stress Conditions Reference

Tomato (Lycopersicon
esculentum) Salinity

Increase in plant growth,
photosynthetic pigments, proline and

glycine betaine, potassium content,
water potential, net photosynthesis,

stomatal conductance, and
transpiration rate

- [147]

Arabidopsis
(Arabidopsis thaliana) Salinity - Decrease in sodium

content [159]

Rice (Oryza sativa) Salinity

Increase in fresh weight, dry weight,
length of root and shoot,

photosynthetic pigment, and salt
tolerance

- [37]

Increase in proline concentration and
antioxidant enzyme activity, potassium

concentration, salt tolerance

Decrease in MDA and
sodium ion concentration [160]

Barley (Hordeum vulgare) Salinity

Increase in plant growth, ascorbic acid
activity of antioxidant enzymes,

metabolic heat efflux, and fatty acid
desaturation in leaves

Decrease in NaCl-induced
lipid peroxidation [161]

Banana (Musa acumunata) Cold
Increase in superoxide dismutase

(SOD) and catalase (CAT) activity and
soluble sugar (SS) and proline content

Decrease in MDA and
hydrogen peroxide

content
[139]

Barley (Hordeum vulgare) Cold Increase in grain dry weight, nutrient
uptake, and early flowering - [42]

Arabidopsis
(Arabidopsis thaliana) Cold Increase in soluble proteins, proline

and ascorbic acid, cold tolerance - [140]

Banana (Musa acumunata) High temperature
Increase in proline content, MDA,
hydrogen peroxide and ABA, and

resistance to high temperature

Decrease in IAA and GA
content in banana leaves [162]

Heavy metal stress

Artemisia
(Artemisia annum) Arsenic

Increase in plant growth, biomass,
flavonoids, artemisinin, super oxidase

dismutase, peroxidase activity,
phenolic acid, and

phenolic compounds

- [80]

Wheat (Triticum aestivum) Cadmium
Increase in plant growth,

photosynthetic pigments, antioxidant
enzymes, proline content

Decrease in cadmium
accumulation in stem and

root
[150]

Rice (Oryza sativa)

Arsenic Increase in plant growth, chlorophyll
content

Decrease in MDA content
and arsenic uptake [108]

Cadmium

Increase in nutrient uptake,
photosynthesis, antioxidant enzyme

activity, maintenance of cellular
structures

Decrease in cadmium
concentration in shoot [163]

Barley (Hordeum vulgare) Arsenic Increase in iron concentration Decrease in arsenic
concentration in shoot [151]

Sunflower (Helianthus
annuus) Cadmium

Increase in plant growth, chlorophyll
content, proline content, Fv/Fm, and

electron transport rate values

Decrease in cadmium
content in plant [149]

Alfalfa (Medicago sativa) Cadmium Increase in growth rate, shoot dry
weight, antioxidant enzyme activity

Decrease in cadmium
concentration in shoot [84]

Tobacco (Nicotiana
tabacum) Cadmium

Increase in chlorophyll content,
antioxidant enzymes, and proline
content, enhanced expression of

stress-related phytochelatin
biosynthesis genes

Decrease in MDA [154]

Soybean (Glycine max) Cadmium

Increase in plant growth, dry weight,
shoot height and photosynthesis,
transpiration ratio and stomatal

conductance, and antioxidant activity

Decrease in
cadmium content [164]
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According to research on S. indica, this endophytic fungus could serve as a poten-
tial biofertiliser, reducing various biotic and abiotic challenges while enhancing plant
development and, eventually, agricultural productivity.

