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Abstract: Molecular genetic markers of various PCD (programmed cell death) variants during xylo-
and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest
conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process.
Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases
families are often considered markers of the final xylogenesis stage. In the present study, we examined
the gene expression profiles of the BFN (bifunctional endonuclease) family—BFN, BFN1, BFN2, BFN3,
and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to
the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition
zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age
(c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend
on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we
studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms
of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase
andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of
phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine
trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem
vascular and mechanical element formation and parenchyma cells’ PCD during the formation of
Scots pine heartwood were discussed.

Keywords: Pinus sylvestris L.; programmed cell death; xylogenesis; heartwood formation; bifunc-
tional endonuclease; cysteine endopeptidase; metacaspase

1. Introduction

Programmed cell death (PCD) is an actively regulated process of cell death. PCD
mechanisms in plant organisms are observed in organ formation, cell differentiation, and
plants’ response to pathogens [1–5]. Various PCD variants in plants are characterized by
certain cytogenetic changes that are under the control of biochemical and molecular genetic
markers [2]. The best known and best described PCD example in the plant development
literature is the final stage of cambial cell differentiation [6–8]. The cambium is the lateral
meristem that forms the conductive trunk tissues—xylem and phloem.

Phloem is the transport tissue of plants. The transport flow of assimilates through the
phloem is maintained by differentiation of sieve elements, the main stages of which are
as follows: strengthening of the cell wall, degradation of the nucleus and loss of most of
the organelles, and formation of highly fluid cytosol. The residual organelles are localized
directly under the plasma membrane. After nucleus degradation, the sieve elements of the
phloem become dependent on neighboring cells that are closely associated with them (due
to numerous plasmodesmata); these are named “companion cells” (in the gymnosperms—
Strasburger cells) [9]. Thus, sieve elements of the phloem run differentiation, which
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is accompanied by partial autolysis of cellular content, without undergoing complete
PCD [9,10]. It is believed that the differentiation of phloem cells begins under the influence
of a transcription factor of the MYB(myeloblastosis) family – the ALTERED PHLOEM
DEVELOPMENT (APL) gene [11]. The downstream APL targets are likely genes of the
exonuclease family [12].

Xylem is water-conducting tissue that also has mechanical functions [13]. In coniferous
plants, xylem consists of tracheal elements (TE) and parenchyma cells. Xylem formation
includes mother cell formation, elongation, and secondary cell wall formation. The final
step in the formation of xylem TE is PCD. The initial stages of xylem differentiation are reg-
ulated by NAC-domain transcription factors and VASCULAR-RELATED NAC-DOMAIN
1-7 (VND1-7). VND1-7 triggers the secondary cell wall deposition (over MYB transcription
factors) and positively regulates proteases and nuclease (bifunctional endonuclease (BFN),
metacaspase (MC), cysteine endopeptidase (CEP) gene family) [14]. The cell content of TE
is degraded when hydrolytic enzymes are released into the cytosol from the broken central
vacuole [15]. The key enzyme responsible for nuclear degradation in conductive elements
of xylem is a bifunctional endonuclease that has both DNase and RNase activities [16]. The
participation of endonucleases in the degradation of the nucleus during the formation of
the phloem sieve elements has not previously been studied.

Along with tracheids, which undergo a complete PCD process, the xylem contains
living parenchyma cells, which link the symplast and apoplast of woody tissues and
perform important functions in various processes such as carbohydrate storage, water
transport from roots to leaves, and wound response [17–21]. In Pinus sylvestris, a species that
forms heartwood (HW), the cells of the radial parenchyma undergo significant cytological
changes when moving toward the stem pith and, as a result, undergo complete PCD.
Heartwood formation has several stages: dehydration of xylem (sapwood, SW) in the
transition (from SW to HW) zone (TZ), formation of extractive substances, changes in
cell wall structure, and destruction of the cell nucleus [21,22]. Molecular and genetic
mechanisms of PCD in cells of the ray parenchyma are poorly understood. In previous
work [23], a transcriptomic analysis of the trunk tissues of 46-year-old Scots pine trees
showed high expression of the gene encoding a bifunctional endonuclease in TZ.

Xylem and phloem also differ in their composition of structural components and,
as a result, are characterized by different metabolic statuses. The different activities of
carbohydrate metabolism enzymes, antioxidant systems (AOS), and secondary metabolism
enzymes characterize the tissues themselves and the processes occurring within them.
Quantitative differences in the activity of these enzymes can serve as a marker of more
intensive formation and/or consumption of certain substances of a carbohydrate and
phenolic nature, a different balance of which is maintained both during PCD and during
heartwood formation. Previous studies have shown that the rate of HW formation in Pinus
sylvestris depends on the cambium age [24].