5. Interaction of Serendipita indica with Nanoparticles

Nanotechnology, an emerging science, is gaining immense attention in the field of
agriculture due to its small size and higher efficiency over bulk materials [165,166]. There-
fore, integrating this technology with beneficial microorganisms could unfold novel ap-
proaches for improving agricultural outputs. It was reported that applying S. indica and
copper nanoparticles together increased plant growth, making the combination useful as a
nanofertiliser [165]. Varma et al. [167] developed nano-embedded S. indica, as a potential
biofertiliser, including a combination of S. indica and nanoparticles, such as zinc oxide,
titanium oxide, and carbon nanotubes. The interaction between nanoparticles and the
fungus resulted in increased fungal biomass, spore number, thicker hyphae, and fewer
vacuoles [167]. Rane et al. [168] suggested the combined application of calcium phosphate
nanoparticles with S. indica to be a more efficient plant growth enhancer than a sole appli-
cation of nanoparticles or endophytic fungus. Another study revealed that the combined
application of nitrogen nanoparticles with S. indica did not show significant improvement
in the treated plants, but the application of S. indica alone was found to be better than
nanoparticles [3]. However, insufficient understanding of the usage and application of
nanoparticles in agriculture might lead to significant risks to humans and the environment.
These particles can penetrate deep into the biological system, resulting in serious threats
to both mammals and the environment [169]. Moreover, organic nanoparticles produced
biologically pose less risk than those produced using chemical and physical methods [170].
Nevertheless, each technology has its pros and cons; therefore, the vital factor is using
the optimum dosage and appropriate techniques for applying nanotechnology in the
agricultural sector to control the risks associated with nanoparticles [171].

As a result, additional research on the beneficial application of nanomaterials and
plant growth-promoting microorganisms is required to develop more efficient and practical
nano biofertilisers for agricultural production.

6. Conclusions

Based on the above discussion, we presented the influence of the beneficial endophytic
fungus on plant growth, quality, and yield, thus improving global food security and the
nutritional prospects of the produce. S. indica ensures environmental protection while
being economical at the same time. In addition, the protection of plants from biotic and
abiotic stresses is attained through the application of S. indica. Moreover, its wide range
of host acceptability and its axenic culturing ability have made it one of the promising
beneficial microorganisms in the field of agriculture. However, a gap still exists between the
research and its widespread release, which needs to be bridged by focusing on the nutrient
uptake mechanisms mediated by S. indica and conducting in-depth research on molecular
mechanisms that would create opportunities for the commercial viability of endophytic
fungus S. indica.
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ABA abscisic acid
AMF arbuscular mycorrhizal fungi
APX ascorbate peroxidase
AUX auxin
BR brassinolide
CAS calcium-sensing
CAT catalase
CK cytokinin
ETI effector-triggered immunity
Ft fluorescence level
Fv/Fm variable fluorescence/maximum fluorescence
GA gibberellic acid
GPX glutathione peroxidase
GSH glutathione
H2O2 hydrogen peroxide
HOG high osmolarity glycerol
Hsp heat shock proteins
IAA indole-3-acetic acid
INV invertase
ISR induced systemic resistance
JA jasmonic acid
K potassium
MAMPs or PAMPs microbe- or pathogen-associated molecular patterns
MAP mitogen-activated protein
MDA malondialdehyde
MMN modified Melin-Norkrans
N nitrogen
Na sodium
NDVI normalized difference vegetation index
OH·− hydroxyl
O2·− superoxide
P phosphorus
PCS phytochelatin biosynthesis
PDA potato dextrose agar
PDB potato dextrose broth
PT phosphate transporter
POD peroxidase
PR pathogenesis-related
ROS reactive oxygen species
SA salicylic acid
SOD superoxide dismutase
SUS sucrose synthase
TCA tricarboxylic acid cycle
WUE water use efficiency
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7. Yang, L.; Zou, Y.N.; Tian, Z.H.; Wu, Q.S.; Kuča, K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient
absorption of trifoliate orange seedlings. Sci. Hortic. 2021, 277, 109815. [CrossRef]

8. Verma, S.; Varma, A.; Rexer, K.H.; Hassel, A.; Kost, G.; Sarbhoy, A.; Bisen, P.; Bütehorn, B.; Franken, P. Piriformospora indica, gen. et
sp. nov., a new root-colonising fungus. Mycologia 1998, 90, 896–903. [CrossRef]

9. Jha, Y.; Yadav, A.N. Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agricul-
ture and Allied Sectors. In Industrially Important Fungi for Sustainable Development; Springer: Cham, Switzerland, 2021; pp. 363–392.
[CrossRef]

10. Pham, G.H.; Kumari, R.; Singh, A.; Malla, R.; Prasad, R.; Sachdev, M.; Kaldorf, M.; Buscot, F.; OelmŘller, R.; Hampp, R.; et al.
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