The aim of this work was to identify the molecular genetic markers involved in
programmed cell death during the formation of various trunk tissues, using the example of
Pinus sylvestris trees of different ages.

2. Results
2.1. Identification of BFN, CEP, and MC Genes in the Scots Pine Genome
2.1.1. BFN Gene Family

A search of the Scotch pine genome revealed three genes encoding protein sequences
homologous to BFN Picea abies. The BFN gene (TC158725) described in the article by Lim
and colleagues [23], which was highly expressed in the transition zone during heartwood
formation in Pinus sylvestris, was also used for further analysis. A structural analysis of the
proteins showed that all sequences contained a domain specific to BFN (cd11010) and a
signal peptide at the N-terminus. Comparative evolutionary analysis showed that all four
Scots pine sequences clustered with S1-type endonucleases from other species (Figure 1).
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Figure 1. Maximum likelihood phylogenetic tree based on the nucleotide sequences of known genes
from Arabidopsis thaliana L. (red squares), Picea abies L. (blue dots), and potential genes of Pinus
sylvestris L. (green dots); (a)—bifunctional endonuclease (BFN); (b)—cysteine endopeptidase (CEP);
(c)—metacaspase (MC). The tree is drawn on a scale, with lengths of branches in the same units
as the evolutionary distances used to infer the phylogenetic tree. The numbers shown next to the
branches represent the results of the bootstrap test (1000 replicates). Along with the gene names are
the database access codes: PLAZA (P. sylvestris), Congenie (P. abies), Phytozome (A. thaliana), and
from Lim et al. [23] (P. sylvestris BFN, TC 158725).

2.1.2. CEP Gene Family

A search of the Scotch pine genome revealed nine genes encoding protein sequences
homologous to spruce papain-like cysteine proteases (PLCPs). A structural analysis of
the proteins showed that all sequences contained domains that were specific to PLCPs
(pfam00112, smart00848). Three sequences contained the smart00277 (granulin) domain.

Comparative evolutionary analysis showed that three sequences of Scots pine clustered
with CEP, while the remaining six were homologous to other types of PLCPs (Figure 1). The
PSY00006946 gene was chosen for further analysis since its product was identified as the
closest homologue of the MA_34759g0010 product, the spruce cysteine endopeptidase gene,
for which a high specific expression was shown in the PCD zone of spruce tracheid [25].

2.1.3. MC Gene Family

A search of the Scotch pine genome revealed eight genes encoding protein sequences
homologous to spruce MCs. A structural analysis of the proteins showed that all sequences
contain domains that were specific to metacaspases (pfam00656).

Comparative evolutionary analysis showed that two sequences of Scots pine clustered
with spruce and Arabidopsis type I metacaspases, while the remaining six sequences were
homologous to type II metacaspases (Figure 1).
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The PSY00023144 gene product was identified as the closest homologue of Picea
abies MC5. A high specific expression of the gene encoding MC5 was shown in the PCD
zone of spruce tracheid [25]. Additionally, the product of the PSY00023144 gene was the
closest homologue of AtMC9, which has been shown to be involved in PCD during the
differentiation of xylem vessels in Arabidopsis. In this regard, the PSY00023144 gene was
selected for further analysis.

2.2. Cytology

Several tissue samples were taken from each tree, including cells of trunk conducting
tissues at different stages of development. Before performing biochemical and molecular
genetic analyses, a microscopic analysis of samples of selected tissues was carried out.

Fraction 1 (F1), taken from the inner part of the bark, included cells of the cambial
zone, conducting phloem, and a small portion of non-conducting phloem. Fraction 2 (F2),
taken from the debarked surface of wood, included cells with differentiating xylem. This
tissue layer contained expanding tracheid that had not yet lost their cellular content and
cells of the ray parenchyma containing typical oblong-elliptical nuclei (Supplementary
Figure S1). In the inner layers of sapwood (SWin) and transition zone (TZ), the bulk of the
tissue was composed of dead tracheid; living cells were represented by ray parenchyma
and parenchyma sheath of axial resin canals. In the interior sapwood, nuclei in the cells of
ray parenchyma were rounded off (Supplementary Figure S1). In the transition zone, nuclei
gradually disappeared; in some cells it was possible to observe unorganized chromatin left
after the destruction of the nuclear membrane (Supplementary Figure S1).

2.3. Metabolic Status

The activities of AOS and phenolic (SOD (superoxide dismutase), CAT (catalase),
POD (peroxidase), PPO (polyphenol oxidase), PAL (phenylalanine ammonia-lyase), and
carbohydrate metabolism enzymes (SS (sucrose synthase) ApInv (apoplastic invertase),
CtInv (cytoplasmic invertase), VacInv (vacuolar invertase)) were determined in F1, F2, and
SW of Scots pine trees at different cambial ages (c.a.) to determine the metabolic status of
the studied tissues.

2.3.1. Activity of AOS and Phenolic Metabolism Enzymes

In general, CAT activity did not change between F1, F2, and SW. The lowest SOD
activity was observed in differentiating xylem (F2), while the lowest POD was observed in
SW. A trend toward an increase in PAL activity was observed against the background of an
increase in PPO activity in the radial row « F1-F2-SW» (Figure 2).

2.3.2. Carbohydrate Metabolism

Enzymes of carbohydrate metabolism showed the following pattern: lower activity of
SS and CitInv in SW compared with other zones was accompanied by higher activity of
VacInv and ApInv (Figure 3).

2.3.3. Principal Components Analysis Using Enzyme Activity

While conducting the investigation, we studied plants of different c.a.: 25-, 63-, and
164-year-old trees (five models of each age). Principal component analysis was carried
out for a data set for enzyme activity values for trees of all studied age groups. Before the
calculations, the initial data were standardized. Figure 4 shows that the studied plants
were divided into three groups according to the studied tissues.

Principal components analysis (PCA) of data from 45 models reduced the 9 enzyme
variables to 2 factors that captured 64.4% of the variation. Ordination of models by these
factors showed three discrete distributions (Figure 4). F1, F2, and SW, which generally had
low POD, CtInv, and SS and high PPO, VacInv, and ApInv, varied primarily in relation to
factor 1 (45.2% of the variance, positively correlated with PPO, ApInv, VacInv, and PAL and
negatively correlated with CtInv and POD). F1 and F2 varied along factor 2 (19.2% of the
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variance, positively correlated with SOD and CAT). Thus, the different metabolic status
described the studied tissues. Of course, there were quantitative differences due to the age;
however, in general, changes in the activity of the studied enzymes were similar in models
of different ages. We can thus conclude that tissue specificity is the main feature.
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Figure 2. The activities of superoxide dismutase (SOD) (U mg−1 protein), catalase (CAT) (µmol
H2O2 mg−1 protein), peroxidase (POD) (µmol TG mg−1 protein), polyphenol oxidase (PPO) (U mg−1

protein), and phenylalanine ammonia-lyase (PAL) (µmol cinnamic acid mg−1 protein) in Fraction 1
(cambial zone, conducting phloem, non-conducting phloem) (F1), Fraction 2 (differentiating xylem)
(F2), and sapwood (SW) of 25, 63, and 164 cambial age (c.a.) years Scots pine trees. Values represent
the mean ± SE (n = 5). The difference was considered significant if p < 0.05. Letters indicate differences
between groups F1, F2, and SW.
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Figure 3. The activities of vacuolar invertase (VacInv) (µmol sucrose mg−1 protein), apoplastic
invertase (ApInv) (µmol sucrose mg−1 protein), cytoplasmic invertase (CtInv) (µmol sucrose mg−1

protein), and sucrose synthase (SS) (µmol sucrose mg−1 protein) in F1, F2, and SW of 25, 63, and
164 c.a. years Scots pine trees. Values represent the mean ± SE (n = 5). The difference was considered
significant if p < 0.05. Letters indicate differences between groups F1, F2, and SW.
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Figure 4. Ordination of 45 models based on enzyme activity. Factor 1 (45.2% of the variance) was
correlated with PPO (r = 0.91), ApInv (0.92), VacInv (0.90), PAL (0.75), CtInv (−0.73), and POD
(−0.62). Factor 2 (19.2% of the variance) was correlated with SOD (0.78) and CAT (0.66). The yellow
grouping represents F1. The blue grouping represents F2. The green grouping represents SW. The
values shown are means with 95% confidence intervals.

2.4. Expression of PCD Genes in Scots Pine Trunk Tissue
2.4.1. Expression of BFN, CEP, and MC Genes during Cambium Differentiation

Expression of the BFN gene family and CEP and MC genes was analyzed in F1 and
F2 in uneven-aged (c.a. 25, 63, and 164 years) Scots pine trees. In F1, the highest level of
expression was shown for the BFN1 (significant differences compared to F2 were shown for
trees of all ages) and BFN2 (significant differences from F2 were shown for 25 c.a. years
trees) genes among all the studied genes (Figure 5).

All the studied genes were expressed in F2. The highest expression in F2 was shown
for the CEP and MC5 genes. For 63 c.a. years trees, significantly, higher relative expression
was shown of CEP and MC5 in F2 compared to F1.

2.4.2. Expression of Genes Related to Heartwood Formation

To identify molecular genetic markers involved in PCD during HW formation, we
studied the expression of PCD genes (BFN gene family, CEP, MC5) in SWin and TZ.

Expression in SWin and TZ 25 and 164 c.a. years Scots pine trees was shown only
for the BFN, BFN1, and BFN2 genes among all the studied PCD genes. The expression of
these genes increased in TZ compared to SWin. Significant differences in expression levels
between SWin and TZ were shown for the BFN (for 25 and 164 c.a. years) and BFN1 (for
25 c.a. years) genes.

The highest level of expression in the analyzed tissues was shown for the BFN gene.
BFN gene expression in TZ was 12 (for 25 c.a. years) and 14 (for 164 c.a. years) times higher
than expression in SWin (Figure 6).
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Figure 6. Relative expression (arbitrary units) of PCD genes in the transition zone (TZ) and inner
sapwood (SWin) of 25 and 164 cambial age (c.a.) years Scots pine trees. Values represent the
mean ± SE (n = 5). The difference was considered significant if p < 0.05. Letters indicate differences
between SWin and TZ for each gene.

3. Discussion

In this study, the expression profiles of the genes encoding BFN, CEP, and MC were
studied for the first time during (1) the formation of phloem sieve elements; (2) PCD, which
occurs during the differentiation of conductive and mechanical elements of the xylem; and
(3) in the xylem ray parenchyma cells during HW formation in Scots pine.

Both the sieve elements of the phloem and xylem TE were differentiated from cambial
cells; however, only the differentiation of TE included a program aimed at cell death [9]. TE
development has been studied mainly in angiosperms, and very little is known about the course
of these processes in conifers [26]. A model system in zinnia cell cultures (Zinnia elegans L.)
was created [27] and it was possible to consistently describe the changes that occur with cells
during TE formation using this system. Similar models were created for Arabidopsis (Arabidopsis
thaliana L.) [27,28]. Synthesis and deposition of the secondary cell wall components lead to
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the cytoplasm density decrease, a change in the tonoplast permeability, which lead to vacuole
increase and destruction [29]. Transcriptional regulators play a key role in triggering cambial
stem cell differentiation and regulating secondary cell wall formation. Three types of regulators
involved in regulating of gene expression of SCW biosynthetic genes (NAC domain master
regulator (NO APICAL MERISTEM, ATAF1, ATAF2, and CUP-SHAPED COTYLEDON 2) and
two MYB domain regulators) [30–33]. The NAC family (including VASCULAR-RELATED NAC-
DOMAIN1 (VND1-VND7), NAC SECONDARY WALL THICKENING PROMOTING FACTOR
1 (NST1, NST2), and NST3/SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN
1 (SND1)) regulate SCW biosynthesis [34–38]. The transcription factor VND7 can regulate
secondary cell wall formation by not only starting its formation program but also suppressing
it through SUPPRESSOR OF ACAULIS 51(SAC51) [26]. A similar regulatory mechanism is
also described for genes encoding cysteine peptidases (CEP), bifunctional endonucleases (BFN),
and metacaspases (MC). Thus, VND7 activates the expression of genes encoding proteolytic
enzymes to complete the process of differentiation of the TE of the xylem, named PCD (Figure 7).
In Arabidopsis, cysteine peptidases XYLEM CYSTEINE PEPTIDASE 1 and 2 (XCP1 and XCP2)
and metacaspase METACASPASE 9 (MC9) are important PCD participants in the formation
of xylem TE [26]. They are involved in the autolysis of cellular content [39], while bifunctional
endonuclease encoded by the BFN gene family is the key enzyme responsible for nuclear
degradation in xylem vessels [16] (Figure 7).
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Figure 7. The cytology and molecular genetic control of differentiation of tracheal elements of the
xylem (according to Escamez and Tuominen [26] with changes) and sieve elements of the phloem.
The initial stages of xylem differentiation are regulated by the transcription factor VASCULAR-
RELATED NAC-DOMAIN (VND), which, through the MYB (my elob lastosis) protein family, triggers
the synthesis of secondary cell wall components or inhibits this process by triggering the SAC51
(SUPPRESSOR OF ACAULIS 51) suppressor. In addition, VND positively regulates the expression of
genes encoding BFN, CEP/XCP, and MC, which are involved in the proteolysis of cell structures under
PCD. Phloem cell differentiation begins under the action of the ALTERED PHLOEM DEVELOPMENT
(APL) gene, whose downstream targets are NAC45/86 (NO APICAL MERISTEM, ATAF1, ATAF2,
and CUP-SHAPED COTYLEDON 2) and nucleases of the NEN family [12]. Our study shows the
possible involvement of genes of the BFN family in the process of differentiation of sieve elements of
the phloem.

We showed that all the studied PCD genes (BFN gene family, CEP, MC5) were ex-
pressed in the differentiating xylem in Pinus sylvestris plants of different ages. The highest
expression was shown for the CEP and MC5 genes (Figure 5). This may indicate the par-
ticipation of these genes in autolytic processes during xylem TE formation in Scots pine
trees. CEP and MC5 genes are homologous to the CEP and MC5 genes of Picea abies, whose
high expression was shown in the PCD zone during the tracheid formation in spruce [25].
Significantly higher expression of CEP and MC5 in F2 compared to F1 was shown in 63 c.a.
year-old trees.
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Currently, there are little data on the molecular genetic control of the phloem cell differ-
entiation program. In Arabidopsis thaliana plants, it was shown that the ALTERED PHLOEM
DEVELOPMENT (APL) gene, which encodes a transcription factor of the MYB type, caused
the acquisition of phloem identity. It has been shown that recessive apl mutation led to division
disturbance and subsequent differentiation of phloem cells [11]. Further studies have shown
that the downstream target of the APL gene can be the transcription factor NAC45/86 which,
in turn, positively regulates the expression of genes of the Arabidopsis exonuclease family
(NEN 1-4) [12] (Figure 7). The role of genes of the endonuclease family in the differentiation
process of the phloem sieve elements has not been previously considered in the literature.
In our study, we showed the expression of the BFN gene family and CEP and MC5 genes
in the cambial zone and differentiating phloem (F1) cells. Genes of the BFN family encode
a bifunctional endonuclease with both DNase and Rnase activities and are involved in the
degradation of the cell nucleus during PCD in plants [16]. Significantly higher expression
values in F1 compared to F2 were shown for the BFN1 (25, 63, and 164 c.a. years) and BFN2
(25 c.a. years) genes (Figure 5), which likely indicates the participation of these genes in the
nucleus destruction during the formation of phloem sieve elements.

More genes of the primary metabolism are up-regulated in bark/cambial regions
compared to SW [40]. Decreases in CtInv activity in SW likely indicates a decrease in
synthetic processes associated with a decrease in the proportion of primary metabolism
in relation to secondary metabolism in SW. The distribution of oxygen and its active
forms is of great importance when moving from the periphery to the trunk pith [41,42].
Thus, the highest SOD activity was observed in F1 tissues. The increased activity of SS
in F2 was noticed probably due to the active use of sucrose in the differentiating xylem
for the synthesis of the structural components of cell walls (cellulose). It is known that
the SS form associated with the cytoplasmic membrane is part of the cellulose synthase
complex, supplying UDP-glucose, which is formed during the sucrose breakdown for
cellulose synthesis [43–48]. In addition, an increase in POD in the cells of the cambial zone
may be associated with cell differentiation occurring in the xylem adjacent to the cambial
layer and the lignification of the cell wall. POD isoenzymes are involved in both of these
processes [49].

PCD, which occurs in the xylem ray parenchyma cells during HW formation is a pro-
cess that has seldom been discussed in the literature. The cells of the xylem ray parenchyma
undergo significant cytogenetic changes during HW formation. Regarding Cryptomeria
japonica, Arakawa and colleagues [50] showed the changes that occur with the cells of
the ray parenchyma as they move from the cambium to the stem pith. A large central
vacuole containing a large amount of protein is replaced by small vacuoles with protein
content and, after deformation, they lose vacuolar sap rich in peptides. The nucleus also
undergoes changes while moving toward the HW, first changing its shape from fusiform
to elliptical and then undergoing condensation (Figure 8). Dead parenchyma cells do not
contain organelles. The molecular genetic mechanisms of PCD regulation during heart-
wood formation are also poorly understood. Transcriptomic analysis of 46-year-old Scots
pine trees showed high expression of the BFN gene in TZ [23]. In our study, we showed an
increase in the expression of the BFN, BFN1, and BFN2 genes in TZ compared to the inner
sapwood (SWin) layers. Significantly higher expression values in TZ compared to SWin
were shown for BFN (25 and 164 c.a. years) and BFN1 (25 c.a. years). It is likely that these
genes in Pinus sylvestris are involved in nuclear degradation during HW formation.
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Figure 8. Scheme showing cytological changes in ray parenchyma cells as they move from the
outer layers of SW to the PCD zone during HW formation. The outer layers of SW contain large
central vacuoles and elliptical nuclei. As cells move toward the HW formation zone, the vacuoles are
deformed and rounded nuclei then undergo degradation. The red box indicates the TZ.

As cells move toward the HW, significant metabolic rearrangements take place in the
SW. SW cells are characterized by specific metabolic changes associated with the formation
of tyloses and the biosynthesis of extractives such as phenolic compounds, lignin, and
aromatic substances that accumulate in the vessels [50–54]. There is also an accumulation
of reducing substances (mainly carbohydrates) in the SW [55] and part of the carbohydrates
transported from the SW may be shunted into the biosynthetic pathway for polyphenolic
compounds [56]. Therefore, it is likely that increases in PPO activity against the background
of an increase in PAL activity—the main source of the formation of phenolic compounds—is
associated with the synthesis of complex substances of a phenolic nature in SW, which
subsequently form the chemical heartwood base [57,58]. Thus, for example, for PAL,
transcript accumulation was highest in the exterior sapwood compared to differentiating
xylem [59] and in the transition zone between SW and HW compared to the cambial
zone [40]. Numerous peroxisomes found in SW can also indicate a high activity of PPO [60].
Increased activity of VacInv and ApInv in SW may lead to enhanced degradation of sucrose
in the region where the synthesis and accumulation of phenolic heartwood extractives
occur, as has previously been discussed in the literature [53,57,60].

4. Conclusions

We have considered molecular genetic aspects of the PCD process of trunk tissue
formation of Scots pine trees. We identified the BFN gene family and CEP and MC genes
in Pinus sylvestris genomes and studied patterns of PCD gene expression at phloem sieve
elements formation (partial autolysis of cell content), xylem tracheid formation (complete
PCD), and the PCD of ray parenchyma cells. We showed that the choice of the molecular
genetic program did not depend on the cambial age but was determined largely by the
type of plant tissue. We found some similarity between all studied processes (such as
participation of BFN genes in the regulation of tissue development), but different gene
isoforms had a tissue-specific expression pattern.

5. Materials and Methods
5.1. Study Objects

The study was conducted in the middle taiga subzone (Karelia Republic, Northwest
Russia). We selected objects for the study in lingonberry pine forests, which are common in
the northern and middle taiga. The pine age line was represented by three groups: (1) 30 years
(cambial age 25 years)—the beginning of the vegetative-reproductive ontogenesis stage;
(2) 70–80 years (the average cambial age 63 years)—the middle of the vegetative-reproductive
ontogenesis stage; (3) 170–180 years (the average cambial age 164 years)—the age at the end
of the vegetative-reproductive stage of ontogenesis and the beginning of the extinction stage
of tree growth. On each site, five model trees were selected. The dominant trees without
oppression signs and damage were selected as model trees.
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5.2. Plant Sampling

The trunk tissue samples were taken during the cambial growth (21–22 June 2021)
at breast height (1.5 m above ground level). For microscopic analysis blocks, including
the phloem, cambial zone, and last two to three annual increments of wood, were cut out
(5 × 5 × 3 mm, length × width × height). For molecular genetic analysis and determi-
nation of enzyme activity «windows», 6 * 8 cm were cut out of the trunk and the bark
was separated from the wood. During cambial growth, the bark moves away from the
wood along the expanding xylem zone. Tissue complexes (hereafter: Fraction 1) were
prepared from the inner surface of the bark. The layers of tissue (hereafter: Fraction 2)
were scraped off the exposed wood surface with a blade. The sampling of stem tissues was
monitored under a light microscope. Then, cores were taken. The material was frozen in
liquid nitrogen and stored at −80 ◦C. Under laboratory conditions, cores were illuminated
in ultraviolet light for a few seconds to determine the heartwood boundary and samples
were taken from the transition zone (TZ) (two growing rings at the border with heartwood)
and internal sapwood (SWin) (two growing rings after TZ).

5.3. Microscopy

Stem tissue samples for microscopic analysis were fixed in 3% glutaraldehyde solution
and stored at 4 ◦C until further processing. In the laboratory, wood samples were washed
three times to remove glutaraldehyde with a phosphate buffer (pH 7.2–7.4) and passed
through an alcohols’ series 30◦, 50◦, 70◦. Then, the samples in 70 ◦C ethanol solution
were placed in a refrigerator, where they were stored at a temperature of +4 ◦C until the
preparation of the cross-section. Radial and transverse sections of 15–20 µm were made
using a Frigomobil 1205 freezing microtome (R. Jung, Heidelberg, Germany). The sections
were stained with 4% acetocarmine solution to identify nuclei [61]. Temporary slides were
made with glycerol as a mounting medium. The number of biological replicates (sampled
trees) for each age group was five.

Microscopic analysis was carried out under an AxioImager A1 light microscope (Carl
Zeiss, Jena, Germany) equipped with an ADF PRO03 camera. Images were processed
with ADF Image Capture software (ADF Optics, Wuhan, China). The number of technical
replicates was three for each sampled tree.

5.4. Gene Retrieval from the Scots Pine Genome by Bioinformatics Methods

The search for BFN, MC and CEP gene families was carried out using the P. sylvestris
gene set in the GymnoPLAZA database (PLAZA Gymnosperms. Available online: https:
//bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/ (accessed on 8 June 2021))
For this purpose, known gene sequences (BFN, CEP, and MC for Picea abies) [25] and
Arabidopsis thaliana were used.

Pine protein structure prediction was performed using National Center for Biotech-
nology Information (NCBI) (NCBI Conserved Domain Database. Available online: http:
//www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml/ (accessed on 8 June 2021)) [62] and
ScanProSite (ScanProsite. Available online: https://prosite.expasy.org/scanprosite/ (ac-
cessed on 8 June 2021)) [63].

Phylogenetic analysis was performed using the MEGA 7 program [64]. Multiple align-
ments for potential BFN of Scots pine and other species were performed using ClustalW.
The phylogenetic tree was constructed using the Maximum Likelihood method based on
the Kimura 2-parameter model with 1000 bootstrap replicates [65,66].

5.5. qRT-PCR

Isolation of total RNA was performed using an extraction CTAB buffer (pH 4.8–5.0);
100 mM Tris-HCl (pH 8.0), 25 mM EDTA, 2M NaCl, 2% CTAB, 2% PVP, and 2% mer-
captethanol was added to the mixture before use. Separation of the aqueous and organic
phases was conducted using a mixture of chloroform-isoamyl alcohol (24:1). RNA was
precipitated using 25 mM LiCl; then, re-precipitation was carried out using an extraction

https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/
https://bioinformatics.psb.ugent.be/plaza/versions/gymno-plaza/
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml/
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml/
https://prosite.expasy.org/scanprosite/
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SDS buffer: 1M NaCl, 0.5% SDS, 10 mMTris-HCl (pH 8.0), and 1 mM EDTA [67]. RNA was
re-precipitated with absolute isopropanol.

Before the reverse transcription reaction, the resulting mixture was incubated with
DNase (Syntol, Moscow, Russia) for an hour at 37 ◦C. The enzyme was inactivated during
reverse transcription (RT) by heating the reaction mixture at 70 ◦C for 10 min. RT reaction
was performed using «T100 Thermalcycler» (BioRad, Foster City, California, USA) with
a set of MMLVRT reagents (Evrogen, Moscow, Russia) using Oligo(dT)15-and Random
(dN)10-primer. The reaction mixture for PCR (25 µL totally) contained 5 µL qPCRmix-HS
SYBR (Evrogen, Moscow, Russia), 1 µL of forward and reverse primers (0.4 µM) (Synthol,
Moscow, Russia), 2 µL of template cDNA, and 16 µL of deionized, nuclease-free water.
The final content of the cDNA reaction mixture for all samples was ~100 ng. qRT-PCR
was performed under the following conditions: 95 ◦C for 5 min for a further 40 cycles,
denaturation (95 ◦C, 15 s), annealing (52.7—61.6 ◦C, 30 s), and elongation (72 ◦C, 30 s). For
each pair of primers, a negative control was used—PCR was performed in the absence of a
cDNA template. The GAPDH gene was used as a reference gene for calculating the relative
expression of genes, which, according to analysis using BestKeeper and NormFinder, was
the only gene stably expressed in all tissues studied. The primer sequence used for qRT-PCR
is shown in Table 1.

Table 1. Primer sequence for RT-PCR assays.

Gene Name Citation/ID
GymnoPlaza Forward/Reverse Primer Amplicon Length Annealing

Temperature, ◦C

GAPDH PSY00009485 GGACAGTGGAAGCATCAT
AACCGAATACAGCAACAGA 82 54.2

54.2

BFN Lim et al., 2016
GGCTTACAAAGACGCTGAGG

158
53.8

CTGAATCCCGAGTGTGGTCT 53.8

BFN1 PSY00012931
CCATAATGCCGAAGGAGAA

87
61.1

GCTCTGCTGCCATAAGTT 61.6

BFN2 PSY00013485
AAGACGCTGATGAAGACA

96
60

CCAACCTTACACCTCCTT 60

BFN3 PSY00022159
TGATGAGATTCGTTATTG

163
53

CTGGTCAGTATAATTGTTA 52.7

CEP PSY00006946 AAGGAATCAATTACTGGATAG
TTCAACTGCTTCAATACC 95 56.5

56.3

MC5 PSY00023144 TAACGCTCTTCAATCAAT
ATGCTGTGAGTATTCTTC 106 55.2

55.3

The relative quantity of gene transcripts (RQ) was calculated from the formula:

RQ = E−∆Ct, (1)

where ∆Ct is the difference in the threshold cycle values for the reference and target genes,
and E is the effectiveness of PCR. The effectiveness of PCR was determined individually
for each reaction based on amplification fluorescence data using the LinRegPCR software
(version 2021.1, dr. J.M. Ruijter, Amsterdam UMC, Amsterdam, Nitherlands) [68].

5.6. Enzyme Activity Analysis

Plant tissues were ground in liquid nitrogen to a uniform mass and homogenized at
4 ◦C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM
DTT, 5 mM MgCl2, and 0.5 mM PMSF. After a 15-min extraction, the homogenate was
centrifuged at 12,000 g for 10 min (MPW-351R centrifuge, Poland). The supernatant was
purified on 20 cm3 columns with Sephadex G-250. Aliquots with the highest protein
amounts were collected. In tissues, the protein concentration was 10–50 µg/ml. Proteins
in the extracts were quantified by a Bradford assay. The enzyme activity was determined
spectrophotometrically using a SpectroStar Nano plate spectrophotometer (BMG Labtech,
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Ortenberg, Germany). The residue was assayed for CWInv and the supernatants for VacInv,
CtInv, SS, SOD, CAT, POD, PPO, and PAL. The essay for invertases and SS was described
in detail by Serkova et al. [69]. The assay for SOD, CAT, POD, PPO, and PAL was described
in detail by Ershova et al. [70].

5.7. Statistical Data Processing

The results were statistically processed with PAST (version 4.0). Before starting the
statistical analysis, raw data were initially tested for normality using the Shapiro-Wilk test.
The significance of differences between variants was estimated by Mann–Whitney U-test.
The significant difference was evaluated at the level of p < 0.05. Neighbor-joining clustering
was used to select tree groups based on the expression of the studied genes.

All data in the diagrams appear as the mean ± SD, where SD is the standard deviation.
Different letters indicate significant differences at p-value < 0.05, according to the Mann–
Whitney U-test results.

Principal component analysis was carried out for a data set for enzyme activity values
for trees of all studied age groups. Before the calculations, the initial data were standardized.

The research was carried out using the equipment of the Core Facility of the Karelian
Research Centre of the Russian Academy of Sciences.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants11243438/s1, Figure S1: (a) Transverse section of differenti-
ating xylem (Fraction 2). R—ray, T—tracheid. The cellular contents in differentiating tracheids are
visible (shown with asterisks). In the inset, two cells are shown at higher magnification. (b) Radial sec-
tion of differentiating xylem (Fraction 2). The nuclei in the ray parenchyma cells are oblong-elliptical
(black arrows). (c) Radial section of interior sapwood (SWin). The nuclei in the ray parenchyma
cells display evident pycnotic degeneration. They were rounded due to water loss and chromatin
condensation (black arrows). (d) Radial section of transition zone (TZ). The destruction of the nuclear
membranes occurred. Chromatin stained with acetocarmine could be observed in cells (black arrows).
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